Произвольная прямая что это

Прямая линия. Понятие прямой, ее свойства.

Наглядно прямую линию может продемонстрировать туго натянутый шнур, кромка стола, край листа бумаги, место, соединения двух стен комнаты, луч света. При начертании прямых линий на практике применяют линейку.

Прямой линии присущи такие характерные особенности:

1.У прямой линии нет ни начала ни конца, то есть она бесконечна. Существует возможность начертить только ее часть.

Произвольная прямая что это

2.Через две произвольные точки можно провести прямую линию, и притом только одну.

3. Через произвольную точку можно провести не ограниченное количество прямых на плоскости.

4.Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или они параллельны.

Для обозначения прямой линии используют или одну малую букву латинского алфавита, или две большие буквы, написанные в двух различных местах этой прямой.

Произвольная прямая что это

Если на прямой линии указать точку, то в результате получим два луча:

Произвольная прямая что это

Лучом называют часть прямой линии, ограниченную с одной стороны. Для обозначения луча применяют или одну малую букву латинского алфавита, или две большие буквы, из которых одна обозначается в начале луча.

Произвольная прямая что это

Часть прямой, ограниченная с обеих сторон, именуют ее отрезком. Отрезок, как и прямая линия, обозначается или одной буквой, или двумя. В последнем случае эти буквы указывают концы отрезка.

Произвольная прямая что это

Линию, сформированную несколькими отрезками, не лежащими на одной прямой, принято называть ломаной. Когда концы ломаной совпадают, то такая ломаная именуется замкнутой.

Источник

Прямая, их виды и свойства

Прямая, их виды и свойства.

Произвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что это

Прямая линия в евклидовой геометрии – это примитивный объект бесконечной длины, не имеющий кривизны и ширины и, который равномерно лежит на точках, составляющих его.

Прямая (понятие, определение):

Прямая линия в евклидовой геометрии – это примитивный объект бесконечной длины, не имеющий кривизны и ширины и, который равномерно лежит на точках, составляющих его.

Когда говорят о прямой линии, последнее слово в словосочетании принято опускать.

При изображении прямой линии на плоскости, видно только ее часть, подразумевается, что она продолжается в обе стороны бесконечно.

Произвольная прямая что это

Прямую обозначают одной маленькой буквой латинского алфавита или двумя большими буквами, обозначающими точки на прямой.

Произвольная прямая что это

Рис. 2. Обозначение прямой

Виды прямых линий:

Параллельные прямые – прямые, которые не имеют общих точек и не пересекаются между собой;

Произвольная прямая что это

Рис. 3. Параллельные прямые

Пересекающиеся прямые – прямые, которые имеют одну общую точку;

Произвольная прямая что это

Рис. 4. Пересекающиеся прямые

Произвольная прямая что это

Рис. 5. Перпендикулярные прямые

Касательная – прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.

Произвольная прямая что это

Виды прямых, взаимодействующих с фигурами:

Прямая Симсона – прямая, проходящая через основания перпендикуляров на стороны треугольника из точки на его описанной окружности.

Прямая Гаусса – прямая, соединяющая середины диагоналей четырёхугольника.

Свойства прямой в евклидовой геометрии:

1. Через одну точку можно провести бесконечное множество прямых.

Произвольная прямая что это

2. Через произвольные две точки можно провести единственную прямую.

Произвольная прямая что это

3. Две прямые, лежащие на одной плоскости, или пересекаются друг с другом в одной точке, или являются параллельными.

Произвольная прямая что этоПроизвольная прямая что это

4. Есть точки, лежащие на прямой, и не лежащие на ней.

Произвольная прямая что этоПроизвольная прямая что это

5. Из трёх разных точек, лежащих на одной прямой, только одна может лежать между двумя другими точками.

Произвольная прямая что это

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Произвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что этоПроизвольная прямая что это

Мировая экономика

Справочники

Востребованные технологии

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

О Второй индустриализации

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Источник

Прямая линия в начертательной геометрии с примерами

Содержание:

Общее положение прямой

Прямой общего положения называется прямая, пересекающая все плоскоcти координат.

Пусть заданы две точки Произвольная прямая что это

Произвольная прямая что это

Соединяя соответствующие проекции точек прямыми линиями, получим проекции прямой, заданной отрезком Произвольная прямая что это

Известно, что две проекции прямой определяют её положение в пространстве. Оценив наглядность и измеримость полученного изображения, заметим:

Отметим следующее важное обстоятельство: если точка лежит на прямой, то её проекции расположены на соответствующих проекциях прямой (точка С на Рис.2.1).

Известно, что две прямые, пересекаемые рядом параллельных прямых, рассекаются ими на пропорциональные части. Следовательно, отношение отрезков прямой равно отношению проекций этих отрезков, т.е.

Произвольная прямая что это

Частные случаи положения прямой

К частным случаям положения прямой относят прямые: параллельные одной из плоскостей координат, перпендикулярные к одной из плоскостей координат, лежащие в плоскости координат, совпадающие с осью координат.

Произвольная прямая что это

Прямым, параллельным плоскостям координат, принято давать общее название линий уровня.

Произвольная прямая что это

Произвольная прямая что это

Если прямая расположена в плоскости координат, то её проекция на эту плоскость совпадает с самой прямой, а две другие проекции совпадают с осями координат.

Если прямая совпадает с осью координат, то две её проекции совпадают с самой прямой, а на плоскость, перпендикулярную этой оси, прямая спроецируется точкой в начало координат.

Определение истинной длины отрезка прямой

Произвольная прямая что это

Рассмотрим пример определения истинной длины отрезка, расположенного в первом октанте. Пусть имеются проекции Произвольная прямая что это(см. Рис.2.5,б).

Определим его истинную длину по фронтальной проекции. Для этого в точках Произвольная прямая что этовосстановим перпендикуляры к проекции Произвольная прямая что этои отложим на них отрезки Произвольная прямая что это, соответственно равные расстояниям от точек Произвольная прямая что этои Произвольная прямая что этодо плоскости Произвольная прямая что этот.е. координаты Произвольная прямая что это(недостающие координаты точек). Итак Произвольная прямая что это

Соединяя точки Произвольная прямая что этои Произвольная прямая что этопрямой, находим Произвольная прямая что это— истинную длину отрезка Произвольная прямая что это

Аналогичное построение можно выполнить на горизонтальной проекции отрезка. В этом случае Произвольная прямая что это Произвольная прямая что этоСоответственно, Произвольная прямая что это— истинная длина отрезка Произвольная прямая что это

Построение можно упростить. Если отложить на перпендикуляре, восстановленном из точки Произвольная прямая что это, отрезок Произвольная прямая что этои соединить точки Произвольная прямая что этои Произвольная прямая что это Произвольная прямая что этопрямой. Аналогично найдём Произвольная прямая что этоТакой приём определения истинной длины отрезка называется способом треугольника.

Отметим, что в способе треугольника одновременно с истинной длиной отрезка определяется угол наклона прямой к соответствующей плоскости координат:

Произвольная прямая что этоугол наклона прямой к плоскости Произвольная прямая что это Произвольная прямая что это— угол наклона прямой к плоскости Произвольная прямая что это

Рассмотрим пример определения истинной длины отрезка для случая, когда координаты концевых точек имеют разные знаки. Пусть, например, точка Произвольная прямая что это(Рис. 2.6, а) расположена над плоскостью Произвольная прямая что этоа точка Произвольная прямая что это— под плоскостью Произвольная прямая что это.

Произвольная прямая что это

Особенностью построения в данном случае является необходимость учёта знаков недостающих координат точек, т.е. значения этих координат откладываются на перпендикулярах, восстановленных к концам проекции отрезка, в произвольные, но разные стороны (см. Рис.2.6, б). В нашем примере Произвольная прямая что это

При построении способом треугольника на перпендикуляре, восстановленном из точки Произвольная прямая что этооткладывается отрезок Произвольная прямая что это, равный алгебраической разности недостающих координат: Произвольная прямая что этоОпределение истинной длины отрезка по его вертикальной проекции аналогично рассмотренному ранее примеру.

Следы прямой линии

Следом прямой линии ни данной плоскости координат называется точка пересечения (встречи) прямой с упомянутой плоскостью.

Точка пересечения прямой с плоскостью Произвольная прямая что этоназывается горизонтальным следом, с плоскостью Произвольная прямая что это— фронтальным (вертикальным) следом и с плоскостью Произвольная прямая что это— профильным следом прямой. Следы прямой обозначаются буквами, соответственно Произвольная прямая что этои Произвольная прямая что это

Изобразим в косоугольных проекциях (Рис.2.7) произвольный отрезок Произвольная прямая что этопрямой общего положения и вторичные проекции этого отрезка. Построение проекций следов начнём с горизонтального следа. Согласно определению, искомая точка принадлежит прямой и, кроме того, расположена в плоскости Произвольная прямая что это. Если точка принадлежит прямой, то её проекции лежат на соответствующих проекциях прямой. Но, с другой стороны, точка лежит в плоскости координат и, следовательно, её проекция на эту плоскость совпадает с самой точкой. Таким образом, искомое изображение горизонтального следа прямой должно быть расположено в точке пересечения изображения прямой и её горизонтальной проекции. Продолжая отрезки Произвольная прямая что этои Произвольная прямая что этоотметим точку их пересечения Произвольная прямая что это

Произвольная прямая что это

Точка Произвольная прямая что этопринадлежит также прямой Произвольная прямая что этои её проекции должны находиться на соответствующих проекциях прямой. Следовательно, изображения фронтальной и профильной проекций горизонтального следа должны лежать на продолжении отрезков Произвольная прямая что этои Произвольная прямая что это(в точках пересечения Произвольная прямая что этос осью Произвольная прямая что этои Произвольная прямая что этос осью Произвольная прямая что это).

Построение проекций фронтального Произвольная прямая что этои профильного Произвольная прямая что этоследов прямой осуществляется в той же последовательности.

Местоположение следов прямой Произвольная прямая что этои их проекций на плоскостях координат представлено в таблице:

Произвольная прямая что это

Рассмотрим построение прямоугольных проекций следов прямой общего положения, заданной проекциями отрезка Произвольная прямая что это(Рис.2.8). Построение начнём с нахождения проекций горизонтального следа прямой.

Для этого следует найти сначала фронтальную или профильную проекции этого следа. Фронтальную проекцию Произвольная прямая что этополучим в точке пересечения фронтальной проекции прямой с осью Произвольная прямая что это. Горизонтальную проекцию Произвольная прямая что этонайдём в точке пересечения горизонтальной проекции прямой (продолжение отрезка Произвольная прямая что это) с перпендикуляром, восстановленным из точки Произвольная прямая что эток оси Произвольная прямая что это. Профильная проекция Произвольная прямая что этогоризонтального следа может быть получена в точке пересечения профильной проекции Произвольная прямая что этопрямой с осью Произвольная прямая что этоили как третья проекция точки Произвольная прямая что этопо двум проекциям Произвольная прямая что этои Произвольная прямая что это. Отметим, что профильная проекция горизонтального следа должна находиться на горизонтальной оси Произвольная прямая что это.

Произвольная прямая что это

Горизонтальную проекцию Произвольная прямая что этофронтального следа прямой найдём, продолжив горизонтальную проекцию прямой до пересечения с осью Произвольная прямая что этоФронтальную проекцию Произвольная прямая что этоэтого следа получим в точке пересечения перпендикуляра к оси Произвольная прямая что это, восстановленного из точки Произвольная прямая что это, с продолжением фронтальной проекции прямой. Профильную проекцию Произвольная прямая что этофронтального следа найдём, опустив перпендикуляр из точки Произвольная прямая что этона ось Произвольная прямая что этоТочка Произвольная прямая что этобудет также в точке пересечения профильной проекции прямой с осью Произвольная прямая что это

Аналогичным построением найдём проекции профильного следа.

В заключение данного раздела отметим следующее:

Взаимное положение прямых линий

Возможны три случая относительного положения прямых линий. Прямые могут быть взаимно параллельны, могут пересекаться друг с другом или скрещиваться.

Если прямые параллельны, то их соответствующие проекции тоже параллельны.

Пусть даны косоугольные проекции двух взаимно параллельных прямых Произвольная прямая что этои Произвольная прямая что это(см. Рис.2.9, а).

Произвольная прямая что это

Чтобы через данную точку провести прямую, параллельную заданной, нужно через проекции этой точки провести прямые, параллельные соответствующим проекциям заданной прямой.

У пересекающихся прямых соответствующие проекции пересекаются и проекции точки пересечения связаны перпендикуляром к соответствующей оси координат. Пусть даны две пересекающиеся в точке Произвольная прямая что этопрямые Произвольная прямая что этои Произвольная прямая что это(см. Рис.2.10).

Точка Произвольная прямая что этопринадлежит обеим прямым. Следовательно, проекции этой точки должны лежать на проекциях обеих прямых, т.е. в точках Произвольная прямая что этои Произвольная прямая что этопересечения соответствующих проекций.

Скрещивающиеся прямые не имеют общей точки. Их проекции могут пересекаться, но точки пересечения не находятся в проекционной связи друг с другом, т. е. не лежат на перпендикуляре к соответствующей оси координат.

Изобразим прямоугольные проекции Рис.2.11) двух скрещивающихся прямых Произвольная прямая что этои Произвольная прямая что это. В точку пересечения их горизонтальных проекций проецируются две точки: точка 1, принадлежащая прямой Произвольная прямая что это, и точка 2, принадлежащая прямой Произвольная прямая что это. Эти точки называются конкурирующими. С их помощью определяется взаимное положение прямых относительно плоскостей проекций (видимость проекций геометрических элементов). Так, в нашем случае, приведённом на Рис.2.11, луч, проецирующий прямые на плоскость Произвольная прямая что этовстретит раньше точку 1. Следовательно, эта часть прямой Произвольная прямая что эторасположена выше прямой Произвольная прямая что это. Аналогично определим, что левая часть прямой Произвольная прямая что эторасположена дальше от плоскости Произвольная прямая что этовместе с принадлежащей ей точкой 3, чем прямая Произвольная прямая что это. В общем случае при определении видимости прямоугольных проекций на плоскости Произвольная прямая что этонаправление проецирующего луча принимают заданным сверху вниз, на плоскости Произвольная прямая что это— снизу вверх и на плоскости Произвольная прямая что это— слева направо.

Произвольная прямая что это

Проекции отрезка прямой линии

Как известно из элементарной геометрии, прямая линия определяется двумя точками, поэтому, чтобы построить проекции этой прямой, необходимо иметь проекции двух точек, принадлежащих этой прямой.

Прямую, не параллельную ни одной из плоскостей проекций, называют прямой общего положения.

На рис. 2.1 дано пространственное изображение и чертеж прямой АВ. Точки А и В находятся на разных расстояниях от каждой из плоскостей пространства, т е. прямая АВ не параллельна не одной из них. Значит, прямая АВ общего положения.

Задание и изображение на чертеже прямой общего положения

Прямая линия в пространстве определяется положением двух ее точек, например А и В. Значит, достаточно выполнить комплексный чертеж этих точек, а затем соединить одноименные проекции точек прямыми линиями, получим соответственно горизонтальную и фронтальную проекции прямой.

Прямая общего положения называется прямая не параллельная ни одной из плоскостей проекций. Прямая, параллельная или перпендикулярная одной из плоскостей проекций, называется прямой частного положения.

Произвольная прямая что это

Прямые, параллельные или перпендикулярные к плоскостям проекций, называются прямыми частного положения. Прямая, параллельная какой-либо одной плоскости проекций, называется прямой уровня. Существуют три линии уровня:

Прямые уровня

Прямая, параллельная одной из плоскостей проекций, называется прямой уровня.

Название зависит от того, какой плоскости она параллельна.

Различают: горизонтальную прямую уровня (горизонталь) h, фронтальную прямую уровня (фронталь) f, профильную прямую уровня (профиль) р.

Все точки прямых уровня имеют равные или высоты (горизонталь), или глубины (фронталь), или широты (профиль). Поэтому соответствующие проекции прямых параллельны проекциям определенных осей координат.

Проецирующие прямые

Прямая, перпендикулярная какой-либо плоскости проекции, называется проецирующей.

Различают: горизонтально проецирующую (АВ), фронтально проецирующую (CD) и профильно проецирующую (EF) (рис. 8).

У проецирующей прямой одна проекция вырождается в точку, а две другие проекции параллельны самой прямой и совпадают с направлением линии связи.

Произвольная прямая что это

Следы прямой линии

Что бы найти горизонтальный след, надо продлить фронтальную проекцию а»в» (рис. 2.4) до пересечения с осью Х (точка М») и из этой точки восстановить перпендикуляр к оси X (линию связи) до пересечения с продолжением горизонтальной проекции a’b’.

Произвольная прямая что это

Точка м’— горизонтальная проекция горизонтального следа, которая совпадает с самим следом М.

Для нахождения фронтального следа необходимо продолжить горизонтальную проекцию а’ в’ до пересечения с осью X (точка n’) и через точку n’, которая является горизонтальной проекцией фронтального следа, провести перпендикуляр к оси X до пересечения с продолжением фронтальной проекцией а»в». Точка — фронтальная проекция фронтального следа, которая совпадает с фронтальным следом N.

Отметим, что прямая не имеет следа на плоскости проекций в том случае, если она параллельна этой плоскости.

Определение натуральной величины отрезка и углов его наклона к плоскостям проекций

Возьмем отрезок АВ (рис. 2.5) и построим его ортогональную проекцию на горизонтальной плоскости проекций Н. В пространстве при этом образуется прямоугольный треугольник A’BB’, в котором одним катетом является горизонтальная проекция этого отрезка, вторым катетом разность высот точек А и В отрезка, а гипотенузой является сам отрезок.

Произвольная прямая что это

На чертеже прямоугольный треугольник построен на горизонтальной проекции отрезка АВ, второй катет треугольника Произвольная прямая что эторавен разности высот точек АВ, замеренную на плоскости V, гипотенуза его и будет натуральной величиной отрезка АВ. Угол между горизонтальной проекцией А’В’ и гипотенузой Произвольная прямая что этотреугольника Произвольная прямая что этоэто угол наклона данного отрезка АВ к плоскости Н.

Аналогичное построение можно сделать на фронтальной проекции отрезка, только в качестве второго катета надо взять разность глубин его концов, замеренную на плоскости Н.

Деление отрезка прямой линии

Иногда требуется разделить отрезок в данном отношении. Из свойств параллельного проецирования известно, что отношение отрезков одной и той же прямой равно отношению проекций эти отрезков.

Чтобы разделить отрезок прямой в заданном отношении, необходимо разделить в этом отношении одну из проекций этого отрезка, а затем с помощью линий связи перенести делящую точку на другие проекции.

На рис. 2.6 дан пример деления отрезка прямой линии АВ в отношение 2 : 3.

Произвольная прямая что это

Из точки А’ проведен вспомогательный отрезок прямой, на котором отложено пять одинаковых частей произвольной длинны. Проведя отрезок В’5 и параллельно ему точку 2 прямую, получим точку С’ причем А’К’ : КБ’ = 2 : 3; затем линии связи находим точку С». Точка С делит отрезок АВ в отношении 2 : 3.

Взаимное расположение двух прямых

Правило определения видимости на комплексном чертеже:

из двух горизонтально конкурирующих точек на поле Н видна та точка, которая расположена выше, а из двух фронтально конкурирующих точек на поле V видна та точка, которая расположена ближе (по отношению к наблюдателю).

Произвольная прямая что это

Взаимное расположение точки и прямой

Из свойств параллельного проецирования (свойство принадлежности) известно, что если точка лежит на прямой, то ее проекции должны лежать на одноименных проекциях этой прямой.

Поэтому, из четырех точек А, В, С и D, приведенных на чертеже (рис. 2.8), лишь одна точка А лежит на прямой. Точка В находится над прямой, так как она расположена выше, чем горизонтально конкурирующая с ней точка прямой а (фронтальная проекция этой точки прямой а отмечена крестиком). Аналогично, точка С находится перед прямой а, точка D расположена ниже и дальше точки прямой а.

Определение взаимного положения точки и профильной прямой выполняется с помощью построения профильной проекции. На рис. 2.8 точка С расположена над и перед прямой АВ.

Произвольная прямая что это

Взаимно перпендикулярные прямые

Для того, чтобы прямой угол проецировался без искажения, необходимо и достаточно, чтобы одна его сторона была параллельна, а другая не перпендикулярна к плоскости проекций.

Пусть сторона АВ прямого угла ABC параллельна плоскости Н. Требуется доказать, что проекция его: угол А’В’С’ равен 90.

Прямая АВ перпендикулярна плоскости, так как АВ перпендикулярна двум прямым этой плоскости ВС и ВВ’, проходящих через точку В. Прямая АВ и ее прекция А’В’ две параллельные прямые, поэтому А’В’ также перпендикулярна плоскости. Следовательно, А’В’ перпендикулярна В’С’.

Две взаимно перпендикулярные прямые (рис. 2.9) (пересекающиеся или скрещивающиеся) тогда сохраняют свою перпендикулярность в горизонтальной проекции, если одна из этих прямых является горизонталью.

Две взаимно перпендикулярные прямые сохраняют свою перпендикулярность во фронтальной проекции, если одна из них является фронталыю.

Произвольная прямая что это

Проецирование отрезка прямой

Для этого необходимо и достаточно спроецировать две конечные точки отрезка.
Произвольная прямая что это

Положение прямой относительно плоскостей проекций

Прямые уровня

Это прямые, параллельные одной из плоскостей проекций, на которую они проецируются в натуральную величину. Они находятся на одном уровне от соответствующей плоскости.

Произвольная прямая что это

Произвольная прямая что это

Профильная и фронтальные проекции // со ответственно осям X и У

Произвольная прямая что это— натуральная величина (НВ) отрезка АВ

Произвольная прямая что это

Произвольная прямая что этоПроизвольная прямая что это

Проецирующие прямые

Это прямые, перпендикулярные одной из плоскостей проекций, на которую они проецируются в точку. Они совпадают с направлением проецирования.

Проецирующие прямые одновременно параллельны двум другим плоскостям проекций.

Произвольная прямая что это

Произвольная прямая что это

Произвольная прямая что это

Точка на прямой

Если точка принадлежит прямой, то её проекции лежат на одноименных проекциях этой прямой.

Произвольная прямая что это

Следы прямой

Точка пересечения прямой с плоскостями называется следом прямой.

Произвольная прямая что это

Чтобы построить горизонтальный след прямой необходимо:

Для построения фронтального следа надо продолжить горизонтальную проекцию Произвольная прямая что этодо пересечения с осью X. Из полученной точки Произвольная прямая что этопровести линию связи на Произвольная прямая что этодо пересечения с продолжением Произвольная прямая что это— фронтальный след прямой АВ.

Дан отрезок общего положения. Найти горизонтальный и фронтальный следы.

Произвольная прямая что это

Взаимное положение прямых

Произвольная прямая что это

2. Если прямые пересекаются, то их одноименные проекции пересекаются между собой, а точка их пересечения лежит на одной линии связи.

Справедливо и обратное, кроме профильных прямых.
Произвольная прямая что это

3. Если прямые не параллельны и не пересекаются, то они называются скрещивающимися.
Произвольная прямая что это

Проецирование прямого угла

Прямой угол проецируется прямым, если одна из его сторон параллельна одной из плоскостей проекций, т.е. является фронтальной или горизонтальной прямой. (Прямой угол проецируется прямым па ту плоскость проекции, кото рои параллельна одна из его сторон, т. е. является фронтальной или горизонтальной прямой).
Произвольная прямая что это

Определение натуральной величины отрезка прямой общего положения способом прямоугольного треугольника

Произвольная прямая что это

Угол между прямой линией и плоскостью проекций определяется как угол между прямой и её проекцией на эту плоскость.

Произвольная прямая что это

Что такое прямая линия

Способы задания прямой

Классификация прямых

В зависимости от положения прямых относительно плоскостей проекций различают прямые общего положения и прямые частного положения.

Прямые общего положения

Произвольная прямая что это

Произвольная прямая что это

Прямые частного положения

Среди прямых частного положения различают линии уровня и проецирующие прямые.

Линии уровня

Прямые линии, параллельные какой-либо плоскости проекций, называются линиями уровня.

Произвольная прямая что это

Рис. 4.3. Горизонталь:

a – наглядное изображение; б – комплексный чертеж

Поскольку высоты всех точек горизонтали равны между собой: h2Произвольная прямая что этоA1A 2 илиh2|| П1.

Любой отрезок горизонтали проецируется на П1 в натуральную величину:
[A1B1 ] = [AB ].

Угол наклона h к Π2 также проецируется на П1 в натуральную величину:
Произвольная прямая что это

Фронталь Произвольная прямая что это— прямая, параллельная фронтальной плоскости проекций Произвольная прямая что это|| П2 (рис. 4.4).

Произвольная прямая что это

Поскольку глубина всех точек фронтали одинакова:Произвольная прямая что это1Произвольная прямая что этоC1C2

Отрезки фронтали и угол наклона к П1 проецируются на П1 в натуральную величину:[C2D2] =[CD]; Zβ1=Zβ=Произвольная прямая что это, П1.

Произвольная прямая что это

Поскольку широта всех точек профильной прямой одинакова: р2 Произвольная прямая что этоE2E1.
Отрезки профильной прямой и углы наклона к П1 и П2 проецируются на П3 в натуральную величину: [E3F3] =[EF];Произвольная прямая что это.

Проецирующие прямые

Прямая линия, перпендикулярная одной из плоскостей проекций или параллельная направлению проецирования, называется проецирующей.

Произвольная прямая что это

Произвольная прямая что это

Произвольная прямая что это

Взаимное положение прямых линий

Прямые линии в пространстве могут быть параллельными, пересекающимися или скрещивающимися.

Если прямые параллельны (рис. 4.9), то их одноименные проекции параллельны: a || b Произвольная прямая что это1|| b1) и (a2|| b2).

Произвольная прямая что это

Пересекающиеся прямые имеют общую точку (рис. 4.10), то есть точки пересечения их одноименных проекций лежат на общей линии связи:
c × d = K Произвольная прямая что этоc1 × d1 = K1 ;
c 2 × d2 = K2 и K 1 K 2 Произвольная прямая что этох12.

Произвольная прямая что это

Прямые, не имеющие общей точки и не параллельные между собой, являются скрещивающимися (рис. 4.11, 4.12).

Произвольная прямая что это

Рис. 4.11. Скрещивающиеся прямые m и n

Произвольная прямая что это

Если пересекающиеся и параллельные прямые лежат в одной плоскости, то скрещивающиеся прямые лежат в двух параллельных плоскостях.

Принадлежность точки прямой линии

Точка принадлежит прямой, если ее проекции принадлежат соответствующим (одноименным) проекциям прямой (рис. 4.13).

Произвольная прямая что это

Рис. 4.13. Принадлежность точки прямой линии:
K ∈ a Произвольная прямая что этоK 1 ∈ a1 и K2 ∈ a2;
[K1K2 ]Произвольная прямая что этох12

Определение натуральной величины отрезка. Способ треугольника

Рис. 4.14. Определение натуральной величины отрезка способом треугольника

Произвольная прямая что это

Таким образом, можно сформулировать общее правило:

Проекции прямой. Положение прямой относительно плоскостей проекций

Относительно плоскостей проекций H, V и W прямые линии могут занимать различные положения и имеют соответствующие наименования, а на чертежах проекции этих прямых занимают относительно осей проекций x, y и z характерные положения. Следовательно, по чертежу прямой линии можно мысленно представить ее пространственное положение относительно плоскостей проекций, т. е. научиться «читать» чертеж прямой.

Прямые общего положения – не параллельны (и соответственно не перпендикулярны) плоскостям проекций H, V и W. Следовательно, на чертеже проекции прямых общего положения не параллельны (и не перпендикулярны) осям проекций x, y и z. Отсюда проекции прямых общего положения искажают их натуральную величину.

На рис. 2.1 изображены проекции прямой общего положения АВ, фронтальная A»B» и горизонтальная A’B’ проекции которой расположены произвольно относительно оси проекций x, но не параллельны и не перпендикулярны оси x – это характерный признак прямой общего положения на чертеже! Профильная проекция A»‘B»‘ прямой общего положения также должна быть не параллельна и не перпендикулярна осям проекций z и y, что и показывает построение.

Произвольная прямая что это

Точка на прямой. Теорема о принадлежности точки прямой: если точка принадлежит прямой, то на чертеже одноименные проекции точки лежат на одноименных проекциях прямой.

На рис. 1.4 показано построение проекций точки С, принадлежащей прямой АВ.

Прямые особого (частного) положения

Прямые уровня – прямые, параллельные одной плоскости проекций:

На рис. 2.2 изображены проекции фронтальной прямой АВ и принадлежащей ей точки С. Запомните характерные признаки расположения проекций фронтальной прямой на чертеже:

Произвольная прямая что это

На рис. 2.3 изображены проекции горизонтальной прямой CD и принадлежащей ей точки Е. Запомните характерные признаки расположения проекций горизонтальной прямой на чертеже:

Произвольная прямая что это

На рис. 2.4 изображены проекции профильной прямой EF и принадлежащей ей точки N. Запомните характерные признаки расположения проекций профильной прямой на чертеже:

Произвольная прямая что это

Деление отрезка в заданном отношении

На рис. 2.4 показано построение горизонтальной проекции N’ точки N, принадлежащей профильной прямой EF. Построение основано на одном из свойств параллельного проецирования: отношение отрезков прямой линии равно отношению их проекций.

Пусть точка N делит отрезок EF в каком-то отношении. Следовательно, проекции отрезка делятся в том же отношении. Если, например, дана фронтальная проекция N» точки N, принадлежащей отрезку EF, то для построения горизонтальной проекции N’ на горизонтальной проекции E’F’ отрезка нужно выполнить следующие графические действия:

Прямые проецирующие – перпендикулярные одной плоскости проекций (параллельные двум плоскостям проекций):

. Поскольку положение проецирующих прямых совпадает по направлению с проецирующим лучом к одной из плоскостей проекций, то одна из проекций прямых проецируется (вырождается) в точку. Говорят, что проецирующие прямые обладают «собирательным» свойством, так как их вырожденные проекции-точки «собирают», то есть представляют собой проекции всех точек, лежащих на этих прямых.

На рис. 2.5 изображены проекции фронтально-проецирующей прямой CD и принадлежащей ей точки N. Запомните характерные признаки расположения проекций фронтально-проецирующей прямой на чертеже:

. Конкурирующие точки – точки, лежащие на одном проецирующем луче, называются конкурирующими.

На рис. 2.5 точки C, D и N на прямой CD являются конкурирующими и по их расположению на прямой относительно плоскости V (по координатам y) можно определить на горизонтальной проекции порядок их «видимости»: ближе к наблюдателю и дальше от плоскости V (с наибольшей координатой y) находится точка D, затем точка N и точка C.

Произвольная прямая что это

На рис. 2.6 изображены проекции горизонтально-проецирующей прямой AB и принадлежащей ей точки C. Запомните характерные признаки расположения проекций горизонтально-проецирующей прямой на чертеже:

– горизонтальная проекция AB(A’B’) представляет собой точку, т. е. горизонтальные проекции точек A, B и C совпадают как лежащие на одном проецирующем луче к плоскости проекций H;

– фронтальная проекция A»B» расположена перпендикулярно оси x и определяет натуральную величину прямой;

– профильная проекция A»‘B»‘ по построению располагается параллельно оси z и также определяет натуральную величину прямой.

Произвольная прямая что это

На рис. 2.7 изображены проекции профильно-проецирующей прямой EF и принадлежащей ей точки M. Запомните характерные признаки расположения проекций профильно-проецирующей прямой на чертеже:

Произвольная прямая что это

Определение по чертежу натуральной величины отрезка прямой общего положения способом прямоугольного треугольника и углов ее наклона к плоскостям проекций H и V.

Натуральной величиной заданного на чертеже отрезка прямой общего положения является гипотенуза построенного прямоугольного треугольника, одним катетом которого может быть горизонтальная (или фронтальная) проекция отрезка, а вторым катетом этого треугольника будет разница координат ∆z (или ∆y) конечных точек этого отрезка относительно оси проекций x.

На рис. 2.8 показано построение натуральной величины заданного отрезка AB способом прямоугольного треугольника относительно фронтальной и горизонтальной его проекций, для чего выполнен следующий графический алгоритм (графические действия):

Произвольная прямая что это

Аналогичные построения выполнены относительно горизонтальной проекции отрезка A’B’ – гипотенуза А’Bо также определяет натуральную величину заданного отрезка.

В построенных прямоугольных треугольниках углы между проекциями отрезка и гипотенузой определяют углы наклона прямой к плоскостям проекций H и V:

. В задачах по начертательной геометрии часто требуется построить на прямой общего положения, не имеющей второй конечной точки, проекции отрезка какой-либо заданной величины.

На рис. 2.9 показано построение на прямой n с одной конечной точкой A проекций отрезка AB заданной величины 25 мм, для чего выполнен следующий графический алгоритм (графические действия):

Произвольная прямая что это

Понятие о следах прямой

Следами прямой называются точки ее пересечения с плоскостями проекций.

На рис. 2.10 показано построение на чертеже фронтального и горизонтального следов прямой АВ и определено прохождение прямой по октантам пространства: из IV через I во II.

Произвольная прямая что это

Взаимное положение двух прямых

Две прямые в пространстве могут быть параллельными, пересекаться или скрещиваться. Запомните характерные признаки расположения на чертеже проекций двух различно расположенных прямых.

Параллельные прямые. Если прямые в пространстве параллельны, то их одноименные проекции на чертеже также параллельны.

На рис. 2.11 изображены параллельные прямые AB и CD. На чертеже фронтальные и горизонтальные проекции прямых параллельны: A»B»//C»D» и A’B’//C’D’.

Пересекающиеся прямые. Если прямые в пространстве пересекаются, то на чертеже проекции точки пересечения прямых лежат на одной линии связи.

На рис. 2.12 изображены проекции пересекающихся прямых EF и KN. Проекции точки их пересечения M(M»,M’) лежат на пересечении одноименных проекций прямых и на одной линии связи.

Произвольная прямая что это

Произвольная прямая что это

Скрещивающиеся прямые

Если две прямые не параллельны и не пересекаются, то они в пространстве скрещиваются. На чертеже их проекции могут накладываться, образуя конкурирующие точки, лежащие на одном проецирующем луче.

На рис. 2.13 изображены проекции двух скрещивающихся прямых АВ и CD. Их одноименные проекции накладываются и образуют четыре конкурирующие точки (2 пары):

Произвольная прямая что это

. Конкурирующие точки, как было сказано выше, позволяют наблюдателю определить по чертежу относительное расположение прямых по их удаленности от плоскостей проекций H и V:

Теорема о проекции прямого угла. Частное положение прямых – перпендикулярные прямые

Пересекающиеся прямые в пространстве могут быть расположены под прямым углом, т. е. взаимно перпендикулярно. Прямой угол между перпендикулярными прямыми может проецироваться на чертеж в натуральную величину при определенном условии.

Теорема о проекции прямого угла:

На рис. 2.14 дано изображение, поясняющее теорему о проекции прямого угла. Две перпендикулярные прямые AB и AC, образующие плоскость β, проецируются на некоторую плоскость проекций H. Прямая AС по условию параллельна этой плоскости проекций. Доказательство теоремы основано на известной из геометрии теореме о трех перпендикулярах (обратная теорема): прямая n, проведенная в плоскости H перпендикулярно наклонной прямой АВ (nПроизвольная прямая что этоAB; n // A’C’), перпендикулярна и ее проекции; следовательно, угол B’A’C’ – прямой.

Произвольная прямая что это

. Для решения многих задач начертательной геометрии требуется по условию строить проекции прямого угла.

На рис. 2.15, а, б показано построение на чертеже недостающей фронтальной проекции прямого угла KMN.

Произвольная прямая что это

На рис. 2.15, а изображено графическое условие задачи: дана горизонтальная проекция K’M’N’ прямого угла и фронтальная проекции M»N» одной стороны этого угла.

На рис. 2.15, б показано решение задачи: так как одна сторона MN прямого угла по условию является фронтальной прямой, т. е. параллельна фронтальной плоскости проекций V, то по теореме о проекции прямого угла на плоскость V заданный прямой угол KMN должен проецироваться прямым; следовательно, фронтальную проекцию K»M» стороны KM прямого угла проводим перпендикулярно заданной фронтальной проекции стороны MN(M»N»).

На рис. 2.16, а, б показано построение на чертеже недостающей горизонтальной проекции прямого угла ECD.

Произвольная прямая что это

На рис. 2.16, а изображено графическое условие задачи: дана фронтальная проекция E»C»D» прямого угла и горизонтальная проекция C’D’ одной стороны этого угла.

На рис. 2.16, б показано решение задачи: так как одна сторона CD прямого угла по условию является горизонтальной прямой, т. е. параллельна горизонтальной плоскости проекций H, то по теореме о проекции прямого угла на плоскость H заданный прямой угол ECD должен проецироваться прямым; следовательно, горизонтальную проекцию E’C’ стороны угла EC проводим перпендикулярно заданной горизонтальной проекции стороны CD(C’D’).

Структуризация материала второй лекции в рассмотренном объеме схематически представлена на рис. 2.17 (лист 1). На последующих листах 2–4 компактно приведены иллюстрации к этой схеме, способствующие закреплению изученного материала и его быстрому визуальному повторению (рис. 2.18–2.20).

Проекции прямой. Положение прямой относительно плоскостей проекций. Взаимное положение прямых. Способ прямоугольного треугольника. Теорема о проекции прямого угла

Произвольная прямая что это

Прямые обозначают на чертеже строчными буквами латинского алфавита: а, в, m, n и т.д. Отрезки прямых обозначаются прописными буквами: АВ, MN и т.д.

Прямая общего положения

Прямая общего положения и её проекции

Произвольная прямая что это

Произвольная прямая что это

Деление отрезка в заданном отношении (например, 1:3)

Произвольная прямая что это

Теорема о принадлежности точки прямой: если точка принадлежит прямой, то на чертеже одноимённые проекции точки лежат на одноимённых проекциях прямой (см. рис. 2.1а, б; 2.4б).

Определение натуральной величины отрезка способом прямоугольного треугольника на чертеже

Произвольная прямая что это

Произвольная прямая что это

Прямые частного положения

Горизонтальная прямая уровня: //H

Произвольная прямая что это

Фронтальная прямая уровня: //V

Произвольная прямая что это

Профильная прямая уровня: //W

Произвольная прямая что это

Горизонтально-проецирующая прямая: Произвольная прямая что этоH

Произвольная прямая что это

Фронтально-проецирующая прямая: Произвольная прямая что этоV

Произвольная прямая что это

Профильно-проецирующая прямая: Произвольная прямая что этоW

Произвольная прямая что это

Взаимное расположение прямых

Произвольная прямая что это

Произвольная прямая что это

Произвольная прямая что это

Теорема о проекции прямого угла

Произвольная прямая что это

Произвольная прямая что это

Произвольная прямая что это

Теорема о проекции прямого угла: если одна сторона прямого угла пареллельна плоскости проекций (а вторая не параллельна и не перпендикулярна этой плоскости), то на эту плоскость проекций прямой угол проецируется в виде прямого угла.

Знак перпендикулярности элементов: Произвольная прямая что это

Задание прямой

Положение прямой линии в пространстве определяется двумя точками или точкой и направлением. Поэтому на эпюре прямую можно задать проекциями ее отрезка (рис. 2.1), проекциями некоторой произвольной части прямой, не указывая концевых точек этой части (рис. 2.2), или указывая одну точку этой прямой (рис. 2.3).
Произвольная прямая что это

Прямая общего положения

Прямая общего положения не параллельна и не перпендикулярна ни одной из плоскостей проекций.

На эпюре проекции прямой общего положения составляют с осями проекций произвольные углы, поэтому величина каждой проекции меньше истинной величины самой прямой (см. рис. 2.1).

Прямые частного положения

Прямые, параллельные или перпендикулярные плоскостям проекций, называют прямыми частного положения.

Прямая, параллельная какой-либо плоскости проекций, а с двумя другими плоскостями образующая произвольные углы, называется прямой уровня. Различают три линии уровня:

Произвольная прямая что это

Произвольная прямая что это

На рис. 2.4 видно, что все точки горизонтальной прямой Произвольная прямая что этоудалены на одинаковые расстояния от плоскости Произвольная прямая что этопоэтому фронтальная проекция любой горизонтали параллельна оси Произвольная прямая что этоа профильная проекция параллельна оси Произвольная прямая что этоВеличины фронтальной и профильной проекций будут меньше натуральной величины самой прямой.

Эти отличительные особенности характерны и для фронтальной и профильной прямых.

Прямые уровня могут принадлежать плоскостям проекций. Такие прямые называют нулевой горизонталью и нулевой фронталью (рис. 2.7).

Прямые, перпендикулярные одной из плоскостей проекций, а двум другим параллельные, называются проецирующими:

Произвольная прямая что это

Произвольная прямая что это

Произвольная прямая что это

Принадлежность точки прямой. Деление отрезка прямой линии в данном отношении

Если точка лежит на прямой, то ее проекции будут лежать на одноименных проекциях этой прямой.

На рис. 2.11 изображена прямая и три точки: Произвольная прямая что этоТочка Произвольная прямая что этопринадлежит прямой Произвольная прямая что этоточки Произвольная прямая что это— не принадлежат, т.к. Произвольная прямая что это

На рис. 2.12 показано построение точки Произвольная прямая что этопринадлежащей профильной прямой Произвольная прямая что этоесли известна фронтальная проекция точки Произвольная прямая что этоДля построения неизвестной горизонтальной проекции используется профильная проекция Произвольная прямая что этоотрезка прямой Произвольная прямая что это

Чтобы разделить отрезок прямой в данном отношении, достаточно разделить в этом отношении одну из проекции заданного отрезка, а потом с помощью линии связи перенести делящую точку на другие проекции отрезка.

Произвольная прямая что это

На рис. 2.13 точка Произвольная прямая что этоделит отрезок Произвольная прямая что этов отношении Произвольная прямая что этоДля этого из точки Произвольная прямая что этопроведена вспомогательная прямая, на которой отложено 5 равных отрезков произвольной длины.

Если необходимо разделить отрезок профильной прямой Произвольная прямая что этоточкой Произвольная прямая что этозаданной фронтальной проекцией Произвольная прямая что этото выполняют следующие построения: из точки Произвольная прямая что этопроводят произвольную вспомогательную прямую, откладывают на ней Произвольная прямая что этоСоединяют точки Произвольная прямая что этои параллельно прямой Произвольная прямая что эточерез точку 1 проводят прямую до пересечения с Произвольная прямая что этов точке Произвольная прямая что этоЭто и будет недостающая проекция точки Произвольная прямая что это(рис. 2.14).

Произвольная прямая что это

Определение длины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций

Для определения натуральной величины отрезка прямой общего положения необходимо построить на чертеже прямоугольный треугольник, одним катетом которого является проекция отрезка на какую-либо плоскость проекций, а величина другого катета равна разности расстояний концов отрезка от плоскости проекций, на которой взяли первый катет. Натуральная величина отрезка прямой будет равна гипотенузе этого треугольника. Угол между катетом-проекцией и гипотенузой равен углу наклона отрезка к этой плоскости проекций.

На рис. 2.15 показано проецирование отрезка Произвольная прямая что этона горизонтальную плоскость Произвольная прямая что этоЧерез точку Произвольная прямая что этопроведена прямая Произвольная прямая что этопараллельная горизонтальной проекции отрезка Произвольная прямая что этоВ полученном прямоугольном треугольнике Произвольная прямая что этокатет Произвольная прямая что эторавен проекции Произвольная прямая что эторавен разности расстояний концов отрезка от плоскости проекций Произвольная прямая что этоГипотенуза этого треугольника равна длине отрезка Произвольная прямая что этоУгол Произвольная прямая что этов треугольнике Произвольная прямая что этоявляется углом наклона отрезка прямой Произвольная прямая что эток плоскости Произвольная прямая что это

Произвольная прямая что это

Для определения угла наклона отрезка прямой Произвольная прямая что этона фронтальной плоскости проекций Произвольная прямая что этостроят прямоугольный треугольник аналогичным путем: через точку Произвольная прямая что этопроводят прямую Произвольная прямая что этопараллельную Произвольная прямая что этоКатет Произвольная прямая что это Произвольная прямая что этоа второй катет Произвольная прямая что эторавен Произвольная прямая что это— разности расстояний точек Произвольная прямая что этоот плоскости Произвольная прямая что это(рис. 2.16).

Произвольная прямая что это

Угол Произвольная прямая что этов этом же треугольнике Произвольная прямая что этоявляется углом наклона прямой Произвольная прямая что эток плоскости Произвольная прямая что это

Следы прямой линии

Для построения горизонтального следа Произвольная прямая что этопрямой необходимо продолжить фронтальную проекцию прямой до пересечения с осью Произвольная прямая что этои в этой точке восстановить перпендикуляр до пересечения с горизонтальной проекцией прямой.

Произвольная прямая что это

Для построения фронтального следа прямой продолжаем горизонтальную проекцию прямой до пересечения с осью Произвольная прямая что этои восстанавливаем перпендикуляр к оси до пересечения с фронтальной проекцией прямой. С помощью этих правил на рис. 2.18 и рис. 2.19 построены следы прямых Произвольная прямая что это

Произвольная прямая что это

На рис. 2.20 показано построение следов прямой Произвольная прямая что этов системе трех плоскостей проекций.

Произвольная прямая что это

Построение горизонтального и фронтального следов выполняют по правилам, указанным выше, профильный след Произвольная прямая что этонаходят как точку пересечения прямой Произвольная прямая что этос профильной плоскостью проекций. Профильная проекция профильного следа прямой совпадает с самим следом, горизонтальная проекция этого следа Произвольная прямая что этолежит на оси Произвольная прямая что этофронтальная проекция Произвольная прямая что этолежит на оси Произвольная прямая что этоЧтобы построить профильный след прямой, продолжают фронтальную проекцию прямой Произвольная прямая что этодо пересечения с осью Произвольная прямая что этоОтмечают точку Произвольная прямая что этои из этой точки проводят перпендикуляр к оси Произвольная прямая что этодо пересечения с профильной проекцией прямой. Эта точка и будет искомым следом Произвольная прямая что этос которым совпадает Произвольная прямая что этоГоризонтальная проекция Произвольная прямая что этоопределяется как пересечение горизонтальной проекции прямой с осью Произвольная прямая что это(рис. 2.21).

Произвольная прямая что это

Взаимное положение прямых

Прямые в пространстве могут занимать различное взаимное положение. Они могут быть параллельными, пересекающимися и скрещивающимися.

Если прямые в пространстве пересекаются, то на эпюре их одноименные проекции пересекаются, и точки пересечения проекций этих прямых лежат на одной линии связи (рис. 2.22).
Произвольная прямая что это

Если прямые в пространстве параллельны, то на эпюре их одноименные проекции параллельны. На рис. 2.23 изображены прямые общего положения Произвольная прямая что этоих горизонтальные и фронтальные проекции параллельны между собой. Можно утверждать, что и в пространстве эти прямые параллельны. Но для профильных прямых этого условия недостаточно. Для определения их взаимного положения необходимо построить профильные проекции прямых. На рис. 2.24 горизонтальные и фронтальные проекции прямых Произвольная прямая что этопараллельны, но эти прямые не параллельны, что следует из взаимного положения их профильных проекций.

Произвольная прямая что это

Если прямые в пространстве не пересекаются и не параллельны между собой, то такие прямые называются скрещивающимися. На эпюре точки пересечения одноименных проекций скрещивающихся прямых не лежат на одной линии связи. Эти точки не являются общими для прямых (рис. 2.25). Точка пересечения одноименных проекций скрещивающихся прямых является на эпюре проекцией двух конкурирующих точек, принадлежащих заданным прямым.

Произвольная прямая что это

Из чертежа видно, что расстояния от плоскости Произвольная прямая что этодо точек 1 и 2 различны. Фронтальная проекция перпендикуляра, обозначенная стрелкой, позволяет определить, какая из точек расположена ниже. В данном примере точка 2, лежащая на прямой Произвольная прямая что эторасположена ниже, чем точка 1, лежащая на прямой Произвольная прямая что этоСледовательно, прямая Произвольная прямая что этопроходит под прямой Произвольная прямая что это

Точке пересечения фронтальных проекций соответствуют точки 3 и 4, расположенные на прямых Произвольная прямая что этоГоризонтальная проекция перпендикуляра, отмеченная стрелкой, позволяет определить, какая из этих точек ближе к наблюдателю. Из чертежа видно, что точка 3 расположена ближе к наблюдателю, чем точка 4. Поэтому прямая Произвольная прямая что этопроходит перед Произвольная прямая что это

Проекции плоских углов

Плоский угол проецируется на плоскость проекций в натуральную величину, если его стороны параллельны этой плоскости проекций.

Для того чтобы прямой угол проецировался на плоскость в натуральную величину, необходимо и достаточно, чтобы одна из его сторон была параллельна, а другая не перпендикулярна плоскости проекций. Изображенный на рис. 2.26 угол Произвольная прямая что это— прямой, одна его сторона Произвольная прямая что этопараллельна плоскости проекций Произвольная прямая что этопоэтому на эту плоскость он спроецировался в виде прямого угла, т.е. в натуральную величину.

Произвольная прямая что это

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *