программа которая преобразует исходные тексты программ в машинный код
Компилятор VS интерпретатор: ключевые отличия
Интерпретаторы и компиляторы отвечают за преобразование языка программирования или сценариев (язык высокого уровня) в машинный код. Но если обе программы делают одно и то же, чем они различаются? Давайте разберемся.
Компилятор
Что такое компилятор?
Компилятор — это компьютерная программа, которая переводит компьютерный код с одного языка программирования на другой. Компилятор берет программу целиком и преобразует ее в исполняемый компьютерный код. Для этого требуется целая программа, так как компьютер понимает только то, что написано двоичным кодом. Задача компилятора — преобразовать исполняемую программу в машинный код, который и распознается компьютером. Примерами скомпилированных языков программирования являются C и C++.
Компилятор в основном используется для программ, которые переводят исходный код с языка программирования высокого уровня на язык программирования более низкого уровня.
Компилятор способен выполнять многие или даже все операции: предварительную обработку данных, парсинг, семантический анализ, преобразование входных программ в промежуточное представление, оптимизацию и генерацию кода.
Интерпретатор
Что такое интерпретатор?
Интерпретатор — это компьютерная программа, которая преобразует каждый программный оператор высокого уровня в машинный код. Сюда входят исходный код, предварительно скомпилированный код и сценарии.
Интерпретатор представляет собой машинную программу, которая непосредственно выполняет набор инструкций без их компиляции. Примерами интерпретируемых языков являются Perl, Python и Matlab.
Как это работает?
Интерпретатор создает программу. Он не связывает файлы и не генерирует машинный код. Происходит построчное выполнение исходных операторов во время исполнения программы.
Преимущества и недостатки
Преимущества компилятора
Недостатки компилятора
Преимущества интерпретатора
Недостатки интерпретатора
Различия
Рассмотрим основные различия между компилятором и интерпретатором
Программа которая преобразует исходные тексты программ в машинный код
Компилятор (англ. compiler — составитель, собиратель) читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.
Компилятор обеспечивает преобразование программы с одного языка на другой. Команды исходного языка сильно отличаются по организации и мощности, нежели команды машинного языка. Бывают такие, в которых одна команда исходного языка транслируется в 7-10 машинных команд. Существуют даже такие, в которых в каждой команде может соответствовать более 100 машинных команд (например язык программирования Пролог). В исходных языках довольно часто используется строгая типизация данных, которая осуществляется через их предварительное описание. Программирование на таких языках может опираться не только на кодирование алгоритма, но и на тщательное обдумывание структур данных или классов. Весь процесс трансляции с таких языков программирования обычно называется компиляцией, а исходные языки обычно относятся к языкам высокого уровня.
Интерпретатор (англ. interpreter — истолкователь, устный переводчик) переводит и выполняет программу строка за строкой.В отличие от компилятора, интерпретатор не порождает на выходе программу на машинном языке. Распознав команду исходного языка, он тут же выполняет ее. Как в компиляторах, так и в интерпретаторах используются одинаковые методы анализа исходного текста программы. Но интерпретатор позволяет начать обработку данных после написания даже одной команды. Это делает процесс разработки и отладки программ более гибким. Кроме того, отсутствие выходного машинного кода позволяет не «захламлять» внешние устройства дополнительными файлами, а сам интерпретатор можно достаточно легко адаптировать к любым машинным архитектурам, разработав его только один раз на широко распространенном языке программирования. Поэтому, интерпретируемые языки, типа Java Script, VB Script, получили широкое распространение. Недостатком интерпретаторов является низкая скорость выполнения программ. Обычно интерпретируемые программы выполняются в 50-100 раз медленнее программ, написанных в машинных кодах.
Что такое компилятор
Если вы программист, то наверняка слышали слово “компилятор”. Но знаете ли вы, что это такое на самом деле? Вы когда-нибудь задумывались, что происходит под капотом, когда вы запускаете команду javac (если у вас код на Java)? Вы когда-нибудь хотели создать свой собственный язык программирования? — и просто заводили бесполезный репозиторий GitHub, где все равно есть только один readme.md, потому что вы даже не знаете, с чего начать. Я думаю, что начинать стоит с этого: узнать больше о компиляторе.
