Про комплексное число z известно что z
Про комплексное число z известно что z
Изобразите на чертеже множество точек комплексной плоскости, для которых выполняется условие Среди чисел, удовлетворяющих этому равенству, найдите число с наименьшим модулем. Запишите найденное число в тригонометрической форме.
Загрузка решений доступна для зарегистрировавшихся пользователей
Среди комплексных чисел z, удовлетворяющих условию найдите число с наименьшим модулем.
Загрузка решений доступна для зарегистрировавшихся пользователей
Среди чисел z, таких, что найдите числа с наименьшим и наибольшим модулем.
Загрузка решений доступна для зарегистрировавшихся пользователей
Найдите наибольший модуль комплексного числа z, удовлетворяющего условию
Загрузка решений доступна для зарегистрировавшихся пользователей
О комплексном числе z известно, что а Найдите все возможные значения, которые может принимать выражение
Загрузка решений доступна для зарегистрировавшихся пользователей
Известно, что комплексные числа z и имеют одинаковый модуль. В каких пределах может изменяться значение этого модуля?
Загрузка решений доступна для зарегистрировавшихся пользователей
Пусть M — множество точек комплексной плоскости таких, что K — множество точек комплексной плоскости вида где Найдите расстояние между фигурами M и K.
Загрузка решений доступна для зарегистрировавшихся пользователей
Множество точек комплексной плоскости определяется условием В каких пределах изменяется
Загрузка решений доступна для зарегистрировавшихся пользователей
Множество K состоит из всех комплексных чисел z, таких, что Найдите все такие числа что для любых и из K
Загрузка решений доступна для зарегистрировавшихся пользователей
Найдите такое мнимое число z, что сумма минимальна.
Загрузка решений доступна для зарегистрировавшихся пользователей
Из всех чисел z, удовлетворяющих условию найдите такие, что принимает наименьшее значение.
Загрузка решений доступна для зарегистрировавшихся пользователей
Отметьте на комплексной плоскости все точки z, если известно, что треугольник с вершинами в точках, соответствующих числам и является равнобедренным.
Загрузка решений доступна для зарегистрировавшихся пользователей
Комплексные числа
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Вычислить сумму и разность заданных комплексных чисел:
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Аналогично выполним вычитание чисел:
Выполнить умножение и деление комплексных чисел:
Так, теперь разделим первое число на второе:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
Для возведения в квадрат достаточно умножить число само на себя:
Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Вычисляем значение модуля:
Найдем чем равен аргумент:
$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$
Записываем в тригонометрическом виде:
Преобразуем в алгебраическую форму для наглядности:
Представим число в тригонометрической форме. Найдем модуль и аргумент:
Используем знакомую формулу Муавра для вычисления корней любой степени:
Комплексные числа на ЕГЭ по математике
Что такое комплексные числа
Все знают, что ЕГЭ по математике Профильного уровня в ближайшие годы будет меняться. Например, предлагается добавить в школьную программу по математике тему «Комплексные числа». Но что же это такое?
Начнем с хорошо известных вам фактов.
Вспомним, что возвести число в квадрат — значит умножить его само на себя.
Если положительное число возвести в квадрат — результат будет положительный.
Число 2 называют арифметическим квадратным корнем из 4, то есть
А можно ли какое-нибудь число возвести в квадрат, чтобы результат получился отрицательный? И если нет, то почему?
Ведь отрицательные числа ничем не хуже положительных. Баланс мобильного телефона может быть положительным или отрицательным. Температура может быть равна +5 градусов Цельсия, а может быть и минус 5 градусов. На числовой оси положительные и отрицательные числа расположены симметрично. Почему же из положительных чисел квадратный корень извлекать можно, из нуля тоже можно (он равен нулю), а из отрицательных нельзя?
И называется это число мнимой единицей, а обозначается буквой
Вот какая необычная формула получилась:
Получается, что уравнение имеет 2 решения: i и минус i.
Теперь нам не страшны квадратные уравнения, в которых дискриминант отрицателен.
Числа вида называются комплексными. При этом х называется действительной частью комплексного числа z, а у — его мнимой частью.
Записывается это так:
Сокращения понятны тем, кто изучает английский: Re — Real, Im — Imaginary.
Помните, мы говорили о том, какие бывают числа?
Натуральные числа применяются для счета предметов. Множество натуральных чисел обозначается N.
Рациональные числа — те, которые можно записать в виде обыкновенной дроби вида р/q, где р — целое, q — натуральное. Например, — числа рациональные. Мы проходили их в начальной и средней школе. Если рациональное число записать в виде десятичной дроби, она будет периодической, например, Множество рациональных чисел обозначается Q и содержит в себе множество целых чисел.
В старших классах мы узнали об иррациональных числах — таких, как или Их невозможно записать в виде обыкновенной дроби, а если выразить в виде десятичной — она будет бесконечной непериодической. И казалось, что мы знаем о числах всё. Все числа, какие только нам встречались, входили в множество действительных чисел R.
Когда мы пишем: — это значит, что число х действительное. Мы помним, что действительные числа можно изображать точками на числовой прямой, которую еще называют действительной осью.
А теперь оказывается, что R — это подмножество множества комплексных чисел С.
Действительные числа еще называют «вещественными». Они описывают наш вещественный мир. В самом деле, натуральные числа применяем для счета предметов. С дробями тоже понятно: половинка яблока или пиццы. С отрицательными числами все знакомы: достаточно зимой посмотреть на градусник за окном. И даже иррациональные числа можно «увидеть»: например, длина окружности радиуса 1 или диагональ квадрата со стороной 1 являются иррациональными числами.
Но где же в мире — мнимые и комплексные числа? Неужели они нужны для описания того, что мы не можем потрогать или посчитать по пальцам?
Комплексная плоскость
Где же находятся мнимые числа, если на числовой прямой для них места нет?
Очень просто. Мнимые числа — на мнимой оси. А комплексные числа вида — на комплексной плоскости.
Каждому комплексному число соответствует точка на комплексной плоскости.
Расстояние от нуля до этой точки называется модулем комплексного числа:
Угол между направлением на эту точку и положительным направлением действительной оси называется аргументом комплексного числа:
Аргумент комплексного числа определен с точностью до
Аналогично в тригонометрии: каждая точка на единичной окружности соответствует бесконечному множеству углов, отличающихся на где k — целое.
— главное значение аргумента
Иногда главное значение аргумента комплексного числа определяют на отрезке
Комплексное число можно записать как в алгебраической форме так и в тригонометрической.
Это тригонометрическая форма записи комплексного числа.
При переходе от алгебраической формы записи к тригонометрической считаем, что принимает значения
Обратите внимание, что в записи число х — действительное.
Задача 1. Запишите число
в тригонометрической форме.
Как видим, для освоения темы «Комплексные числа» надо отлично знать тригонометрию.
Действия над комплексными числами
Два комплексных числа равны друг другу, если равны соответственно их действительные и мнимые части.
Сравнивать комплексные числа нельзя. Операции «больше» и «меньше» для комплексных чисел не определены.
Два комплексных числа, отличающиеся только знаком мнимой части, называются комплексно-сопряженными. Вот такие:
Возьмем два комплексных числа:
Определим для них операции сложения и вычитания.
Сложение:
Так же, как и для действительных чисел, то есть от перемены мест слагаемых сумма не меняется (коммутативность сложения). Также выполняется ассоциативность сложения, то есть
Еще одно важное свойство:
Это знакомое нам неравенство треугольника.
Вычитание:
— расстояние между точками и
Задача 2. Определите, какая фигура на комплексной плоскости является решением уравнения
Прочитаем это уравнение так же, как мы делали с обычными уравнениями с модулем. Расстояние от точки z до точки 2i равно 1. Это значит, что точки, соответствующие решениям данного уравнения, лежат на окружности с центром в точке радиусом 1.
Если сложение и вычитание комплексных чисел вопросов не вызывают, то для умножения правила не такие очевидные. Вот какой будет формула произведения комплексных чисел:
Например, подставив в эту формулу получим уже знакомое равенство:
Умножение комплексных чисел обладает теми же свойствами, что и умножение действительных:
Но если умножение комплексных чисел настолько сложно — что же делать с возведением в степень? Оказывается, что и умножение, и возведение комплексных чисел в степень удобнее выполнять, записывая числа в тригонометрической форме.
Возведение в степень:
Последнее равенство называется формула Муавра.
Деление комплексных чисел определяем как действие, обратное умножению.
Сложные формулы, не правда ли? Попробуем применить.
Намного удобнее выполнять деление комплексных чисел, записав их в тригонометрической форме:
Во-вторых, для любого выражение принимает ровно различных значений.
Тогда Записав число z в тригонометрической форме, получим:
Обратите внимание — для корня n-ной степени получим различных значений корня.
Задача ЕГЭ-2022, Комплексные числа
Решим задачу из варианта ЕГЭ — 2022 по теме «Комплексные числа».
Про комплексное число известно, что
Найдите наименьшее значение
1 способ.
Расстояния от точки, соответствующей числу z, до точек и должны быть равны. Отметим точки и на комплексной плоскости. Равноудаленными от точек и будут все точки, лежащие на серединном перпендикуляре к отрезку, соединяющему и По условию задачи, из этих точек надо выбрать такую, для которой принимает наименьшее значение, то есть наименее удаленную от начала координат. Другими словами — найдем расстояние от начала координат до данной прямой.
Это показано на рисунке. Точка Н соответствует комплексному числу z, лежащему на прямой, все точки которой равноудалены от и при этом расстояние от 0 до z — наименьшее. Найдем это расстояние (равное ОН) из прямоугольного треугольника АОВ. Его катеты равны 3 и 4, гипотенуза равна 5. Записав площадь треугольника АОВ двумя способами, получим:
2 способ.
Вернемся к выражению
Запишем его в виде:
Мы получили, что модули двух комплексных чисел равны. Модуль комплексного числа равен Возведя это выражение в квадрат, получим, что Значит, если равны модули двух комплексных чисел и то
и найдем наименьшее значение выражения
Еще несколько задач по теме «Комплексные числа»:
Представьте в тригонометрической форме числа:
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Калькулятор для решения комплексных чисел.
Сумма, разность, произведение и частное комплексных чисел.
Вычислить n-ую степень и корень n-ой степени.
С помощью данного калькулятора вы можете сложить, вычесть, умножить, и разделить комплексные числа.
Программа решения комплексных чисел не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс нахождения решения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Числа в действительную или мнимую части можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так + i
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
Немного теории.
Понятие комплексного числа
Определение.
Комплексными числами называют выражения вида \(а + bi\) где \(a\) и \(a\) — действительные числа, а \(i\) — некоторый символ, для которого по определению выполняется равенство \( i^2=-1 \).
Название «комплексные» происходит от слова «составные» — по виду выражения \(а + bi\). Число \(а\) называется действительной частью комплексного числа \(а + bi\), а число \(b\) — его мнимой частью. Число \(i\) называется мнимой единицей.
Например, действительная часть комплексного числа \(2-3i\) равна \(2\), мнимая часть равна \(-3\).
Запись комплексного числа в виде \(а + bi\) называют алгебраической формой комплексного числа.
Равенство комплексных чисел
Определение.
Два комплексных числа \(a + bi\) и \(c + di\) называются равными тогда и только тогда, когда \(a =c\) и \(b =d\), т. е. когда равны их действительные и мнимые части.
Сложение и умножение комплексных чисел
Операции сложения и умножения двух комплексных чисел определяются следующим образом.
Определения.
Суммой двух комплексных чисел \(a+ bi\) и \(c + di\) называется комплексное число \( (a+c) + (b+d)i \), т.е. \( (a + bi) + (c + di) = (a + c) + (b + d)i \).
Из двух предыдущих формул следует, что сложение и умножение комплексных чисел можно выполнять по правилам действий с многочленами. Поэтому нет необходимости запоминать эти формулы, их можно получить по обычным правилам алгебры, считая, что \( i^2=-1 \).
Основные свойства сложения и умножения комплексных чисел
1. Переместительное свойство
\( z_1 + z_2 = z_2 + z_1 \),
\( z_1z_2 = z_2z_1 \)
2. Сочетательное свойство
\( (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3) \),
\( (z_1z_2)z_3 = z_1(z_2z_3) \)
3. Распределительное свойство
\( z_1(z_2 + z_3) = z_1z_2 + z_1z_3 \)
Комплексно сопряженные числа
Отметим, что \( \overline
\( \overline<(\overline
Равенство \( \overline
Модуль комплексного числа
Определение.
Модулем комплексного числа \(z = a + bi\) называется число \( \sqrt \), т.е.
\( |z|=|a+bi| = \sqrt \)
Из данной формулы следует, что \( |z| \geqslant 0 \) для любого комплексного числа \(z\), причем \(|z|=0\) тогда и только тогда, когда \(z=0\), т.е. когда \(a=0\) и \(b=0\).
Вычитание комплексных чисел
Вычитание комплексных чисел вводится как операция, обратная сложению: для любых комплексных чисел \(z_1\) и \(z_2\) существует, и притом только одно, число \(z\), такое, что
\( z + z_2 = z_1 \),
т.е. это уравнение имеет только один корень.
Деление комплексных чисел
Деление комплексных чисел вводится как операция, обратная умножению: для любых комплексных чисел \( z_1 \) и \( z_2 \neq 0 \) существует, и притом только одно, число \( z \), такое, что \( z \cdot z_2=z_1 \) т.е. это уравнение относительно z имеет только один корень, который называется частным чисел \( z_1 \) и \( z_2 \) и обозначается \( z_1:z_2 \), или \( \frac
Комплексное число нельзя делить на ноль.
Частное комплексных чисел \( z_1 \) и \( z_2 \neq 0 \) можно найти по формуле
$$ \frac
Геометрическая интерпретация комплексного числа.
Комплексная плоскость
Действительные числа геометрически изображаются точками числовой прямой. Комплексное число \(a + bi\) можно рассматривать как пару действительных чисел \((a; b)\). Поэтому естественно комплексные числа изображать точками плоскости.
Пусть на плоскости задана прямоугольная система координат. Комплексное число \(z = a + bi\) изображается точкой плоскости с координатами \((a; b)\), и эта точка обозначается той же буквой \(z\).
Отметим, что точки \(z\) и \(-z\) симметричны относительно точки \(O\) (начала координат), а точки \( z \) и \( \overline
Комплексное число \(z = a+bi\) можно изображать вектором с началом в точке \(O\) и концом в точке \(z\). Этот вектор будем обозначать той же буквой \(z\), длина этого вектора равна \(|z|\).
Геометрический смысл модуля комплексного числа
Выясним геометрический смысл модуля комплексного числа \(|z|\). Пусть \(z = a+bi\). Тогда по определению модуля \( |z|= \sqrt \). Это означает, что \(|z|\) — расстояние от точки \(O\) до точки \(z\).
Например, равенство \(|z| = 4\) означает, что расстояние от точки \(O\) до точки \(z\) равно \(4\). Поэтому множество всех точек \(z\), удовлетворяющих равенству \(|z| = 4\), является окружностью с центром в точке \(O\) радиуса \(4\). Уравнение \(|z| = R\) является уравнением окружности с центром в точке \(O\) радиуса \(R\), где \(R\) — заданное положительное число.
Геометрический смысл модуля разности комплексных чисел
Выясним геометрический смысл модуля разности двух комплексных чисел, т.е. \( |z_1-z_2| \).
Пусть \( z_1 = a_1+b_1i, \; z_2 = a_2+b_2i \)
Тогда \( |z_1-z_2| = |(a_1-a_2) + (b_1-b_2)i| = \sqrt <(a_1+a_2)^2 + (b_1+b_2)^2>\)
Из курса геометрии известно, что это число равно расстоянию между точками с координатами \( (a_1;b_1) \) и \( (a_2;b_2) \).
Итак, \( |z_1-z_2| \) — расстояние между точками \( z_1 \) и \( z_2 \).
Тригонометрическая форма комплексного числа. Аргумент комплексного числа
Определение
Аргумент комплексного числа \( z \neq 0 \) — это угол \( \varphi \) между положительным направлением действительной оси и вектором \(Oz\). Этот угол считается положительным, если отсчет ведется против часовой стрелки, и отрицательным при отсчете по часовой стрелке.
Связь между действительной и мнимой частями комплексного числа \(z = a + bi\), его модулем \(r=|z|\) и аргументом \( \varphi \) выражается следующими формулами:
\( \left\< \begin
Аргумент комплексного числа \(z = a+bi\) ( \( z \neq 0 \) ) можно найти, решив систему (2). Эта система имеет бесконечно много решений вида \( \varphi =\varphi_0+2k\pi \), где \( k\in\mathbb
Для нахождения аргумента комплексного числа \(z = a+bi\) ( \( z\neq 0 \) ) можно воспользоваться формулой
\( tg \varphi = \large \frac \normalsize \qquad (3) \)
При решении уравнения (3) нужно учитывать, в какой четверти находится точка \(z = a+bi\).
Запись комплексного числа в тригонометрической форме
Умножение и деление комплексных чисел, записанных в тригонометрической форме
С помощью тригонометрической формы записи комплексных чисел удобно находить произведение и частное комплексных чисел \(z_1\) и \(z_2\). Если два комплексных числа записаны в тригонометрической форме :
\( z_1 = r_1(\cos\varphi_1 +i\sin\varphi_1), \quad z_2 = r_2(\cos\varphi_2 +i\sin\varphi_2) \) то произведение этих комплексных чисел можно найти по формуле:
\( z_1z_2 = r_1r_2(\cos(\varphi_1+\varphi_2) +i\sin(\varphi_1+\varphi_2)) \)
Из этой формулы следует, что при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
Из этой формулы следует, что модуль частного двух комплексных чисел равен частному модулей делимого и делителя, а разность аргументов делимого и делителя является аргументом частного.