программа для поиска ошибок в коде питона

Python syntax checker

Python code

Python checker allows to check your Python code syntax (Python 3), and find Python errors. This Python code checker tool highlights and goes to line with a syntax error.

To check your code, you must copy and paste, drag and drop a Python file or directly type in the Online Python editor below, and click on «Check Python syntax» button.

You can see the user guide to help you to use this python checker tool.

User guide

It is quick and easy to analyze python code!

Python code checker tool

Python is a server-side scripting language, but can also be used as a general-purpose programming language.

Python error checker tool allows to find syntax errors (lint). You can test your Python code online directly in your browser.

If a syntax error is detected, then the line in error is highlighted, and it jumps to it to save time (no need to search the line).

Note: This tool no longer offers sandbox, it was not good enough.

About Python

Python is an interpreted programming language, it features a dynamic type system and automatic memory management (garbage collector). Python is available for many operating systems.It has a large standard library.

Python formatting is visually uncluttered, and often uses English keywords rather than punctuation. Python uses whitespace indentation instead of curly brackets to delimit blocks.

Python is often used as a programming language in high school and higher education, especially in France (I am French).

Источник

Линтеры в Python

В сообществе Python, как и в любой другой группе людей, существует некое коллективное знание. Множество людей прошлось по всем возможным граблям и получило опыт через набитые шишки. Затем через какое-то время, благодаря выступлениям на конференциях, официальным заявлениям, документам, статьям в блогах, код-ревью и личному общению, это знание стало коллективным. Теперь мы просто называем его “хорошими практиками”.

К таким хорошим практикам можно отнести, например, следующие.

Соблюдать (и даже просто помнить) все хорошие практики — не самая простая задача. Зачастую люди плохо справляются с тем, чтобы отсчитывать пробелы и контролировать переменные, и вообще склонны допускать ошибки по невнимательности. Таковы люди, ничего не поделаешь. Машины, наоборот, прекрасно справляются с такими хорошо определёнными задачами, поэтому появились инструменты, которые контролируют следование хорошим практикам.

В компилируемых языках ещё на этапе компиляции программист может получить по щщам первый полезный фидбэк о написанном коде. Компилятор проверит, что код валиден и может быть скомпилирован, а также может выдать предупреждения и рекомендации, как сделать код лучше или читаемее. Т.к. Python является интерпретируемым языком, где этап компиляции как таковой отсутствует, линтеры особенно полезны. На самом деле, это очень важно и круто — узнать, что твой код как минимум является валидным Python-кодом, даже не запуская его.

В этом посте я рассмотрю два самых популярных линтера для Python:

Термин “lint” впервые начал использоваться в таком значении в 1979 году. Так называлась программа для статического анализа кода на C, которая предупреждала об использовании непортабельных на другие архитектуры языковых конструкций. С тех пор “линтерами” называют любые статические анализаторы кода, которые помогают находить распространённые ошибки, делать его однообразным и более читаемым. А названо оно «lint» в честь вот такой штуки:

программа для поиска ошибок в коде питона

flake8

Установка

Источник

Анализ кода в Python

программа для поиска ошибок в коде питона

Анализ кода в Python может быть трудной темой, но очень полезной в тех случаях, когда вам нужно повысить производительность вашей программы. Существует несколько анализаторов кода для Python, которые вы можете использовать для проверки своего кода и выяснить, соответствует ли он стандартам. Самым популярным можно назвать pylint. Он очень удобен в настойках и подключениях. Он также проверяет ваш код на соответствие с PEP8, официальным руководством по стилю ядра Python, а также ищет программные ошибки. Обратите внимание на то, что pylint проверяет ваш код на большую часть стандартов PEP8, но не на все. Также мы уделим наше внимание тому, чтобы научиться работать с другим анализатором кода, а именно pyflakes.