Итак, в этой статье мы разберёмся, что представляет собой компилятор. Если вы опытный программист, который знает про компилятор каждую мелочь, то извините, эта статья не для вас. Но если вы — тот самый парень из абзаца выше, то вперёд за мной, в кроличью нору. На протяжении статьи я буду обсуждать следующие подтемы:
Вступление
Компилятор — это не что иное, как переводчик исходного кода.
Задача компилятора — перевести исходный код с одного языка на другой. Это означает, что если вы скормите компилятору исходный код Java, то сможете получить исходный код Python (не самый лучший пример, просто для понимания сути. На самом деле вы получите байт-код Java, который можно запустить на JVM). Для выполнения этого процесса у компилятора есть несколько взаимосвязанных компонентов.
Типы компиляторов
Мы можем классифицировать компиляторы по-разному. В этой статье я расскажу о двух способах классификации компиляторов, однако особенно углубляться в это не буду.
Классификация компиляторов в соответствии с этапами компиляции
Здесь мы рассмотрим количество этапов, которые проходит компилятор. Некоторые компиляторы непосредственно преобразуют высокоуровневый исходный код в машинный код, а некоторые — сначала преобразуют высокоуровневый исходный код в промежуточное представление перед преобразованием в машинный код.
Таким образом, в соответствии с этой классификацией можно выделить три типа компиляторов:
Если вы хотите узнать больше об этой классификации компиляторов, посмотрите сюда.
Классификация компиляторов в соответствии с исходным кодом и целевым кодом
Для преобразования исходного кода в целевой применяются разные подходы. Некоторые компиляторы преобразуют код на высокоуровневом языке в машинный. Некоторые компиляторы преобразуют с одного языка высокого уровня на другой язык высокого уровня. Таким образом, здесь выделяются следующие типы:
Архитектура компилятора
Когда компилятор компилирует (переводит) исходный код, он проходит несколько этапов:
Мы можем разделить все эти этапы на две фазы, примерно как фронтенд и бэкенд. Эти фазы включают в себя следующие этапы:
Фронтенд
Бэкенд
В следующем разделе я кратко опишу, что происходит на каждой фазе. Если вы не программируете компиляторы, то нормально иметь о них лишь поверхностное представление, но если вы хотите разработать компилятор сами, то вам стоит подробно изучить их работу.
Лексический анализ
Теперь вы знаете, что компилятор — это программа, которая преобразует исходный код в другой исходный код. Компилятор получает исходный код в виде файла. Этот файл содержит код в текстовом формате, но компилятор не может работать с этим текстом. Необходимо преобразовать этот текст в некоторый другой формат, понятный компилятору. Для этого компилятор разбивает текст по маркерам. Помните, что эти маркеры заранее определены в грамматике языка. Маркеры пригодятся на следующих этапах процесса компиляции:
KEYWORD, BRACKET, IDENTIFIER, OPERATOR, NUMBER на приведенной выше диаграмме — это и есть маркеры. Компилятор использует лексический анализ для идентификации маркеров, и если он получает маркер, который не определен заранее в грамматике языка, то это будет считаться ошибкой.
Синтаксический анализ (парсинг)
На этом этапе компилятор проверяет, расположены ли идентифицированные ранее маркеры в правильном порядке. Для этого в каждом языке есть набор правил, называемый грамматикой. Во-первых, компилятор пытается построить структуру данных — дерево синтаксического анализа. Если компилятор смог успешно построить дерево синтаксического анализа в соответствии с заранее определенными правилами грамматики, то в исходном коде нет синтаксических ошибок. В противном случае возникают ошибки и компилятор их покажет.
Здесь мы сначала определили грамматику. Затем компилятор пытается построить дерево синтаксического анализа для исходного кода 2 + 3 * 3. В этом случае компилятору удается построить дерево синтаксического анализа (с правой стороны) в соответствии с грамматикой, следовательно в этой программе нет синтаксических ошибок.
Семантический анализ
Просто потому, что программа не содержит синтаксических ошибок, код еще не может считаться правильным. Рассмотрим предложение ниже.
I love compilers
Компилятор при анализе синтаксиса может решить, что в этом предложении нет синтаксических ошибок, потому что маркеры (слова) расположены в правильном порядке.
Теперь рассмотрим предложение ниже.
I eat compilers
Предположим, что eat — правильный маркер в соответствии с грамматикой. Таким образом, предложение признается правильным на этапе лексического и синтаксического анализа, поскольку слова расположены в правильном порядке. Но в этом предложении нет никакого смысла — никто не может есть компиляторы.
Итак, согласно этапу семантического анализа, эта программа содержит ошибку. Мы называем эту разновидность ошибок семантическими ошибками. Взгляните на этот простой Java-код:
Здесь нет синтаксических ошибок. Все маркеры упорядочены правильно. Но на пятой строке int total = c + d — не имеет никакого значения, так как идентификаторы c и d не определены. Это и есть семантическая ошибка.
Генерация промежуточного кода
Любой компилятор может непосредственно генерировать машинный код из исходного. Так зачем же тогда нужна фаза генерации промежуточного кода?
Существуют различные типы машин. Таким образом, машинный код зависит от системы, а высокоуровневый исходный код — нет. Если компилятор непосредственно генерирует машинный код из исходного кода, то каждая машина нуждается в полной компиляции от фронта к бэку. Но когда компилятор генерирует промежуточный код (промежуточное представление), он уже может генерировать машинный код для каждой машины с его помощью, без повторения лексического анализа и парсинга для каждой машины.
Существует два основных типа промежуточных представлений:
Существует также несколько способов представления промежуточного представления.
Оптимизация кода
Этап оптимизации кода выполняет две основные задачи: минимизация времени или минимизация ресурсов. Что все это значит? Когда пользователь пишет код, нет ничего, кроме инструкций. Когда процессор выполняет эти инструкции, требуют время и ресурсы памяти. Таким образом, целью этапа оптимизации кода становится сокращение времени выполнения и ресурсов, потребляемых программой. Оптимизатор кода всегда следует трем правилам:
Существует два способа оптимизации кода:
Машинно-независимая оптимизация принимает промежуточное представление относительно входных данных и не заботится ни о каких регистрах процессора и ячейках памяти. Она происходит после генерации промежуточного кода.
При машинно-зависимой оптимизации кода компилятор заботится о регистрах процессора, расположениях памяти и архитектуре машины. Она происходит после генерации машинного кода.
Генерация кода
Генерация кода — это последний этап процесса компиляции. Да, после может следовать машинно-зависимая оптимизация кода. Но мы можем рассматривать и то, и другое вместе как генерацию кода. На этом этапе компилятор генерирует машинно-зависимый код. Генератор кода должен иметь представление о среде выполнения целевой машины и ее наборе команд.
На этом этапе компилятор выполняет несколько основных задач:
Итоговый машинный код, сгенерированный генератором кода, может быть выполнен на целевой машине. Именно так высокоуровневый исходный код, который мы пишем в нашем любимом редакторе кода, преобразуется в формат, который можно запустить на любой целевой машине.
В этой статье я предоставляю только краткое описание. Если вам хочется углубиться в эти концепции, к вашим услугам миллионы ресурсов в интернете.
Что такое компилятор?
В этом гайде вы узнаете о том, что такое компилятор и как он работает. Мы разберем этапы компиляции и от чего зависит выбор подходящего компилятора. Этот материал поможет лучше понять, как компьютер выполняет программный код и почему иногда код не компилируется.
Зачем нужен компилятор?
Процессор — самая важная часть компьютера. Он обрабатывает информацию, выполняет команды пользователя и следит за работой всех подключенных устройств. Но процессор может разобрать только машинный код — набор 0 и 1, которые записаны в определённом порядке.
Почему именно 0 и 1? В процессор поступают электрические сигналы. Сильный сигнал обозначается цифрой 1, а слабый — 0. Набор таких цифр обозначает какую-то команду. Процессор ее распознает и выполняет.
Программы для первых компьютеров выглядели как огромные наборы 0 и 1. Чтобы записать такую программу, инженеры пользовались гибкими картонными карточками — перфокартами. Цифры на перфокарте записывались поочередно, в несколько строк. Чтобы записать 1, программист делал отверстие в карте. Места без отверстия обозначали 0.
Компьютер считывал перфокарту специальным устройством и выполнял записанную команду. Для одной программы составляли сотни перфокарт.
Писать их было долго и сложно, поэтому инженеры стали создавать языки программирования, обозначая команды словами и знаками. Для того, чтобы процессор понимал, какие команды записаны в программе, программисты создали компилятор — программу, которая преобразует программный код в машинный.
Как работает компилятор?
Преобразование программного кода в машинный называется компиляцией. Компиляция только преобразует код. Она не запускает его на исполнение. В этот момент он “статически” (то есть без запуска) транслируется в машинный код. Это сложный процесс, в котором сначала текст программы разбирается на части и анализируется, а затем генерируется код, понятный процессору.
Разберём этапы компиляции на примере вычисления периметра прямоугольника:
После запуска программы компилятору нужно определить, какие команды в ней записаны. Сначала компилятор разделяет программу на слова и знаки — токены, и записывает их в список. Такой процесс называется лексическим анализом. Его главная задача — получить токены.
Компилятор должен понять, какие токены в списке связаны с токен-оператором. Чтобы сделать это правильно, для каждого оператора строится специальная структура — логическое дерево или дерево разбора.
Так операция P = 2*(a + b) будет преобразована в логическое дерево:
Теперь каждое дерево нужно разобрать на команды, и каждую команду преобразовать в машинный код. Компилятор начинает читать дерево снизу вверх и составляет список команд:
Компилятор еще раз проверяет команды, находит ошибки и старается улучшить код. При успешном завершении этого этапа, компилятор переводит каждую команду в набор 0 и 1. Наборы записываются в файл, который сможет прочитать и выполнить процессор.
На чем написан компилятор?
В 1950-е годы группа разработчиков IBM под руководством Джона Бэкуса разработала первый высокоуровневый язык программирования Fortran, который позволил писать программы на понятном человеку языке. Помимо языка, инженеры работали и над компилятором. Он представлял собой программу с набором исполняемых команд, которая могла компилировать другие программы на Fortran, в том числе и улучшенную версию себя.
В дальнейшем язык Fortran и его компилятор использовали, чтобы написать компиляторы для новых языков программирования. Такой подход используют программисты и в настоящее время. Писать машинный код долго и неудобно. К тому же, для современных процессоров он может отличаться. Придется писать несколько версий одного и того же компилятора для разных компьютеров. Быстрее и проще написать компилятор на существующем языке программирования. Для этого разработчики выбирают удобный язык и пишут на нем первую версию своего компилятора. Он будет более универсальным для компьютеров и легко скомпилирует улучшенную версию себя.
Какие бывают компиляторы?
Ни один компилируемый язык программирования не обходится без компилятора. Некоторые компиляторы работают с несколькими языками программирования. Но программист должен учитывать еще и параметры компьютера, на котором программа будет запускаться.
Дело в том, что современные процессоры отличаются друг от друга устройством, поэтому машинный код для одного процессора будет понятен, а для другого нет. Это касается и операционных систем: одна и та же программа будет работать на Windows, но не запустится на Linux или MacOS. Поэтому нужно пользоваться тем компилятором, который работает с нужным процессором и операционной системой.
Если программа будет работать на нескольких операционных системах, то нужен кросс-компилятор — компилятор, который преобразует универсальный машинный код. Например, GNU Compiler Collection(сокращенно GCC) поддерживает C++, Objective-C, Java, Фортран, Ada, Go и поддерживает разную архитектуру процессоров.
Начинающие программисты даже не знают о наличии компилятора на компьютере. Они пишут программы в интегрированной среде разработки, в которую встроен компилятор, а иногда и не один. В этом случае, выбор компилятора делает среда, а не программист. Например, MS Visual Studio поддерживает компиляторы для операционных систем Windows, Linux, Android. Выбирая тип проекта, Visual Studio определяет процессор и операционную систему компьютера, и после этого выбирает подходящий компилятор.
Какие ошибки может определить компилятор?
Когда компилятор анализирует текст программы, он проверяет, соответствует ли запись оператора стандартам языка. Если найдено несоответствие, то компилятор выводит об этом информацию пользователю в виде ошибки. Когда вся программа разобрана, пользователь видит список ошибок, которые есть в коде, и может их исправить. Пока программист не исправит ошибки, компилятор не перейдет к следующему этапу — генерации машинного кода для процессора. Чаще всего компилятор показывает пользователю:
Иногда компилятор определяет код, который при выполнении дает неправильный результат. Но преобразовать такую программу в машинный код все-таки можно. В этом случае компилятор показывает пользователю предупреждение. Такая реакция компилятора больше похожа на рекомендации, но на них стоит обратить внимание. Программист сам решает оставить код с предупреждением или изменить программу. Анализируя текст программы, компилятор не только ищет ошибки, но еще и упрощает ее код. Такой процесс называется оптимизацией. Во время оптимизации компилятор изменяет программный код, но функции, которые выполняла программа, остаются прежними.
Выводы и рекомендации
Компилятор — переводчик между программистом и процессором. Он преобразует текст программы в машинный код, определяет ряд ошибок в программе и оптимизирует ее работу. Выбирая, где компилировать программу, важно помнить о том, что машинный код для процессоров и операционных систем будет разным, и подобрать правильный компилятор. Чем точнее компилятор определит команды, тем корректнее и быстрее будет работать программа. Для этого следуйте простым рекомендациям:
Компилятор
Компиля́тор — программа или техническое средство, выполняющее компиляцию. [1] [2] [3]
Компиляция — трансляция программы, составленной на исходном языке высокого уровня, в эквивалентную программу на низкоуровневом языке, близком машинному коду (абсолютный код, объектный модуль, иногда на язык ассемблера). [2] [3] [4] Входной информацией для компилятора (исходный код) является описание алгоритма или программа на проблемно-ориентированном языке, а на выходе компилятора — эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код). [5]
Компилировать — проводить трансляцию машинной программы с проблемно-ориентированного языка на машинно-ориентированный язык. [3]
Содержание
Виды компиляторов [2]
Виды компиляции [2]
Структура компилятора
Процесс компиляции состоит из следующих этапов:
В конкретных реализациях компиляторов эти этапы могут быть разделены или, наоборот, совмещены в том или ином виде.
Генерация кода
Генерация машинного кода
Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной.
Результат компиляции — исполнимый модуль — обладает максимальной возможной производительностью, однако привязан к определённой операционной системе и процессору (и не будет работать на других).
Для каждой целевой машины (IBM, Apple, Sun и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов инструкций). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения — MMX, SSE и т. п.
Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера. Это делается для упрощения части компилятора, отвечающей за кодогенерацию, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции программистом.
Генерация байт-кода
Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без промежуточных этапов.
Динамическая компиляция
Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция, когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и в при повторных обращениях к коду исполняется уже скомпилированный вариант).
Декомпиляция
Существуют программы, которые решают обратную задачу — перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а такие программы — декомпиляторами. Но поскольку компиляция — это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах — например, существует довольно надёжный декомпилятор для Flash. Разновидностью декомпилирования является дизассемблирование машинного кода в код на языке ассемблера, который почти всегда выполняется успешно (при этом сложность может представлять самомодифицирующийся код или код, в котором собственно код и данные не разделены). Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически взаимно-однозначное соответствие.
Раздельная компиляция
Раздельная компиляция (англ. separate compilation ) — трансляция частей программы по отдельности с последующим объединением их компоновщиком в единый загрузочный модуль. [2]
Исторически особенностью компилятора, отражённой в его названии (англ. compile — собирать вместе, составлять), являлось то, что он производил как трансляцию, так и компоновку, при этом компилятор мог порождать сразу абсолютный код. Однако позже, с ростом сложности и размера программ (и увеличением времени, затрачиваемого на перекомпиляцию), возникла необходимость разделять программы на части и выделять библиотеки, которые можно компилировать независимо друг от друга. При трансляции каждой части программы компилятор порождает объектный модуль, содержащий дополнительную информацию, которая потом, при компоновке частей в исполнимый модуль, используется для связывания и разрешения ссылок между частями.
Появление раздельной компиляции и выделение компоновки как отдельной стадии произошло значительно позже создания компиляторов. В связи с этим вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один).
Интересные факты
На заре развития компьютеров первые компиляторы (трансляторы) называли «программирующими программами» [6] (так как в тот момент программой считался только машинный код, а «программирующая программа» была способна из человеческого текста сделать машинный код, то есть запрограммировать ЭВМ).