Прокаливание что это в химии
Реакции разложения
При выполнении различных заданий ЕГЭ по химии (например, задачи 34 или задания 32 «мысленный эксперимент») могут пригодиться знания о том, какие вещества при нагревании разлагаются и как они разлагаются.
Рассмотрим термическую устойчивость основных классов неорганических веществ. Я не указываю в условиях температуру протекания процессов, так как в ЕГЭ по химии такая информация, как правило, не встречается. Если возможны различные варианты разложения веществ, я привожу наиболее вероятные, на мой взгляд, реакции.
Разложение оксидов
При нагревании разлагаются оксиды тяжелых металлов:
2HgO = 2Hg + O2
Разложение гидроксидов
Как правило, при нагревании разлагаются нерастворимые гидроксиды. Исключением является гидроксид лития, он растворим, но при нагревании в твердом виде разлагается на оксид и воду:
2LiOH = Li2O + H2O
Гидроксиды других щелочных металлов при нагревании не разлагаются.
Гидроксиды серебра (I) и меди (I) неустойчивы:
2AgOH = Ag2O + H2O
2CuOH = Cu2O + H2O
Гидроксиды большинства металлов при нагревании разлагаются на оксид и воду.
В инертной атмосфере (в отсутствии кислорода воздуха) гидроксиды хрома (III) марганца (II) и железа (II) распадаются на оксид и воду:
Большинство остальных нерастворимых гидроксидов металлов также при нагревании разлагаются:
Разложение кислот
При нагревании разлагаются нерастворимые кислоты.
Некоторые кислоты неустойчивы и подвергаются разложению в момент образования. Большая часть молекул сернистой кислоты и угольной кислоты распадаются на оксид и воду в момент образования:
В ЕГЭ по химии лучше эти кислоты записывать в виде оксида и воды.
Азотистая кислота на холоде или при комнатной температуре частично распадается уже в водном растворе, реакция протекает обратимо:
При нагревании выше 100 о С продукты распада несколько отличаются:
Азотная кислота под действием света или при нагревании частично обратимо разлагается:
Разложение солей
Разложение хлоридов
Хлориды щелочных, щелочноземельных металлов, магния, цинка, алюминия и хрома при нагревании не разлагаются.
Хлорид серебра (I) разлагается под действием света:
2AgCl → Ag + Cl2
Хлорид аммония при нагревании выше 340 о С разлагается:
Разложение нитратов
Нитраты щелочных металлов при нагревании разлагаются до нитрита металла и кислорода.
Видеоопыт разложения нитрата калия можно посмотреть здесь.
Нитраты магния, стронция, кальция и бария разлагаются до нитрита и кислорода при нагревании до 500 о С:
При более сильном нагревании (выше 500 о С) нитраты магния, стронция, кальция и бария разлагаются до оксида металла, оксида азота (IV) и кислорода:
Нитраты металлов, расположенных в ряду напряжений после магния и до меди (включительно) + нитрат лития разлагаются при нагревании до оксида металла, диоксида азота и кислорода:
Нитраты серебра и ртути разлагаются при нагревании до металла, диоксида азота и кислорода:
Нитрат аммония разлагается при небольшом нагревании до 270 о С оксида азота (I) и воды:
При более высокой температуре образуются азот и кислород:
Разложение карбонатов и гидрокарбонатов
Карбонаты натрия и калия плавятся при нагревании.
Карбонаты лития, щелочноземельных металлов и магния разлагаются на оксид металла и углекислый газ:
Карбонат аммония разлагается при 30 о С на гидрокарбонат аммония и аммиак:
Гидрокарбонат аммония при дальнейшем нагревании разлагается на аммиак, углекислый газ и воду:
Гидрокарбонаты натрия и калия при нагревании разлагаются на карбонаты, углекислый газ и воду:
Гидрокарбонат кальция при нагревании до 100 о С разлагается на карбонат, углекислый газ и воду:
При нагревании до 1200 о С образуются оксиды:
Разложение сульфатов
Сульфаты щелочных металлов при нагревании не разлагаются.
Сульфаты алюминия, щелочноземельных металлов, меди, железа и магния разлагаются до оксида металла, диоксида серы и кислорода:
Сульфаты серебра и ртути разлагаются до металла, диоксида серы и кислорода:
Разложение фосфатов, гидрофосфатов и дигидрофосфатов
Эти реакции, скорее всего, в ЕГЭ по химии не встретятся! Гидрофосфаты щелочных и щелочноземельных металлов разлагаются до пирофосфатов:
Ортофосфаты при нагревании не разлагаются (кроме фосфата аммония).
Разложение сульфитов
Сульфиты щелочных металлов разлагаются до сульфидов и сульфатов:
Разложение солей аммония
Некоторые соли аммония, не содержащие анионы кислот-сильных окислителей, обратимо разлагаются при нагревании без изменения степени окисления. Это хлорид, бромид, йодид, дигидрофосфат аммония:
Cоли аммония, образованные кислотами-окислителями, при нагревании также разлагаются. При этом протекает окислительно-восстановительная реакция. Это дихромат аммония, нитрат и нитрит аммония:
Видеоопыт разложения нитрита аммония можно посмотреть здесь.
Разложение перманганата калия
Разложение хлората и перхлората калия
Хлорат калия при нагревании разлагается до перхлората и хлорида:
4KClO3 → 3KClO4 + KCl
При нагревании в присутствии катализатора (оксид марганца (IV)) образуется хлорид калия и кислород:
2KClO3 → 2KCl + 3O2
Перхлорат калия при нагревании разлагается до хлорида и кислорода:
Прокаливание: процесс, виды, применение
Содержание:
В прокаливание это процесс, при котором твердый образец подвергается воздействию высоких температур в присутствии или в отсутствие кислорода. В аналитической химии это один из последних этапов гравиметрического анализа. Следовательно, образец может быть любой природы, неорганическим или органическим; но особенно это касается минералов, глин или гелеобразных оксидов.
Когда кальцинирование проводится в потоке воздуха, говорят, что оно происходит в насыщенной кислородом атмосфере; например, простое нагревание твердого тела с помощью продуктов сгорания на открытых пространствах или в печах, к которым невозможно применить вакуум.
Если кислород заменяется азотом или благородным газом, то считается, что прокаливание происходит в инертной атмосфере. Разница между атмосферами, которые взаимодействуют с нагретым твердым телом, зависит от его чувствительности к окислению; то есть реагировать с кислородом для превращения в другое, более окисленное соединение.
Процесс
Связь между термообработкой известняка и термином кальцинирование настолько близка, что на самом деле нередко предполагать, что этот процесс применим только к соединениям кальция; Однако это не так.
Все твердые вещества, неорганические или органические, можно прокаливать, если они не плавятся. Следовательно, процесс нагрева должен происходить ниже точки плавления образца; Если только это не смесь, в которой один из ее компонентов плавится, а другие остаются твердыми.
Процесс прокаливания варьируется в зависимости от образца, масштабов, цели и качества твердого вещества после его термообработки. Глобально их можно разделить на два типа: аналитические и промышленные.
Аналитический
Когда процесс обжига является аналитическим, он обычно является одним из последних обязательных этапов гравиметрического анализа.
Например, после серии химических реакций получился осадок, который при образовании не выглядел как чистое твердое вещество; очевидно, если предположить, что состав известен заранее.
Независимо от методов очистки, в осадке все еще есть вода, которую необходимо удалить. Если эти молекулы воды находятся на поверхности, для их удаления не потребуется высоких температур; но если они «застряли» внутри кристаллов, то температура в печи может превысить 700-1000ºC.
Это обеспечивает высыхание осадка и удаление водяных паров; следовательно, его состав становится определенным.
Кроме того, если осадок подвергается термическому разложению, температура, при которой он должен быть прокален, должна быть достаточно высокой, чтобы гарантировать завершение реакции; в противном случае у вас будет твердое тело неопределенного состава.
Следующие уравнения суммируют два предыдущих пункта:
Промышленное
В промышленном процессе обжига качество обжига так же важно, как и при гравиметрическом анализе; но разница в сборке, способе и количестве произведенного.
В аналитическом исследовании стремятся изучить выход реакции или свойства прокаленного; в то время как в промышленном секторе более важно, сколько и как долго производится.
Лучшим представлением промышленного процесса обжига является термическая обработка известняка так, чтобы он подвергался следующей реакции:
Размер кристаллов CaCO можно приготовить и контролировать3 в результате массивных масс того же соединения. Таким образом, не только образуется СаО, но также получаются микрокристаллы СаСО.3, необходимые для фильтров и других тонких химических процессов.
Все карбонаты металлов разлагаются одинаково, но при разных температурах; то есть их промышленные процессы обжига могут быть самыми разными.
Виды прокалки
Само по себе классифицировать кальцинирование невозможно, если мы не будем основываться на процессе и изменениях, которым твердое вещество претерпевает при повышении температуры. С этой последней точки зрения можно сказать, что существует два типа обжига: химический и физический.
Химия
Физический
Примером является полное обезвоживание осадка без проведения реакции. Также размер кристаллов может меняться в зависимости от температуры; при более высоких температурах кристаллы имеют тенденцию быть больше, и в результате структура может «вздуваться» или треснуть.
Приложения
Наконец, будет перечислен ряд общих и конкретных применений обжига:
-Разложение карбонатов металлов на их соответствующие оксиды. То же самое и с оксалатами.
-Обезвоживание минералов, гелеобразных оксидов или любого другого образца для гравиметрического анализа.
— подвергает твердое тело фазовому переходу, который может быть метастабильным при комнатной температуре; то есть, даже если ваши новые кристаллы были охлаждены, им потребуется время, чтобы вернуться к тому состоянию, в котором они были до прокаливания.
-Активирует оксид алюминия или углерод, увеличивая размер пор и хорошо впитывая твердые частицы.
-Изменяет структурные, колебательные или магнитные свойства минеральных наночастиц, таких как Mn0.5Zn0.5Вера2ИЛИ4; то есть они подвергаются физическому прокаливанию, когда тепло влияет на размер или форму кристаллов.
-Такой же предыдущий эффект можно наблюдать в более простых твердых телах, таких как наночастицы SnO.2, которые увеличиваются в размере, когда они вынуждены агломерироваться под действием высоких температур; или в неорганических пигментах или органических красителях, где температура и зерна влияют на их цвет.
-И десульфуризует пробы кокса из сырой нефти, а также любые другие летучие соединения.
Ссылки
11 городов Кундинамарки, которые стоит посетить
Как решать С2 по химии — подсказки и советы
Задание С2 ЕГЭ по химии представляет собой описание химического эксперимента, в соответствии с которым нужно будет составить 4 уравнения реакции. По статистике, это одно из самых сложных заданий, очень низкий процент сдающих с ним справляется. Ниже приводятся рекомендации по поводу решения задания С2.
Во — первых, чтобы верно решить задание С2 ЕГЭ по химии нужно правильно представлять себе те действия, которым подвергаются вещества (фильтрование, выпаривание, обжиг, прокаливание, спекание, сплавление). Необходимо понимать, где с веществом происходит физическое явление, а где – химическая реакция. Наиболее часто используемые действия с веществами описаны ниже.
Фильтрование – способ разделения неоднородных смесей с помощью фильтров – пористых материалов, пропускающих жидкость или газ, но задерживающих твёрдые вещества. При разделении смесей, содержащих жидкую фазу, на фильтре остается твердое вещество, через фильтр проходит фильтрат.
Выпаривание — процесс концентрирования растворов путём испарения растворителя. Иногда выпаривание проводят до получения насыщенных растворов, с целью дальнейшей кристаллизации из них твердого вещества в виде кристаллогидрата, или до полного испарения растворителя с целью получения растворенного вещества в чистом виде.
Прокаливание – нагревание вещества с целью изменения его химического состава. Прокаливание может проводиться на воздухе и в атмосфере инертного газа. При прокаливании на воздухе кристаллогидраты теряют кристаллизационную воду, например, CuSO4∙5H2O→CuSO4+ 5H2O
Термически нестойкие вещества разлагаются:
Cu(OH)2 →CuO + H2O; CaCO3→ CaO + CO2
Спекание, сплавление – это нагревание двух и более твердых реагентов, приводящее к их взаимодействию. Если реагенты устойчивы к действию окислителей, то спекание можно проводить на воздухе:
Al2O3 + Na2CO3 → 2NaAlO2 + CO2
Если же один из реагентов или продукт реакции могут окисляться компонентами воздуха, процесс проводят с инертной атмосфере, например: Сu + CuO → Cu2O
Вещества, неустойчивые к действию компонентов воздуха, при прокаливании окисляются, реагируют с компонентами воздуха:
2Сu + O2 → 2CuO;
4Fe(OH)2 + O2 →2Fe2O3 + 4H2O
Обжиг – процесс термической обработки, приводящий к сгоранию вещества.
Во-вторых, знание характерных признаков веществ (цвет, запах, агрегатное состояние) Вам послужит подсказкой или проверкой правильности выполненных действий. Ниже представлены наиболее характерные признаки газов, растворов, твердых веществ.
Признаки газов:
Бесцветные без запаха: Н2, N2, O2, CO2, CO (яд), NO (яд), инертные газы. Все плохо растворимы в воде.
Бесцветные с запахом: HF, HCl, HBr, HI, SO2 (резкие запахи), NH3(нашатырного спирта) –хорошо растворимы в воде и ядовиты, PH3(чесночный), H2S(тухлых яиц) — мало растворимы в воде, ядовиты.
Окрашенные растворы:
Желтые: Хроматы, например K2CrO4, растворы солей железа (III), например, FeCl3.
Оранжевые: Бромная вода, cпиртовые и спиртово-водные растворы йода (в зависимости от концентрации от жёлтого до бурого), дихроматы, например, K2Cr2O7
Зеленые: Гидроксокомплексы хрома (III), например, K3[Cr(OH)6], соли никеля (II), например NiSO4, манганаты, например, K2MnO4
Голубые: Соли меди (II), например СuSO4
От розового до фиолетового: Перманганаты, например, KMnO4
От зеленого до синего: Соли хрома (III), например, CrCl3
Окрашенные осадки:
Черные, черно-бурые: Сульфиды меди, серебра, железа, свинца
Зеленые: Cr(OH)3 – серо-зеленый, Fe(OH)2 – грязно-зеленый, буреет на воздухе
Другие окрашенные вещества:
Желтые : сера, золото, хроматы
Оранжевые: oксид меди (I) – Cu2O, дихроматы
Красные: бром (жидкость), медь (аморфная), фосфор красный, Fe2O3, CrO3
Серые с металлическим блеском: Графит, кристаллический кремний, кристаллический йод (при возгонке – фиолетовые пары), большинство металлов.
В-третьих, при решении заданий С2 по химии для большей наглядности, можно порекомендовать составлять схемы превращений или последовательность получаемых веществ.
И наконец, для того, чтобы решать такие задачи, надо чётко знать свойства металлов, неметаллов и их соединений: оксидов, гидроксидов, солей. Необходимо повторить свойства азотной и серной кислот, перманганата и дихромата калия, окислительно-восстановительные свойства различных соединений, электролиз растворов и расплавов различных веществ, реакции разложения соединений разных классов, амфотерность, гидролиз солей.
Нагревание и прокаливание в лаборатории
Содержание
Одной из важнейших операций, проводимых в химических лабораториях, является нагревание и как один из видов его — прокаливание.
Электронагревательные приборы
Из электронагревательных приборов наибольшим распространением пользуются плиты, сушильные шкафы и т. д.
Электрические плиты бывают различного размера, круглые или прямоугольные, с открытым и закрытым сопротивлением (спиралью). Пластинка, закрывающая спираль плиты, может быть металлической, асбестовой или талько-шамотной.
Плиты с открытой спиралью применяют преимущественно в тех случаях, когда нет опасности попадания па нее нагреваемого вещества. Такие плиты удобны тем, что в случае перегорания их легко можно исправить. Нужно помнить, что обычно плиты изготовляются на напряжение 127 или 220 В и пользоваться можно только теми, которые подходят к вольтажу имеющейся в лаборатории электрической сети.
Если у электронагревательного прибора три штеккера, то его включают в сеть при помощи специального электрошнура с вилкой и тремя гильзами. На одной из гильз имеется отметка «0» или черная полоса, или же гильза имеет отличающийся от остальных цвет, например коричневый. У такого прибора возможны три степени нагревания:
1. Для того, чтобы получить минимальное нагревание, гильзу с отметкой ставят на средний штеккер, а одну из остальных — на левый штеккер.
2. Для достижения среднего нагревания гильзу с отметкой ставят на правый штеккер, а одну из остальных — на левый или средний штеккер.
3. Для достижения максимального нагревания гильзу с отметкой ставят па правый штеккер, а две другие — на остальные штеккеры.
Муфельные печи
Электрические муфельные печи применяют при прокаливании, плавке и в других случаях, когда необходим нагрев до высокой температуры.
Печь представляет собой муфель из шамота или другого огнеупорного материала с намотанной на нем нагревательной проволокой, помещенный в металлический корпус.
Пространство между стенками корпуса и муфелем заполнено теплоизоляционным материалом. Печи имеют автоматический регулятор. При отсутствии регулятора к печи можно присоединить терморегулятор, например биметаллический.
В муфельных печах обычно можно достичь 1000—1200 °С, а в муфельных печах специального назначения — и выше. Муфельные печи имеют в задней стенке отверстие для введения термопары, что позволяет проверять температуру в любом месте муфельной печи.
Под печь нужно класть толстый лист асбеста, или асбоцементную плиту, или шамотные кирпичи. Во время работы, когда муфельная печь загружена, дверка должна быть закрыта.
Муфельные печи очень удобны для прокаливания тиглей, в особенности платиновых.
О температуре в муфельной печи можно судить (конечно, приближенно) по цвету нагретого муфеля:
начало красного каления 520 °C
темно-красное каление 700 °C
вишнево-красное каление 850 °C
ярко-красное каление 950 °C
желтое каление 1100 °C
ослепительно белое каление 1500 °C
При работе с электрическими приборами нужно помнить следующее:
1. Включать прибор можно только в ту сеть, вольтаж которой соответствует вольтажу прибора.
2. Не греть приборы без надобности.
3. Не обливать приборы кислотами или растворами солей, щелочей и т. д.
4. Ставить электронагревательные приборы не на деревянную поверхность стола, а только на теплоизоляционный слой (асбест, шамот и др.).
5. Следить за чистотой приборов; перед включением печей убедиться — нет ли внутри посторонних предметов.
6. Включать печи можно, только когда ручка реостата находится в нулевом положении.
Ручку реостата нужно передвигать не сразу после включения в сеть, а через некоторое время, когда печь немного обогреется, причем увеличивать накал нужно также постепенно.
Прокаливание
Прокаливанием называют операцию нагревания твердых веществ до высокой температуры с целью:
а) освобождения от летучих примесей;
б) достижения постоянной массы;
в) проведения реакций, протекающих при высоких температурах;
г) озоления после предварительного сжигания органических веществ.
Нагревание до высокой температуры проводят в печах. Очень часто в лабораториях приходится прокаливать такие вещества, как СаСl2×6Н2O, Na2SO4×10Н2O и др., с целью обезвоживания.
Если приходится что-либо прокаливать в фарфоровом тигле, то тигель нагревают постепенно. Во избежание потерь при прокаливании тигли обычно закрывают крышками. Если в таком тигле приходится что-либо озолять, то сначала при слабом нагревании сжигают вещество в открытом тигле и уже после этого закрывают тигель крышкой.
Если фарфоровый тигель после работы загрязнен внутри, то для очистки в него наливают концентрированную азотную кислоту или дымящую соляную кислоту и осторожно нагревают. Если ни азотная, ни соляная кислоты не удаляют загрязнение, то берут смесь их в пропорции:
Иногда загрязненные тигли обрабатывают или концентрированным раствором KHSO4 при нагревании, или плавлением этой соли в тигле с последующей промывкой его водой. Бывают, однако, случаи, когда все указанные приемы не помогают; такой не поддающийся очистке тигель рекомендуется применять для каких-нибудь неответственных работ.
Общие меры предосторожности
При работе с нагревательными приборами нужно принимать меры предосторожности во избежание несчастных случаев и пожара.
Кроме приведенных выше правил, следует обратить внимание еще на некоторые моменты.
Во избежание ожогов при нагревании и прокаливании никогда не следует брать голыми руками нагретые колбы, стаканы, чашки и пр.; необходимо или обвернуть их полотенцем, или же надеть на пальцы по куску толстостенной резиновой трубки, разрезанной по длине.
Для того, чтобы брать чашки, можно сделать из толстой проволоки прихватку, напоминающую обыкновенный сковородник.
При нагревании или при прокаливании веществ, которые могут разбрызгиваться, обязательно следует надевать предохранительные очки для защиты глаз.
Ссылка на источник
01.09.2021 11:06:24 | Автор статьи: Усачёва Вера
7.2. Высушивание и прокаливание порошков. Часть 2
Инфракрасные излучатели дают поток энергии, позволяющий вести сушку порошков при более низкой температуре, чем в сушильных шкафах, и с большой скоростью. Сначала после включения ИК-излучателя в центр освещенного круга помещают термометр и определяют температуру нагревания поверхности. Поднимая и опуская излучатель, создают требуемую температуру и только затем в центр освещенного круга ставят фарфоровую или кварцевую чашку с осушаемым веществом.
По другому методу в коническую колбу с порошком наливают порцию растворителя, содержимое колбы перемешивают вручную или механическим способом в течение скольких минут, затем дают смеси отстояться, декантируют растворитель, добавляют новую его порцию и oперацию повторяют. Число добавленных порций и объем каждой из них устанавливают экспериментально. С последней порцией растворителя вещество переносят на стеклянный фильтр и остаток растворителя удаляют, пропуская воздух (см. рис. 132).
Влагу из некоторых неорганических веществ можно удалить применяя эти методы при помощи этанола с последующей обработкой порошка ацетоном или диэтиловым эфиром, извлекающими остатки спирта, заканчивая последнюю операцию просасыванием сухого воздуха.
Прокаливание вещества ведут, постепенно повышая температуру, и во избежание потерь тигли закрывают крышкой. Если прокаливаемое вещество содержит органические компоненты, сначала при слабом нагревании сжигают органическую часть так, чтобы не образовалось пламя. Эту операцию проводят в открытом тигле, а после обугливания вещества закрывают тигель крышкой.
При гравиметрическом анализе для перевода осадка в весовую форму его вместе с бумажным фильтром извлекают из воронки пинцетом с полиэтиленовыми наконечниками и переносят в прокаленный до постоянной массы тигель. Затем концы фильтра завертывают внутрь тигля с помощью тонкой стеклянной палочки так, чтобы осадок оказался со всех сторон окруженным бумажным фильтром. Рекомендуют предварительно складывать бумажный фильтр с осадком перед его помещением в тигель (рис. 133). Полученный после сложения фильтр в виде квадратика 6 с осадком 7 внутри него вкладывают в тигель.
При прокаливании в муфельной печи в случае загорания фильтра тигель извлекают из муфеля и закрывают крышкой. Только после исчезновения пламени его снова ставят в муфель для продолжения прокаливания. Некоторые исследователи предпочитают озолять фильтр на газовой горелке, а затем уже ставить тигель закрытый крышкой в муфельную печь для прокаливания.
После прокаливания тигель берут щипцами и ставят для охлаждения на керамическую плитку, а затем еще нагретый помещают в эксикатор для окончательного охлаждения. От прикосновения холодных щипцов глазурь на стенках фарфорового тигля может растрескиваться, поэтому концы щипцов, прежде чем брать ими раскаленный тигель, следует слегка нагреть в муфеле или в пламени горелки.
При прокаливании вещества в тигле Гуччи (см. рис. 200, б) с бумажной массой в качестве фильтра поступают так же, как и при прокаливании осадка с бумажным фильтром. Только в этом случае после сгорания бумаги возможна потеря вещества через перфорированное дно тигля. Поэтому тигли Гуччи перед прокаливанием всегда вставляют в фарфоровый тигель несколько больших размеров, предварительно обернув полоской увлажненного асбеста. Зазор между стенками двух тиглей не Должен быть больше 2-3 мм. Рекомендуют наружный тигель с асбестовой вкладкой готовить заранее. Для этого тигель Гуччи обертывают полоской увлажненного асбеста и, нажимая, вдавливают в наружный тигель, затем их вместе высушивают, после чего тигель Гуччи извлекают, а наружный тигель вместе с тестовым кольцом прокаливают и охлаждают. Такой наружен тигель можно многократно использовать для прокаливания тигля Гуччи с осадком.