Начнем с pylint

Пакет pylint не входит в Python, так что вам нужно будет посетить PyPI (Python Package Index), или непосредственно сайт пакета для загрузки. Вы можете использовать следующую команду, которая сделает всю работу за вас:

Если все идет по плану, то pylint установится, и мы сможем пойти дальше.

Анализ вашего кода

После установки pylint вы можете запустить его в командной строке, без каких либо аргументов, что бы увидеть, какие опции он принимает. Если это не сработало, можете прописать полный путь, вот так:

Теперь нам нужен какой-нибудь код для анализа. Вот часть кода, которая содержит четыре ошибки. Сохраните её в файле под названием crummy_code.py:

Можете увидеть ошибки не запуская код? Давайте посмотрим, может ли pylint найти их!

Есть вопросы по Python?

На нашем форуме вы можете задать любой вопрос и получить ответ от всего нашего сообщества!

Telegram Чат & Канал

Вступите в наш дружный чат по Python и начните общение с единомышленниками! Станьте частью большого сообщества!

Паблик VK

Одно из самых больших сообществ по Python в социальной сети ВК. Видео уроки и книги для вас!

После запуска этой команды вы увидите большую выдачу на вашем экране. Вот частичный пример:

Давайте немного притормозим и разберемся. Сначала нам нужно понять, что означают буквы:

Наш pylint нашел 3 ошибки, 4 проблемы с конвенцией, 2 строки, которые нуждаются в рефакторинге и одно предупреждение. Предупреждение и 3 ошибки – это как раз то, что я искал. Мы попытаемся исправить этот код и устранить ряд проблем. Для начала мы наведем порядок в импортах, и изменить функцию getWeight на get_weight, в связи с тем, что camelCase не используется в названиях методов. Нам также нужно исправить вызов get_weight, чтобы он передавал правильное количество аргументов и исправить его, чтобы “self” выступал в качестве первого аргумента. Взглянем на новый код:

Давайте запустим новый код с pylint и посмотрим, насколько успешно мы провели работу. Для краткости, мы еще раз рассмотрим первую часть:

Как мы видим, это очень помогло. Если мы добавим docstrings, мы можем снизить количество ошибок вдвое. Теперь мы готовы перейти к pyflakes!

Работаем с pyflakes

Проект pyflakes это часть чего-то, что называется Divmod Project. Pyflakes на самом деле не выполняет проверяемый код также, как и pylint. Вы можете установить pyflakes при помощи pip, easy_install, или из другого источника.

Данный сервис может предложить Вам персональные условия при заказе классов на посты и фото в Одноклассники. Приобретайте необходимый ресурс не только со скидками, но и с возможностью подобрать наилучшее качество и скорость поступления.

Мы начнем с запуска pyflakes в изначальной версии той же части кода, которую мы использовали для проверки pylint. Вот и он:

Как мы отмечали в предыдущем разделе, в этом поломанном коде четыре ошибки, три из которых препятствуют работе программы. Давайте посмотрим, что же pyflakes может найти. Попытайтесь запустить данную команду и на выходе вы должны получить следующее:

Несмотря на суперски быструю скорость возврата выдачи, pyflakes не нашел все ошибки. Вызов метода getWeight передает слишком много аргументов, также метод getWeight сам по себе определен некорректно, так как у него нет аргумента self. Что-же, вы, собственно, можете называть первый аргумент так, как вам угодно, но в конвенции он всегда называется self. Если вы исправили код, оперируя тем, что вам сказал pyflakes, код не заработает, несмотря на это.

Подведем итоги

Следующим шагом должна быть попытка запуска pylint и pyflakes в вашем собственном коде, либо же в пакете Python, вроде SQLAlchemy, после чего следует изучить полученные в выдаче данные. Вы можете многое узнать о своем коде, используя данные инструменты. pylint интегрирован с Wingware, Editra, и PyDev. Некоторые предупреждения pylint могут показаться вам раздражительными, или не особо уместными. Существует несколько способов избавиться от таких моментов, как предупреждения об устаревании, через опции командной строки. Вы также можете использовать -generate-rcfile для создания примера файла config, который поможет вам контролировать работу pylint. Обратите внимание на то, что pylint и pyflakes не импортируют ваш код, так что вам не нужно беспокоиться о нежелательных побочных эффектах.

программа для поиска ошибок в коде питона

Являюсь администратором нескольких порталов по обучению языков программирования Python, Golang и Kotlin. В составе небольшой команды единомышленников, мы занимаемся популяризацией языков программирования на русскоязычную аудиторию. Большая часть статей была адаптирована нами на русский язык и распространяется бесплатно.

E-mail: vasile.buldumac@ati.utm.md

Образование
Universitatea Tehnică a Moldovei (utm.md)

Источник

Инструменты для анализа кода Python. Часть 1

Рассмотрим популярные инструменты для анализа кода Python и подробно расскажем об их специфике и основных принципах работы.

программа для поиска ошибок в коде питона

Автор: Валерий Шагур, teacher assistance на курсе Программирование на Python

Высокая стоимость ошибок в программных продуктах предъявляет повышенные
требования к качеству кода. Каким критериям должен соответствовать хороший код?
Отсутствие ошибок, расширяемость, поддерживаемость, читаемость и наличие документации. Недостаточное внимание к любому из этих критериев может привести к появлению новых ошибок или снизить вероятность обнаружения уже существующих. Небрежно написанный или чересчур запутанный код, отсутствие документации напрямую влияют на время исправления найденного бага, ведь разработчику приходится заново вникать в код. Даже такие, казалось бы, незначительные вещи как неправильные имена переменных или отсутствие форматирования могут сильно влиять на читаемость и понимание кода.

Командная работа над проектом еще больше повышает требования к качеству кода, поэтому важным условием продуктивной работы команды становится описание формальных требований к написанию кода. Это могут быть соглашения, принятые в языке программирования, на котором ведется разработка, или собственное (внутрикорпоративное) руководство по стилю. Выработанные требования к оформлению кода не исключают появления «разночтений» среди разработчиков и временных затрат на их обсуждение. Кроме этого, соблюдение выработанных требований ложится на плечи программистов в виде дополнительной нагрузки. Все это привело к появлению инструментов для проверки кода на наличие стилистических и логических ошибок. О таких инструментах для языка программирования Python мы и поговорим в этой статье.

Анализаторы и автоматическое форматирование кода

Весь инструментарий, доступный разработчикам Python, можно условно разделить на две группы по способу реагирования на ошибки. Первая группа сообщает о найденных ошибках, перекладывая задачу по их исправлению на программиста. Вторая — предлагает пользователю вариант исправленного кода или автоматически вносит изменения.

И первая, и вторая группы включают в себя как простые утилиты командной строки для решения узкоспециализированных задач (например, проверка docstring или сортировка импортов), так и богатые по возможностям библиотеки, объединяющие в себе более простые утилиты. Средства анализа кода из первой группы принято называть линтерами (linter). Название происходит от lint — статического анализатора для языка программирования Си и со временем ставшего нарицательным. Программы второй группы называют форматировщиками (formatter).

Даже при поверхностном сравнении этих групп видны особенности работы с ними. При применении линтеров программисту, во-первых, необходимо писать код с оглядкой, дабы позже не исправлять найденные ошибки. И во вторых, принимать решение по поводу обнаруженных ошибок — какие требуют исправления, а какие можно проигнорировать. Форматировщики, напротив, автоматизируют процесс исправления ошибок, оставляя программисту возможность осуществлять контроль.

Список рассматриваемых инструментов для анализа кода Python

Часть 1

Часть 2

Соглашения принятые в статье и общие замечания

Прежде чем приступить к обзору программ, мы хотели бы обратить ваше внимание на несколько важных моментов.

Версия Python: во всех примерах, приведенных в статье, будет использоваться третья версия языка программирования Python.

Установка всех программ в обзоре практически однотипна и сводится к использованию пакетного менеджера pip.

Некоторые из библиотек имеют готовые бинарные пакеты в репозиториях дистрибутивов linux или возможность установки с использованием git. Тем не менее для большей определенности и возможности повторения примеров из статьи, установка будет производится с помощью pip.

Об ошибках: стоит упомянуть, что говоря об ошибках, обнаруживаемых анализаторами кода, как правило, имеют в виду два типа ошибок. К первому относятся ошибки стиля (неправильные отступы, длинные строки), ко второму — ошибки в логике программы и ошибки синтаксиса языка программирования (опечатки при написании названий стандартных функций, неиспользуемые импорты, дублирование кода). Существуют и другие виды ошибок, например — оставленные в коде пароли или высокая цикломатическая сложность.

Тестовый скрипт: для примеров использования программ мы создали простенький по содержанию файл example.py. Мы сознательно не стали делать его более разнообразным по наличию в нем ошибок. Во-первых, добавление листингов с выводом некоторых анализаторов в таком случае сильно “раздуло” бы статью. Во-вторых, у нас не было цели детально показать различия в “отлове” тех или иных ошибок для каждой из утилит.

Содержание файла example.py:

В коде допущено несколько ошибок:

Руководства по стилям: для тех, кто впервые сталкивается с темой оформления кода, в качестве знакомства предлагаем прочитать официальные руководства по стилю для языка Python PEP8 и PEP257. В качестве примера внутрикорпоративных соглашений можно рассмотреть Google Python Style Guide — https://github.com/google/styleguide/blob/gh-pages/pyguide.md

Pycodestyle

Pycodestyle — простая консольная утилита для анализа кода Python, а именно для проверки кода на соответствие PEP8. Один из старейших анализаторов кода, до 2016 года носил название pep8, но был переименован по просьбе создателя языка Python Гвидо ван Россума.

Запустим проверку на нашем коде:

Лаконичный вывод показывает нам строки, в которых, по мнению анализатора, есть нарушение соглашений PEP8. Формат вывода прост и содержит только необходимую информацию:

Pydocstyle

Утилиту pydocstyle мы уже упоминали в статье Работа с документацией в Python: поиск информации и соглашения. Pydocstyle проверяет наличие docstring у модулей, классов, функций и их соответствие официальному соглашению PEP257.

Pyflakes

В отличие от уже рассмотренных инструментов для анализа кода Python pyflakes не делает проверок стиля. Цель этого анализатора кода — поиск логических и синтаксических ошибок. Разработчики pyflakes сделали упор на скорость работы программы, безопасность и простоту. Несмотря на то, что данная утилита не импортирует проверяемый файл, она прекрасно справляется c поиском синтаксических ошибок и делает это быстро. С другой стороны, такой подход сильно сужает область проверок.
Функциональность pyflakes — “нулевая”, все что он умеет делать — это выводить результаты анализа в консоль:

В нашем тестовом скрипте, он нашел только импорт не используемого модуля os. Вы можете самостоятельно поэкспериментировать с запуском программы и передачей ей в качестве параметра командной строки Python файла, содержащего синтаксические ошибки. Данная утилита имеет еще одну особенность — если вы используете обе версии Python, вам придется установить отдельные утилиты для каждой из версий.

Pylint

До сих пор мы рассматривали утилиты, которые проводили проверки на наличие либо стилистических, либо логических ошибок. Следующий в обзоре статический инструмент для анализа кода Python — Pylint, который совместил в себе обе возможности. Этот мощный, гибко настраиваемый инструмент для анализа кода Python отличается большим количеством проверок и разнообразием отчетов. Это один из самых “придирчивых” и “многословных” анализаторов кода. Анализ нашего тестового скрипта выдает весьма обширный отчет, состоящий из списка найденных в ходе анализа недочетов, статистических отчетов, представленных в виде таблиц, и общей оценки кода:

Программа имеет свою внутреннюю маркировку проблемных мест в коде:

[R]efactor — требуется рефакторинг,
[C]onvention — нарушено следование стилистике и соглашениям,
[W]arning — потенциальная ошибка,
[E]rror — ошибка,
[F]atal — ошибка, которая препятствует дальнейшей работе программы.

— Генерация файла настроек (—generate-rcfile). Позволяет не писать конфигурационный файл с нуля. В созданном rcfile содержатся все текущие настройки с подробными комментариями к ним, вам остается только отредактировать его под собственные требования.

— Отключение вывода в коде. При редактировании кода есть возможность вставить блокирующие вывод сообщений комментарии. Чтобы продемонстрировать это, в определение функции в файле примера example.py добавим строку:

и запустим pylint. Из результатов проверки “исчезло” сообщение:

— Создание отчетов в формате json (—output-format=json). Полезно, если необходимо сохранение или дальнейшая обработка результатов работы линтера. Вы также можете создать собственный формат вывода данных.

— Параллельный запуск (-j 4). Запуск в нескольких параллельных потоках на многоядерных процессорах сокращает время проверки.

— Система оценки сохраняет последний результат и при последующих запусках показывает изменения, что позволяет количественно оценить прогресс исправлений.

— Плагины — отличная возможность изменять поведение pylint. Их применение может оказаться полезным в случаях, когда pylint неправильно обрабатывает код и есть “ложные” срабатывания, или когда требуется отличный от стандартного формат вывода результатов.

Vulture

Vulture — небольшая утилита для поиска “мертвого” кода в программах Python. Она использует модуль ast стандартной библиотеки и создает абстрактные синтаксические деревья для всех файлов исходного кода в проекте. Далее осуществляется поиск всех объектов, которые были определены, но не используются. Vulture полезно применять для очистки и нахождения ошибок в больших базовых кодах.

Продолжение следует

Во второй части мы продолжим разговор об инструментах для анализа кода Python. Будут рассмотрены линтеры, представляющие собой наборы утилит. Также мы посмотрим, какие программы можно использовать для автоматического форматирования кода.

ФРОО рекомендует:
До конца октября действует промокод backupmaster, который дает скидку 5000 рублей на курс Программирование на Python и 5000 рублей на курс Машинное обучение и анализ данных.

Источник

🐍 Найдите и исправьте ошибки в коде на Python: отладка с IDLE

программа для поиска ошибок в коде питона

Перевод публикуется с сокращениями, автор оригинальной статьи David Amos.

Выявление ошибок называется дебаггингом, а дебаггер – помогающий понять причину их появления инструмент. Умение находить и исправлять ошибки в коде – важный навык в работе программиста, не пренебрегайте им.

IDLE (Integrated Development and Learning Environment) – кроссплатформенная интегрированная среда разработки и обучения для Python, созданная Гвидо ван Россумом.

Используйте окно управления отладкой

Основным интерфейсом отладки в IDLE является специальное окно управления (Debug Control window). Открыть его можно, выбрав в меню интерактивного окна пункт Debug→Debugger.

Примечание: если отладка отсутствует в строке меню, убедитесь, что интерактивное окно находится в фокусе.

Всякий раз, когда окно отладки открыто, интерактивное окно отображает [DEBUG ON].

Обзор окна управления отладкой

Чтобы увидеть работу отладчика, напишем простую программу без ошибок. Введите в редактор следующий код:

Сохраните все, откройте окно отладки и нажмите клавишу F5 – выполнение не завершилось.

Окно отладки будет выглядеть следующим образом:

программа для поиска ошибок в коде питона

Обратите внимание, что панель в верхней части окна содержит сообщение:

Расшифруем: код for i in range(1, 4): еще не запущен, а ‘__main__’.module() сообщает, что в данный момент мы находимся в основном разделе программы, а не в определении функции.

Ниже панели стека находится панель Locals, в которой перечислены непонятные вещи: __annotations__, __builtins__, __doc__ и т. д. – это внутренние системные переменные, которые пока можно игнорировать. По мере выполнения программы переменные, объявленные в коде и отображаемые в этом окне, помогут в отслеживании их значений.

В левом верхнем углу окна расположены пять кнопок: Go, Step, Over, Out и Quit – они управляют перемещением отладчика по коду.

В следующих разделах вы узнаете, что делает каждая из этих кнопок.

Кнопка Step

Нажмите Step и окно отладки будет выглядеть следующим образом:

программа для поиска ошибок в коде питона

Обратите внимание на два отличия. Во-первых, сообщение на панели стека изменилось:

На этом этапе выполняется line 1 и отладчик останавливается перед выполнением line 2.

Здесь важно, что можно отслеживать растущие значения i и j по мере прохождения цикла for. Это полезная фича поиска источника ошибок в коде. Знание значения каждой переменной в каждой строке кода может помочь точно определить проблемную зону.

Точки останова и кнопка Go

Часто вам известно, что ошибка должна всплыть в определенном куске кода, но неизвестно, где именно. Чтобы не нажимать кнопку Step весь день, установите точку останова, которая скажет отладчику запускать весь код, пока он ее не достигнет.

Точки останова сообщают отладчику, когда следует приостановить выполнение кода, чтобы вы могли взглянуть на текущее состояние программы.

Чтобы установить точку останова, щелкните правой кнопкой мыши (Ctrl для Mac) по строке кода, на которой хотите сделать паузу, и выберите пункт Set Breakpoint – IDLE выделит линию желтым. Чтобы удалить ее, выберите Clear Breakpoint.

Установите точку останова в строке с оператором print(). Окно редактора должно выглядеть так:

программа для поиска ошибок в коде питона

Сохраните и запустите. Как и раньше, панель стека указывает, что отладчик запущен и ожидает выполнения line 1. Нажмите кнопку Go и посмотрите, что произойдет:

программа для поиска ошибок в коде питона

Теперь на панели стека информация о выполнении line 3:

На панели Locals мы видим, что переменные i и j имеют значения 1 и 2 соответственно. Нажмем кнопку Go и попросим отладчик запускать код до точки останова или до конца программы. Снова нажмите Go – окно отладки теперь выглядит так:

программа для поиска ошибок в коде питона

На панели стека отображается то же сообщение, что и раньше – отладчик ожидает выполнения line 3. Однако значения переменных i и j теперь равны 2 и 4. Интерактивное окно также отображает выходные данные после первого запуска строки с помощью функции print() через цикл.

Нажмите кнопку в третий раз. Теперь i и j равны 3 и 6. Если нажать Go еще раз, программа завершит работу.

Over и Out

Кнопка Over работает, как сочетание Step и Go – она перешагивает через функцию или цикл. Другими словами, если вы собираетесь попасть в функцию с помощью отладчика, можно и не запускать код этой функции – кнопка Over приведет непосредственно к результату ее выполнения.

Аналогично если вы уже находитесь внутри функции или цикла – кнопка Out выполняет оставшийся код внутри тела функции или цикла, а затем останавливается.

В следующем разделе мы изучим некоторые ошибки и узнаем, как их исправить с помощью IDLE.

Борьба с багами

Взглянем на « глючную » программу.

Вот неработающий код:

Введите этот код в редактор, сохраните и нажмите F5. Ожидаемый результат – _h_e_l_l_o_, но вместо этого выведется o_.

Если вы нашли, в чем проблема, не исправляйте ее. Наша цель – научиться использовать для этого IDLE.

Рассмотрим 4 этапа поиска бага:

Шаг 1: Предположение

Сначала вы не сможете точно определить местонахождение ошибки, но обычно проще логически представить, в какой раздел кода смотреть.

Обратите внимание, что программа разделена на два раздела: определение функции add_underscores() и основной блок, определяющий переменную со значением «hello» и выводящий результат.

Посмотрим на основной раздел:

Очевидно, что здесь все хорошо и проблема должна быть в определении функции:

Первая строка создает переменную new_word со значением «_». Промах, проблема находится где-то в теле цикла for.

Шаг 2: точка останова

Определив, где может быть ошибка, установите точку останова в начале цикла for, чтобы проследить за происходящим внутри кода:

программа для поиска ошибок в коде питона

Запустим. Выполнение останавливается на строке с определением функции.

Нажмите кнопку Go, чтобы выполнить код до точки останова:

программа для поиска ошибок в коде питона

Код останавливается перед циклом for в функции add_underscores(). Обратите внимание, что на панели Locals отображаются две локальные переменные – word со значением «hello», и new_word со значением «_»,

Нажмите кнопку Step, чтобы войти в цикл for. Окно отладки изменится, и новая переменная i со значением 0 отобразится на панели Locals:

программа для поиска ошибок в коде питона

Переменная i – это счетчик для цикла for, который можно использовать, чтобы отслеживать активную на данный момент итерацию.

Нажмите кнопку Step еще раз и посмотрите на панель Locals – переменная new_word приняла значение «h_»:

программа для поиска ошибок в коде питона

Это неправильно т. к. сначала в new_word было значение «_», на второй итерации цикла for в ней должно быть «_h_». Если нажать Step еще несколько раз, то увидим, что в new_word попадает значение e_, затем l_ и так далее.

Шаг 3: Определение ошибки и исправление

Как мы уже выяснили – на каждой итерации цикла new_word перезаписывается следующим символом в строке «hello» и подчеркиванием. Поскольку внутри цикла есть только одна строка кода, проблема должна быть именно там:

Код указывает Python получить следующий символ word, прикрепить подчеркивание и назначить новую строку переменной new_word. Это именно то неверное поведение, которое мы наблюдали.

Чтобы все починить, нужно объединить word[i] + » _» с существующим значением new_word. Нажмите кнопку Quit в окне отладки, но не закрывайте его. Откройте окно редактора и измените строку внутри цикла for на следующую:

Примечание: Если бы вы закрыли отладчик, не нажав кнопку Quit, при повторном открытии окна отладки могла появиться ошибка:

You can only toggle the debugger when idle

Всегда нажимайте кнопку Go или Quit, когда заканчиваете отладку, иначе могут возникнуть проблемы с ее повторным запуском.

Шаг 4: повторение шагов 1-3, пока ошибка не исчезнет

Сохраните изменения в программе и запустите ее снова. В окне отладки нажмите кнопку Go, чтобы выполнить код до точки останова. Понажимайте Step несколько раз и смотрите, что происходит с переменной new_word на каждой итерации – все работает, как положено. Иногда необходимо повторять этот процесс несколько раз, прежде чем исправится ошибка.

Альтернативные способы поиска ошибок

Использование отладчика может быть сложным и трудоемким, но это самый надежный способ найти ошибки в коде. Однако отладчики не всегда есть в наличии. В подобных ситуациях можно использовать print debugging для поиска ошибок в коде. PD задействует функцию print() для отображения в консоли текста, указывающего место выполнения программы и состояние переменных.

Например, вместо отладки предыдущего примера можно добавить следующую строку в конец цикла for:

Измененный код будет выглядеть следующим образом:

Вывод должен выглядеть так:

PD работает, но имеет несколько недостатков по сравнению с отладкой дебаггером. Вы должны запускать всю программу каждый раз, когда хотите проверить значения переменных, а также помнить про удаление вызовов функций print().

Один из способов улучшить наш цикл – перебирать символы в word:

Заключение

Теперь вы знаете все об отладке с помощью DLE. Вы можете использовать этот принцип с различными дебагерами.

В статье мы разобрали следующие темы:

Не останавливайтесь в обучении и практикуйте дебаггинг – это весело!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *