Промышленная электроника что это

Забродин Ю.С. Промышленная электроника

Забродин Ю.С. Промышленная электроника

Предисловие

«Промышленная электроника» относится к числу наиболее важных курсов для подготовки современных инженеров — электриков, электромехаников, злектроэнергетиков и инженеров других электротехнических специальностей. В этом курсе, сгоящем в учебных планах указанных специальностей почти сразу за курсом «Теоретические основы электротехники», будущие специалисты изучают: основные типы приборов и схем, используемых в электронике; принцип действия и особенности линейных, импульсных и цифровых устройств для обработки сигналов в электронных системах управления и отображения информации; принцип действия и особенности выпрямителей, инверторов и других преобразователей электрической энергии, применяемых в электроприводе, электрической тяге, элекrротехнологии, электроэнергетике и т. д. Даже из этого краткого общего перечня видно, что промышленная электроника является базой дальнейшего прогресса, в частности основой автоматизации многих областей промышленности, транспорта и энергетики.

В то же время для большинства перечисленных специальностей промышленную электронику можно отнести скорее к общеинженерным, чем к специальным дисциплинам. Из этого следует, что главная цель данного курса — не столько научить студента разрабатывать те или иные функционально законченные электронные устройства (изучение электроники в таком объеме предусмотрено для подготовки инженеров соответствующего профиля в рамках специальности «Промышленная электроника»), сколько научить его понимать принцип действия этих устройств, уметь грамотно эксплуатировать их и формулировать задание на разработку нового устройства. Это и отражено в названиях указанной дисциплины «Промышленная электроника (общий курс)» или «Основы электроники», под которыми она значится в учебных планах большинства электротехнических специальностей.

Предлагаемый учебник написан в соответствии с действующими типовыми программами по курсу «Промышленная электроника» для ряда специальностей.

При написании учебника по этому курсу автор неизбежно сталкивается с трудной задачей, обусловленной, с одной стороны, разнообразием и быстрым развитием современных электронных устройств, существенно различающихся назначением, принципом действия, уровнем мощности и иными признаками, с другой — ограниченным числом лекционных часов и соответственно ограниченным объемом книги.

Эти два фактора определяют и некоторое различие в программах данного курса для отдельных групп специальностей. Так, для спrцнальностей, связанных с системами управления и контроля (автоматизация энергосистем и релейная защита, энергетическая кибернетика и др.), повышенное внимание уделяется информационной электронике — усилителям, генераторам сигналов, логическим схемам, импульсной и цифровой технике, индикаторным приборам, электронным блокам питания аппаратуры. В то же время для таких специальностей, как автоматизированный электропривод, электрификация железнодорожного транспорта, электротермические установки, электрические сети и системы, электрические машины, более важны разделы силовой преобразовательной техники — выпрямители средней и большой мощности, ведомые сетью и автономные инверторы, преобразователи частоты и т.д.

Необходимость учета вcex этих факторов заставила несколько расширить объем учебника, чтобы обеспечить возможность выборочного использования материала в соответствии с конкретными требованиями тех или иных специальностей.

Источник

Глава 11. ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА

11.1. ОБЩИЕ ПОЛОЖЕНИЯ

Электроника — область науки и техники, изучающая электрофизические явления в вакууме, газе, твердом теле и на границе сред; приборы и системы, основанные на этих явлениях.

Современная электроника, опираясь на достижения в различных областях знаний, в свою очередь, обогащает и способствует развитию других наук и производств, вооружая их новыми техническими средствами и методами. Электроника оказывает существенное влияние на жизнь человека, его образ мышления и поведение, на состояние среды обитания.

Можно рассматривать и характеризовать электронику в различных аспектах. Первый из этих аспектов предполагает рассмотрение электроники как части фундаментальной науки — физики. Электроника — это наука, изучающая взаимодействие заряженных частиц между собой, с электромагнитными полями и с веществом. Эта часть науки решает теоретические проблемы и задачи экспериментальных исследований. Второй аспект подразумевает область техники, включающую прикладные применения названного взаимодействия потоков заряженных частиц между собой, с электромагнитными полями и с веществом. Поэтому в качестве содержательного термина используется понятие «электронная техника».

Электроника как фундаментальная наука и ее прикладной аспект развивались в непрерывном взаимодействии. Результат тонкого физического эксперимента в короткий срок приводил к созданию и серийному выпуску нового класса электронных приборов. В свою очередь, электронные приборы позволили реализовать методы наблюдения, измерения процессов в микромире, неосуществимые иными средствами.

Электроника как наука зародилась на рубеже XIX и XX столетий. Ее предметом и по сей день является прежде всего изучение законов взаимодействия свободных и связанных электронов и других заряженных частиц между собой и с электромагнитными полями; разработка принципов, методов и технологий создания электронных приборов, использующих эти взаимодействия для преобразования электромагнитной энергии в собственном рабочем объеме прибора и заполняющей его среде для обеспечения требуемых условий и результатов функционирования. Во второй половине XX в. с большей или меньшей степенью условности оформились три основных направления электроники как науки: электровакуумная (включая плазменную); твердотельная (полупроводниковая); квантовая электроника.

Электроника как область техники решает вопросы создания на основе электронных приборов аппаратуры, систем и комплексов различных видов и поколений для выполнения функциональных задач в многочисленных разветвлениях энергетики, радиотехники, информатики; технологии разработки и производства различной вещественной и информационной продукции; доведения ее до потребителей; прогнозирования и оценки результатов (в том числе побочных) этого потребления и предотвращения (а то и ликвидации) нежелательных последствий.

В зависимости от степени развитости той или иной сферы науки, производства и применения, от доминирующего предназначения и специфичности условий, от удобства классификации, изучения, описания и преподавания, наконец, просто от складывающегося восприятия понятий (в том числе на бытовом уровне) уже появилось и продолжает появляться множество производных терминов от термина «электроника».

Эти производные более или менее адекватно отражают:

частные направления в собственно электронной науке и технике, например: катодная электроника, СВЧ-электроника, микроэлектроника, функциональная электроника, криоэлектроника, релятивистская электроника и т.д.;

доминирующий признак, объединяющий разнообразные направления электронной науки и техники (например, радиоэлектроника);

особую область применения, например: космическая электроника, авиационная электроника (авионика), бытовая электроника и пр.

Особое место по распространенности, профессиональному уровню, степени влияния на другие области техники и производства, развитию различных структур занимает промышленная электроника. Промышленная электроника как направление электронной техники зародилась в 40-х годах XX в. Ее появление было своего рода велением времени и неслучайно соответствующие направления с их проблематикой и терминологией появились на разных языках в технической литературе различных стран.

В последние годы определились три основных направления промышленной электроники: энергетическая (силовая) электроника (преобразование электрической энергии), информационная электроника (электронные средства получения информации, ее преобразования, отображения, использования в управлении), технологическая электроника (воздействие на вещество потоками частиц, электромагнитным излучением).

Впервые содержание промышленной электроники было сформулировано основателем кафедры промышленной электроникой МЭИ И.Л. Кагановым в 1947 г. За прошедшие десятилетия по этой дисциплине были подготовлены тысячи специалистов. Помимо МЭИ кафедры промышленной электроники существуют и готовят специалистов более чем в 20 вузах России и бывших республик Советского Союза. Само понятие промышленной электроники оказалось динамичным, и его содержание изменяется с каждым новым шагом технического прогресса.

В 60-х годах, термин «промышленная электроника» получил более широкое содержательное наполнение, охватывающее преобразовательные электронные устройства и источники электропитания (с соответствующими схемотехническими элементами, электровакуумными и полупроводниковыми приборами), а также информационные системы для электроэнергетики, технологии и управления промышленными объектами.

Промышленная электроника в вышеприведенном ее понимании охватывает все отрасли промышленности. Доминирующими направлениями в ее развитии являются:

1) преобразование тока промышленной (50 Гц) или иной частоты в постоянный (выпрямление) и преобразование постоянного тока в переменный с заданной частотой (инвертирование), а также преобразование переменного тока одной частоты в переменный ток иной частоты;

2) электропитание (вторичные источники) любых промышленных, в том числе радиотехнических, установок с выполнением регулирующих, стабилизирующих, защитных, коммутирующих и других функций; управляемый энергообмен между различными источниками энергии (например, сеть и солнечная батарея) либо между источниками и накопителями энергии (например, сеть и конденсаторная батарея); первое и второе направления объединяют названием «силовая (энергетическая) электроника»;

3) электронные средства систем управления, регулирования, контроля, сбора и отображения информации о состоянии промышленных объектов. В последние годы в связи с широким распространением промышленных микроконтроллеров электронные средства управления включают в себя комплекс аппаратных и программных средств; это направление называют «информационной электроникой»;

4) создание установок и устройств, обеспечивающих технологическое воздействие на материалы, детали машин, биологические и другие объекты и среды за счет использования потоков электронов и ионов, потоков электромагнитного излучения, включая излучение оптического диапазона (в том числе лазерного); это направление называют «технологической электроникой».

Несмотря на всю условность такого подхода, он достаточно полно отражает области применения промышленной электроники и в значительной мере ее элементную базу — электровакуумные (включая газоразрядные) и полупроводниковые электронные приборы, электронные источники, генерирующие потоки заряженных частиц и электромагнитные излучения (включая высокочастотные (ВЧ), ультравысокочастотные (УВЧ), сверхвысокочастотные (СВЧ) и излучения оптического диапазона).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

4.3. Молекулярная электроника

4.3. Молекулярная электроника При размышлениях о смене парадигмы в вычислительной технике и новых материалах на следующий период развития (его можно назвать посткремниевым) сразу вспоминается молекулярная электроника, которая постепенно становится нанотехнологической

6. ОХРАНА ТРУДА И ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ

6. ОХРАНА ТРУДА И ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ В промышленную безопасность входят мероприятия по созданию наиболее благоприятных условий для сохранения здоровья работников, исключения несчастных случаев и травматизма.Федеральная служба по технологическому надзору, ее

6.2. Промышленная безопасность при эксплуатации оборудования

6.2. Промышленная безопасность при эксплуатации оборудования 6.2.1. На все основное оборудование в обязательном порядке должны иметься паспорта. В них должны быть указаны устройство, назначение, техническая характеристика, требования безопасности при эксплуатации и

6.3 Промышленная безопасность при монтаже и ремонте оборудования

6.3 Промышленная безопасность при монтаже и ремонте оборудования 6.3.1. Рациональная организация рабочего места при монтаже и ремонте должна предусматривать их мобильность и соблюдение всех требований безопасности: свободные проходы, пути доставки деталей, инструментов и

6. ОХРАНА ТРУДА И ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ

6. ОХРАНА ТРУДА И ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ В промышленную безопасность входят мероприятия по созданию наиболее благоприятных условий для сохранения здоровья работников, исключения несчастных случаев и травматизма.Местные органы Ростехнадзора в пределах возложенных

6.2. Промышленная безопасность при эксплуатации оборудования

6.2. Промышленная безопасность при эксплуатации оборудования 6.2.1. На все основное оборудование в обязательном порядке должны иметься паспорта. В них должны быть указаны устройство, назначение, техническая характеристика, требования безопасности при эксплуатации и

6.3. Промышленная безопасность при монтаже и ремонте оборудования

6.3. Промышленная безопасность при монтаже и ремонте оборудования 6.3.1. Рациональная организация рабочего места при монтаже и ремонте должна предусматривать их мобильность и соблюдение всех требований безопасности: свободные проходы, пути доставки деталей, инструментов

Часть 4 ЭЛЕКТРОНИКА И ФИЗИЧЕСКАЯ ХИМИЯ В БТР

Часть 4 ЭЛЕКТРОНИКА И ФИЗИЧЕСКАЯ ХИМИЯ В БТР День, когда мы узнаем, что такое электричество, вероятно, станет ещё более величайшим событием в летописи человечества, чем любое другое происшествие, отражённое в нашей истории. Придёт время, когда комфорт, возможно, даже само

§ 4.9 Лазеры и квантовая электроника

§ 4.9 Лазеры и квантовая электроника Никто не оспаривает тот факт, что я сделал первый лазер… Если они сделали это, то где же тогда, чёрт возьми, их лазер? Теодор Мейман об учёных-кванторелятивистах Лазеры стали важнейшей составляющей современной науки, техники и быта.

11. КВАНТОВАЯ ЭЛЕКТРОНИКА И ОПТОЭЛЕКТРОНИКА

11. КВАНТОВАЯ ЭЛЕКТРОНИКА И ОПТОЭЛЕКТРОНИКА В этой главе вас ожидает рассказ о видимых и невидимых лучах, о светящихся кристаллах, о красном луче, позволяющем разговаривать тысяче человек, и о тоненькой ниточке, по которой все сказки «Тысячи и одной ночи» можно передать

12. КОСМИЧЕСКАЯ ЭЛЕКТРОНИКА

12. КОСМИЧЕСКАЯ ЭЛЕКТРОНИКА В этой главе мы не будем обращаться к истории, поскольку космическая эра продолжается всего три десятилетия, а расскажем о том, как радиоэлектроника, которой стало тесно на огромной Земле, завоевывает просторы Солнечной системы. О том, как

2.15. Техника безопасности и промышленная санитария при литейных работах

2.15. Техника безопасности и промышленная санитария при литейных работах Она подразделяется на правила ТБ до начала работы и во время работы.Начинается все с самого простого. До начала литейных работ необходимо надеть и привести в порядок рабочую одежду, осмотреть рабочее

11.2. СИЛОВАЯ (ЭНЕРГЕТИЧЕСКАЯ) ЭЛЕКТРОНИКА

11.2. СИЛОВАЯ (ЭНЕРГЕТИЧЕСКАЯ) ЭЛЕКТРОНИКА 11.2.1. ПЕРВЫЕ РТУТНЫЕ ВЫПРЯМИТЕЛИ Силовая электроника была и остается наиболее энергоемким направлением развития промышленной электроники. Функции этого направления — регулируемое преобразование электрической энергии.

11.3. ТЕХНОЛОГИЧЕСКАЯ ЭЛЕКТРОНИКА

11.3. ТЕХНОЛОГИЧЕСКАЯ ЭЛЕКТРОНИКА Под технологической электроникой обычно понимается совокупность методов и средств для создания и использования электронных и ионных пучков или электромагнитных волн с целью непосредственного воздействия на объект, подвергающийся

11.4. ИНФОРМАЦИОННАЯ ЭЛЕКТРОНИКА

11.4. ИНФОРМАЦИОННАЯ ЭЛЕКТРОНИКА Разработка информационных средств производилась структурами, для которых промышленные устройства были побочным продуктом, основные лежали в оборонной сфере. Это затрудняет восстановление исторических данных о творцах новой техники в

Источник

Промышленная электроника

Вы будете перенаправлены на Автор24

Отрасли промышленной электроники

Промышленная электроника – это часть электроники, которая занимается использованием полупроводниковых, ионных и электронных устройств в промышленности.

Промышленная электроника делится на две обширные области:

Высокая скорость и сложность процессов в энергосистемах требует активного внедрения электронно-вычислительных машин, связанных со сложными электронными устройствами, для управления и расчета режима их работы. Современные полупроводниковые преобразователи представляют собой один из основных элементов нагрузочных сетей, таким образом они определяют режим работы всей сети в целом. Электронные устройства являются сложными компонентами электромеханических и энергетических установок, поэтому для их разработки привлекаются высококвалифицированные специалисты в области автоматики, вычислительной техники и промышленной электроники.

Направления развития промышленной электроники

Доминирующими направлениями в развитии промышленной электроники являются:

Готовые работы на аналогичную тему

Полупроводниковые приборы и оптоэлектроника

В современной промышленной электронике наиболее широкое распространение получили полупроводниковые приборы, имеющие следующие преимущества: долговечность, высокий коэффициент полезного действия, высокая степень надежность, а также малые масса и габариты. Одно из основных направлений развития полупроводниковой электроники является интегральная микроэлектроника. В больших интегральных схемах может содержаться несколько сот тысяч элементов (диоды, транзисторы и т.п.), а их размеры при этом могут составлять 2-3 микрометра. Высокая скорость действия больших интегральных схем способствовала быстрому развитию микрокомпьютеров и микропроцессоров.

Оптоэлектроника – это раздел электроники, который занимается использованием электрических и оптических средств передачи, обработки и хранения данных.

Оптоэлектроника охватывает исследования взаимодействия между электронами твердых тел и других субстанций с электромагнитными полями оптического диапазона (длина волны от 1 нанометра до 1 миллиметра). Основными направлениями ее развития являются преобразование электрической энергии в оптическую (или наоборот) или использование оптических сигналов в качестве носителей информации. По назначению оптоэлектронные устройства делятся на устройства для изоляции электрических цепей (оптопары), для преобразования света в электрический ток (фотодиоды, фототиристоры, фоторезисторы, фотоэлектронные умножители и т.п.), для преобразования электрического тока в свет (светодиоды, лазеры и т.п.).

Источник

Введение в предмет

Промышленная электроника что это Промышленная электроника что это Промышленная электроника что это Промышленная электроника что это

Промышленная электроника что это

Промышленная электроника что это

Основы промышленной электроники

По дисциплине

Краткий конспект лекций

Специальность: 2-36 03 31 «Монтаж и эксплуатация электрооборудования»

Программой предмета «Основы промышленной электроники» пред­усматривается изучение учащимися устройства, принципа действия, па­раметров и характеристик радиоэлементов и электронных приборов, аналоговых и цифровых устройств обработки сигналов, приборов отображения информации, преобразователей электрической энергии и других типовых узлов, приме­няемых в системах управления производственными процессами.

В результате изучения предмета учащиеся должны знать:

— важнейшие направления развития и применения промышленной электроники;

— устройство, принцип действия, схемное обозначение, характери­стики, область применения элементов электронных устройств, полупроводниковых и фотоэлектрических приборов, интегральных микросхем, приборов для отображения инфор­мации;

— принципы построения типовых узлов, применяемых в автоматике, преобразовательной и вычислительной технике;

— пути повышения надежности функционирования устройств с ис­пользованием промышленной электроники.

Учащиеся должны уметь:

— собирать схемы для проведения лабораторных работ и выполнять эксперименты по исследованию электронных приборов и устройств;

— обрабатывать результаты лабораторных исследований, анализи­ровать их;

— пользоваться контрольно-измерительными приборами, инстру­ментами при проведении лабораторных работ с учетом требований тех­ники безопасности;

— пользоваться технической и справочной литературой.

Изучение предмета основывается на знаниях, полученных учащи­мися по общеобразовательным предметам, а также по предметам «Тео­ретические основы электротехники», «Электротехнические материалы”, «Электрические измерения».

В свою очередь данный предмет является базой для изучения про­филирующих предметов, выполнения курсового и дипломного проек­тов.

Электроника охватывает обширный раздел науки и техники, связанный с изучением и использованием различных физических явлений, а также разработкой и применением устройств, основанных на протекании электрического тока в вакууме, газе и твердом теле.

Промышленная электроника является одним из направлений технической электроники, которое связано с применением электронных приборов и устройств в промышленности, на транспорте, в электроэнергетике.

В промышленную электронику входят:

1) информационная электроника, к которой относятся электронные системы и устройства, связанные с измерением, контролем и управлением промышленными объектами и технологическими процессами;

2) энергетическая электроника (преобразовательная техника), связанная с преобразованием вида электрического тока для целей электропривода, электрической тяги, электротермии, электроэнергетики.

Электронные приборы можно разделить на три группы:

1) электровакуумные – используются явления, связанные с движением электронов в вакууме;

3) полупроводниковые– основаны на свойствах полупроводниковых материалов.

Промышленная электроника постоянно развивается. Это определяется в первую очередь непрерывным совершенствованием ее элементной базы. Элементная база промышленной электроники прошла несколько этапов развития.

Начало развития промышленной электроники было положено созданием электровакуумных и газоразрядных приборов. Низкая надежность, сложность эксплуатации, большая потребляемая мощность, громоздкость реализации явились в последующем тормозящими факторами расширения областей применения электроники. Электровакуумные приборы в настоящее время находят ограниченное применение в промышленной электронике, а газоразрядные приборы используются преимущественно в виде элементов индикации.

Промышленная электроника что это

Современный этап развития информационной электроники характеризуется широким использованием компонентов микроэлектроники – аналоговых и цифровых интегральных микросхемам, микропроцессоров, микроконтроллеров и д.р.

Развитие энергетической электроники стимулируется всевозрастающим требованием повышения удельного веса электроэнергии, потребляемой на постоянном токе и на переменном токе нестандартной частоты, а также непрерывным совершенствованием элементной базы (увеличением единичной мощности силовых полупроводниковых приборов, улучшением их динамических показателей, появлением приборов новых типов).

Промышленная электроника что это

На сегодняшний день электроника также делится на аналоговую и цифровую, причем последняя практически по всем позициям вытеснила аналоговую.

Аналоговая электроника изучает устройства, формирующие и обрабатывающие непрерывные во времени сигналы.

Цифровая электроника использует дискретные во времени сигналы, выраженные чаще всего в цифровой форме.

На сегодняшний день практически не осталось областей деятельности человека, в которые бы не проникла электроника.

Источник

Лекция Классификация электронных промышленных устройств. Задачи курса «Электронные промышленные устройства»

Классификация электронных промышленных устройств. Задачи курса «Электронные промышленные устройства».

Общие понятия об электронике и промышленной электронике. Области применения промышленной электроники. Её связь с электротехникой и энергетикой.

Понятие об электронных промышленных устройствах и их применении. Импульсные методы обработки информации.

Роль электронных промышленных устройств в системах автоматического регулирования объектов и процессов.

Электроника, информационная электроника, промышленная электроника, преобразователи электрической энергии, электронные промышленные устройства, автоматическое регулирование, система автоматического регулирования, автоматизированный электропривод.

Электроника охватывает обширный раздел науки и техники, связанный с изучением и использованием различных физических явлений, а также разработкой и применением приборов и устройств, основанных на протекании электрического тока в вакууме, газе и твердом теле. Такими приборами являются полупроводниковые (протекание тока в твердом теле), электронные (протекание тока в вакууме) и ионные (протекание тока в газе) приборы. Главное место среди них в настоящее время занимают полупроводниковые приборы. Общим свойством всех названных приборов является то, что они являются существенно нелинейными элементами, нелинейность их вольт-амперных характеристик, как правило, является признаком, определяющим важнейшие их свойства.

Промышленная электроника — это часть электроники, занимающаяся применением полупроводниковых, электронных и ионных приборов в промышленности. Несмотря на различие областей применения и многообразие режимов работы промышленных электронных устройств, они строятся на основе общих принципов и состоят из ограниченного числа функциональных узлов. Общие принципы построения этих функциональных узлов — электронных схем и рассматривает промышленная электроника.

В свою очередь, в промышленную электронику, обеспечивающую разнообразные виды техники электронными устройствами измерения, контроля, управления и защиты, а также электронными системами преобразования электрической энергии, входят:

1) информационная электроника, к которой относятся электронные системы и устройства, связанные с измерением, контролем и управлением промышленными объектами и технологическими процессами, а также с передачей, обработкой и отображением информации. Усилители сигналов, генераторы напряжений различной формы, логические схемы, счетчики, индикаторные устройства и дисплеи вычислительных машин — все это устройства информационной электроники. Характерными чертами современной информационной электроники являются сложность и многообразие решаемых задач, высокое быстродействие и надежность. Информационная электроника в настоящее время неразрывно связана с применением интегральных микросхем, развитие и совершенствование которых в главной мере определяет уровень развития этой отрасли электронной техники;

2) энергетическая электроника (преобразовательная техника),
связанная с преобразованием вида электрического тока для целей
электропривода, электрической тяги, электротермии, электротехно-
логии, электроэнергетики и т. д. Почти половина производимой электроэнергии потребляется в виде постоянного тока или тока нестандартной частоты. Большая часть преобразований электрической энергии в настоящее время выполняется полупроводниковыми преобразователями. Основными видами преобразователей являются выпрямители (преобразование переменного тока в постоянный), инверторы (преобразование постоянного тока в переменный), преобразователи частоты, регулируемые преобразователи постоянного и переменного напряжений.

Развитие электроэнергетики и электротехники тесно связано с электроникой. Сложность процессов в энергосистемах, высокая скорость их протекания потребовали широкого внедрения для расчета режимов и управления процессами электронных вычислительных машин (ЭВМ), связанных с системой сложными электронными устройствами и снабженных развитыми устройствами для отображения информации. Основные процессы производства автоматизируются на основе современных устройств информационной электроники, в которых в последние годы широко применяются интегральные микросхемы и микропроцессоры. Не менее тесно связана с энергетикой и электромеханикой энергетическая электроника. Полупроводниковые преобразователи электрической энергии являются одними из основных нагрузочных элементов сетей, их работа во многом определяет режимы работы сетей. Вентильные преобразователи используются для питания электроприводов и электротехнологических установок, для возбуждения синхронных электрических машин и в схемах частотного пуска гидрогенераторов. На основе полупроводниковых вентильных преобразователей созданы линии электропередач постоянного тока большой мощности и вставки постоянного тока.

Таким образом, электронные устройства являются важными и весьма сложными компонентами энергетических и электромеханических установок и систем, и для их создания необходимо привлекать специалистов в области промышленной электроники, автоматики и вычислительной техники. Однако инженеры, специализирующиеся в области электроэнергетики и электротехники, не могут устраниться от решения вопросов, связанных с электроникой. Во-первых, они должны уметь четко сформулировать задачу для разработчика электронных схем и представлять те трудности, с которыми может столкнуться разработчик. Не полно заданные требования могут привести к созданию неработоспособного устройства, а неоправданное завышение требований — к повышению стоимости и снижению надежности электронного оборудования. Для того чтобы говорить с разработчиком электронной аппаратуры на одном языке, надо отчетливо представлять себе, что может выполнить электроника и какой ценой и какими способами это достигается. Последнее необходимо также для квалифицированного выбора оборудования, выпускаемого промышленностью.

Во-вторых, возникает необходимость грамотной эксплуатации электронных устройств. В-третьих, инженеры-электрики принимают активное участие в работах по монтажу и наладке оборудования, в том числе электроники. В-четвертых, проектирование ряда энергетических установок, в том числе линий передач постоянного тока, требует совместной работы специалистов по энергетике и преобразовательной технике.

Все это требует больших знаний в области промышленной электроники. Основу этих знаний закладывает изучение курса «Электронные промышленные устройства». В нем изложены сведения о современных функциональных узлах схемах информационной и энергетической электроники. Курс поможет принятию грамотных решений в инженерной практике. Для сохранения и постоянного повышения своей инженерной квалификации инженер должен регулярно следить за научной литературой. Особенно это касается такой бурно изменяющейся области, как промышленная электроника. Инженер должен сознавать ограниченность своих знаний и не пытаться принимать решений в той области, где его компетенция ограничена. Поэтому одной из задач курса является подготовка к чтению специальной литературы в области схемотехнической электроники.

Многие важнейшие проблемы науки и техники возникают на стыках наук. Электроника, электротехника и энергетика ныне соприкасаются очень близко, требуют совместной работы ученых и инженеров, больших знаний в смежных областях.

Электронная техника непрерывно развивается, каждую задачу можно решить на основе различных схемных вариантов: можно построить схему на дискретных компонентах, можно выполнить ее на интегральных микросхемах, применить микропроцессорный комплект, провести обработку информации в цифровом или аналоговом виде. Какое решение выбрать? В конечном счете, все решает экономический анализ, и принятие неверного решения (скажем, отказ от использования микросхем) может не помешать решению локальной технической задачи, но в итоге окажется убыточным для народного хозяйства: увеличится стоимость оборудования, или возрастет стоимость его эксплуатации, или уменьшится срок службы. Почти каждый инженер на своем месте воздействует на техническую политику в своей области и при разработке и отстаивании технических решений должен выступать не только как специалист, но и как гражданин.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *