Принцип действия пузырьковой камеры основан на чем
Принцип действия пузырьковой камеры основан на чем
© Куцева Н. В. │ Сайт «Элементарные частицы» разработан в рамках ВКР магистра
по направлению подготовки 44.04.01 «Педагогическое образование» профиля «Физическое образование».
ВГПУ – 2018 г.
В камере Вильсона нельзя было наблюдать ядерные реакции с участием релятивистских тяжёлых частиц (например, протонов), так как они практически не тормозятся в газах. Для решения данной проблемы 1952 году американским учёным Д. А. Глейзером было предложено использовать перегретую жидкость. А камера, которую он придумал, получила название пузырьковая.
Для того, чтобы определить тип частицы, её энергию и импульс, пузырьковую камеру так же как и камеру Вильсона помещают во внешнее магнитное поле.
Старая пузырьковая камера Лаборатории им. Э. Ферми
Схема пузырьковой камеры:
Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. В ней застревают частицы даже больших энергий, поэтому пробеги частиц в основном короткие. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции. Главное её преимущество состоит в том, что она позволяет получить точные измерения импульсов быстрых ионизирующих частиц.
Из недостатков одним из самых значимых является её слабая управляемость, которая нужна для отбора нужных актов распада частиц либо их взаимодействия. Устройство невозможно моментально запустить по сигналам внешних детекторов из-за инерционности рабочей жидкости и других физических параметров. Поэтому пузырьковые камеры, будучи синхронизованы с работой ускорителя, регистрируют все события, инициируемые в камере пучком частиц. И, к сожалению, з начительная часть этих событий не представляет интереса. Обработка снимков проходит в два этапа: сначала отбираются снимки с интересующими событиями, а затем проводятся измерения координат точек на следах отобранных событий с помощью микроскопов, полуавтоматических или автоматических измерительных устройств. По специальным программам на компьютерах вычисляются геометрические характеристики треков: углы вылета частиц, длины пробегов, импульсы, ошибки этих величин и т. д.
Фотографии треков заряженных частиц в пузырьковой камере
Для просмотра фотографий кликните по их миниатюрным изображениям
За свое изобретение в 1960 году Д. А. Глейзер получил Нобелевскую премию по физике.
Пузырьковая камера
Пузырько́вая ка́мера — прибор для регистрации следов (или треков) быстрых заряженных ионизирующих частиц, действие которого основано на вскипании перегретой жидкости вдоль траектории частицы.
Содержание
История
Пузырьковая камера была изобретена Дональдом Глейзером (США) в 1952 году. За своё открытие Глейзер получил Нобелевскую премию в 1960 году. Луис Уолтер Альварес усовершенствовал пузырьковую камеру Глейзера, использовав в качестве перегретой жидкости водород. А также для анализа сотен тысяч фотографий, получаемых при исследованиях с помощью пузырьковой камеры, Альварес впервые применил компьютерную программу, позволявшую анализировать данные с очень большой скоростью.
Пузырьковая камера позволила зафиксировать поведение многих ионизирующих частиц, не поддававшихся ранее наблюдению, и получить о них в тысячи раз большую информацию. До этого около 40 лет была известна камера Вильсона.
Принцип работы
Камера заполнена жидкостью, которая находится в состоянии близком к вскипанию. При резком уменьшении давления жидкость становится перегретой. Если в данном состоянии в камеру попадёт ионизирующая частица, то её траектория будет отмечена цепочкой пузырьков пара и может быть сфотографирована.
Рабочая жидкость
В качестве рабочей жидкости наиболее часто применяют жидкие водород и дейтерий (криогенные пузырьковые камеры), а также пропан, различные фреоны, ксенон, смесь ксенона с пропаном (тяжеложидкостные пузырьковые камеры).
Создание перегретой жидкости
Перегрев жидкости достигается за счет быстрого понижения давления до значения, при котором температура кипения жидкости оказывается ниже её текущей температуры.
Понижение давления осуществляется за время
5—15 мс перемещением поршня (в жидководородных камерах) либо сбросом внешнего давления из объёма, ограниченного гибкой мембраной (в тяжеложидкостных камерах).
Процесс измерения
Частицы впускаются в камеру в момент её максимальной чувствительности. Спустя некоторое время, необходимое для достижения пузырьками достаточно больших размеров, камера освещается и следы фотографируются (стереофотосъёмка с помощью 2—4 объективов). После фотографирования давление поднимается до прежней величины, пузырьки исчезают, и камера снова оказывается готовой к действию. Весь цикл работы составляет величину менее 1 с, время чувствительности
Пузырьковые камеры (кроме ксеноновых) размещаются в сильных магнитных полях. Это позволяет определить импульсы заряженных частиц по измерению радиусов кривизны их траекторий.
Применение
Пузырьковые камеры, как правило, используются для регистрации актов взаимодействия частиц высоких энергий с ядрами рабочей жидкости или актов распада частиц. В первом случае рабочая жидкость исполняет роли и регистрирующей среды, и среды-мишени.
Характеристики, достоинства и недостатки
Эффективность регистрации пузырьковой камеры различных процессов взаимодействия или распада определяется в основном её размерами. Наиболее типичный объём — сотни литров, но существуют камеры гораздо большего размера, например, водородная камера «Мирабель» на ускорителе Института физики высоких энергий РАН имеет объём 10 м³; водородная камера на ускорителе Национальной ускорительной лаборатории США — объём 25 м³.
Основное преимущество пузырьковой камеры — изотропная пространственная чувствительность к регистрации частиц и высокая точность измерения их импульсов.
Недостаток пузырьковой камеры — слабая управляемость, необходимая для отбора нужных актов взаимодействия частиц или их распада.
См. также
Литература
Ссылки
Полезное
Смотреть что такое «Пузырьковая камера» в других словарях:
ПУЗЫРЬКОВАЯ КАМЕРА — прибор для регистрации следов (треков) заряж. ч ц высоких энергий, действие к рого основано на вскипании перегретой жидкости вблизи траектории ч цы. Изобретена Д. Глейзером (США) в 1952 (Нобелевская премия, 1954). Жидкость можно нагреть выше… … Физическая энциклопедия
ПУЗЫРЬКОВАЯ КАМЕРА — ПУЗЫРЬКОВАЯ КАМЕРА, устройство для обнаружения и распознавания ЭЛЕМЕНТАРНЫХ ЧАСТИЦ. Оно состоит из герметичной камеры, заполненной сжиженным газом, обычно водородом, температура которого поддерживается на уровне несколько ниже точки кипения за… … Научно-технический энциклопедический словарь
ПУЗЫРЬКОВАЯ КАМЕРА — ПУЗЫРЬКОВАЯ КАМЕРА, детектор частиц, действие которого основано на вскипании перегретой жидкости вблизи траектории (трека) частицы. Служит для регистрации актов взаимодействия элементарных частиц высоких энергий с ядрами жидкости или распада… … Современная энциклопедия
ПУЗЫРЬКОВАЯ КАМЕРА — трековый детектор ядерных излучений, действие которого основано на вскипании перегретой жидкости (образовании мелких пузырьков пара) вблизи ионов, возникающих вдоль следа (трека) заряженной частицы. Распространены криогенные пузырьковые камеры,… … Большой Энциклопедический словарь
пузырьковая камера — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN bubble chamber … Справочник технического переводчика
Пузырьковая камера — ПУЗЫРЬКОВАЯ КАМЕРА, детектор частиц, действие которого основано на вскипании перегретой жидкости вблизи траектории (трека) частицы. Служит для регистрации актов взаимодействия элементарных частиц высоких энергий с ядрами жидкости или распада… … Иллюстрированный энциклопедический словарь
Пузырьковая камера — прибор для регистрации следов (треков) быстрых заряженных частиц, действие которого основано на вскипании перегретой жидкости вдоль траектории частицы. Изобретена Д. Глейзером (США) в 1952. Перегретая жидкость может существовать некоторое … Большая советская энциклопедия
пузырьковая камера — трековый детектор ядерных излучений, действие которого основано на вскипании перегретой жидкости (образовании мелких пузырьков пара) вблизи ионов, возникающих вдоль следа (трека) заряженной частицы. Распространены криогенные пузырьковые камеры,… … Энциклопедический словарь
пузырьковая камера — burbulinė kamera statusas T sritis fizika atitikmenys: angl. bubble chamber vok. Blasenkammer, f rus. пузырьковая камера, f pranc. chambre à bulle, f … Fizikos terminų žodynas
ПУЗЫРЬКОВАЯ КАМЕРА — трековый детектор ядерных излучений, действие к рого основано на вскипании перегретой жидкости (образовании мелких пузырьков пара) вблизи ионов, возникающих вдоль следа (трека) заряженной частицы. Распространены криогенные П. к., заполненные… … Естествознание. Энциклопедический словарь
Принцип действия пузырьковой камеры?
Пузырько́вая ка́мера — прибор для регистрации следов (или треков) быстрых заряженных частиц, действие которого основано на вскипании перегретой жидкости вдоль траектории частицы.
Пузырьковая камера была изобретена Доналдом Глазером (США) в 1952 году. За своё открытие Глазер получил Нобелевскую премию в 1960 году. Луис Уолтер Альварес усовершенствовал пузырьковую камеру Глазера, использовав в качестве перегретой жидкости водород. А также для анализа сотен тысяч фотографий, получаемых при исследованиях с помощью пузырьковой камеры, Альварес впервые применил компьютерную программу, позволявшую анализировать данные с очень большой скоростью.
Пузырьковая камера позволила зафиксировать поведение многих ионизирующих частиц, не поддававшихся ранее наблюдению, и получить о них в тысячи раз большую информацию.
Понижение давления осуществляется за время
Пузырьковые камеры (кроме ксеноновых) размещаются в сильных магнитных полях. Это позволяет определить импульсы заряженных частиц по измерению радиусов кривизны их траекторий.
Применение
Пузырьковые камеры, как правило, используются для регистрации актов взаимодействия частиц высоких энергий с ядрами рабочей жидкости или актов распада частиц. В первом случае рабочая жидкость исполняет роли и регистрирующей среды, и среды-мишени.
Характеристики, достоинства и недостатки
Эффективность регистрации пузырьковой камеры различных процессов взаимодействия или распада определяется в основном её размерами. Наиболее типичный объём — сотни литров, но существуют камеры гораздо большего размера, например водородная камера «Мирабель» на ускорителе Института физики высоких энергий РАН имеет объём 10 м³; водородная камера на ускорителе Национальной ускорительной лаборатории США — объём 25 м³.
Основное преимущество пузырьковой камеры — изотропная пространственная чувствительность к регистрации частиц и высокая точность измерения их импульсов.
Недостаток пузырьковой камеры — слабая управляемость, необходимая для отбора нужных актов взаимодействия частиц или их распада.
Фотография на память: Пузырьковая камера
Прослужив науке почти 30 лет, камеры уступили место электронным детекторам, которые могут регистрировать гораздо больше событий с гораздо большей энергией и с большей точностью. Но все столкновения и превращения частиц, детектируемые современными электронными методами, надежно спрятаны в толще сотен полупроводниковых элементов, калориметров, счетчиков и предстают перед нами уже в виртуальном виде, пересчитанные, отобранные по заранее смоделированным схемам. Так в нашей обычной жизни компьютерная анимация приходит на смену фильмам с настоящими артистами. И хотя экспериментальные методы достигли сегодня фантастических высот, студентам и школьникам преподаватели рассказывают про удивительный мир частиц по фотографиям, полученным десятки лет назад с помощью устройств, о которых мы как раз и собираемся рассказать.
От капелек к пузырькам
Основными средствами детектирования заряженных частиц к середине XX века были ядерные эмульсии и камеры Вильсона. В ядерных эмульсиях при пролете частицы происходила химическая реакция, а в камере Вильсона, работавшей при давлении в 300 атмосфер, перенасыщенный пар конденсировался в жидкость.
К тому времени было уже открыто множество частиц: электроны, позитроны, протоны, нейтроны, мюоны в космических лучах, пи-мезоны. Но попадались и такие загадочные экземпляры, которые никак не удавалось исследовать с помощью имеющихся детекторов. Чтобы с ними разобраться, экспериментаторам нужны были новые методы регистрации частиц.
В 1950 году поисками новых способов детектирования занялся в Мичиганском университете Дональд Глейзер. Требования к детектору были следующие. Он должен был срабатывать и возвращаться в исходное состояние за несколько секунд, поскольку в то время уже готовился к запуску новый ускоритель, способный выдавать пучки протонов с такими короткими интервалами. Более того, в течение этих секунд изменения, вызванные пролетающими частицами, должны были становиться настолько заметными, чтобы их можно было запечатлеть на фотографии, и все это при разумных температурах и давлениях. Глейзер перебрал множество вариантов, связанных с химическими и электрическими превращениями, жидкими и твердыми телами, и остановил свой выбор на перегретой жидкости.
Перегретая жидкость
Сделаем небольшое отступление и вкратце расскажем о физическом явлении перегрева, на котором основан принцип действия пузырьковой камеры и предшествовавшей ей камеры Вильсона. Известно, что вода, например, кипит в обычных условиях при температуре 1000С. Но те, кто когда-нибудь поднимался высоко в горы, где давление меньше, чем на уровне моря, подтвердят, что там для закипания воды вполне достаточно и 900С. А вот при повышении давления температура кипения, наоборот, увеличивается. Но самое интересное — то, что если жидкость, нагретую при высоком давлении, вдруг вернуть в обычные условия (снизить давление при помощи поршня), она закипит не сразу, а будет некоторое время пребывать в неустойчивом состоянии, пока ее не потревожат. Такая жидкость и называется перегретой. Нарушить ее неустойчивое равновесие может заряженная частица. При движении частицы, в жидкости образуются ионы, вокруг которых появляются пузырьки, и начинается кипение.
Начало пузырьковой эпохи
Но вернемся снова к Глейзеру. Для первых своих экспериментов он выбрал диэтиловый эфир, который был сравнительно дешев и легко выделялся в чистом виде, а при работе с ним не требовалось никаких сверхъестественных температур и давлений. Проведя собственные расчеты, Глейзер, тем не менее, решил поискать данные в научной литературе и в одном из ведущих журналов физической химии за 1924 год нашел-таки интересную статью об экспериментах с диэтиловым эфиром. Главный изложенный там экспериментальный факт был следующим: перегретый до температуры 1400С диэтиловый эфир при обычном давлении в одну атмосферу самопроизвольно закипал через случайные промежутки времени. И тут следует отдать должное настойчивости и интуиции Глейзера. Он проанализировал приведенную табличку с этими случайными интервалами и выяснил, что в среднем время, через которое происходит закипание, составляет 60 с. Дальше он взял известные данные о космическом и радиоактивном фоне, учел описанную авторами конструкцию емкости с эфиром и вычислил, что через нее в среднем каждые 60 с должна пролетать одна частица!
Похоже, он был на правильном пути. Первое устройство, сделанное Глейзером, состояло из двух соединенных между собой трубочек, наполненных жидким и газообразным диэтиловым эфиром. Они имели длину 10 см и внутренний диаметр 3 мм. Сначала обе трубочки нагревались до 1600С и 1400С, а затем более нагретая охлаждалась до комнатной температуры. Во второй трубке при этом образовывалось перегретое состояние, и как только к ней подносили источник радиоактивного излучения (Глейзер использовал радиоактивный кобальт), диэтиловый эфир закипал. Итак, сама возможность детектирования с помощью перегретой жидкости была доказана, но оставался другой, не менее важный вопрос — можно ли таким способом получать точные следы частиц?
Чтобы это показать, Глейзер приготовил несколько маленьких камер из тугоплавкого борного стекла (пирекса), наполненных несколькими кубическими сантиметрами диэтилового эфира. Высокая температура поддерживалась с помощью масляной ванны, а для сброса давления вручную использовалась специальная рукоятка. Одновременно с открытием рукоятки включалась кинокамера и со скоростью 3000 кадров в секунду снимала все, что происходило в сосудах. Затем процесс снятия давления и последующего сжатия был автоматизирован и синхронизован с кинокамерой и счетчиком Гейгера, который сообщал о появлении частицы. Фильм получился захватывающий. Пузырьки, образовавшиеся при пролете заряженной частицы, вырастали до 1 мм за 300 мкс. Во многих случаях следы частиц были отчетливо видны, и стало ясно, что прибор вполне пригоден для измерений.
В 1955 году в Брукхейвене в США 15-сантиметровая пузырьковая камера, наполненная пропаном, была впервые использована в эксперименте на ускорителе. А уже на следующий год другую камеру, в два раза большего размера, диаметром 30 см, поместили в магнитное поле и получили 60 тыс. стереоснимков с изображениями следов частиц. На них теперь можно было различить положительные и отрицательные частицы, так как они под действием магнитного поля отклоняются в разные стороны, и по кривизне траектории вычислить их скорость. Так началась эра пузырьковых камер, а в 1960 году Дональд Глейзер получил за свое изобретение Нобелевскую премию по физике.
Чудо инженерной мысли
Устройство, называемое пузырьковой камерой, представляет собой сосуд с окошками, наполненный прозрачной жидкостью под давлением в несколько атмосфер и помещенный в магнитное поле. Если рабочая жидкость кипит при очень низкой температуре, как, например, водород, все это еще помещается в криостат и охлаждается. Перед вбросом частиц из ускорителя происходит расширение рабочего объема с помощью специального поршня, давление понижается и образуется перегретая жидкость. Некоторые частицы пролетают насквозь, некоторые взаимодействуют с веществом камеры, но при этом все, имеющие заряд, оставляют за собой следы в виде пузырьков закипающей жидкости. Все это происходит за сотые доли микросекунды. Через несколько миллисекунд пузырьки вырастают до видимых размеров, для освещения включается импульсная лампа, и несколько фотокамер (обычно их три) одновременно фотографируют рабочий объем камеры. Они жестко закреплены в разных местах одного и того же окна, а значит, позволяют получить стереоизображение. Когда снимки сделаны, давление снова увеличивают, пузырьки исчезают, и камера вновь готова к измерениям. Весь цикл занимает несколько десятков миллисекунд.
Но сами по себе фотографии — еще полдела. Дальше начинается процесс анализа траекторий и идентификации частиц. И если накопление снимков при совместной работе пузырьковой камеры и ускорителя может длиться несколько дней или недель, то обработка полученной информации может занять месяцы, а то и годы. Непосвященному человеку покажется, что на фотографиях с пузырьковой камеры отпечатаны ничего не значащие закорючки и росчерки. Но для физика это кладезь информации. Тугие спирали соответствуют электронам (или позитронам, если закручены в другую сторону). Так называемые «вилки» означают, что в этом месте влетевшая частица столкнулась с ядром вещества, заполняющего камеру, и в результате образовались еще какие-то частицы. А если вилка начинается «ниоткуда» — значит, распалась какая-то нейтральная частица.
Если все траектории (или треки) тщательно измерить на всех трех одновременно сделанных снимках, то можно восстановить пространственную картину события и вычислить характеристики всех участвовавших в нем частиц. Сначала этим вручную занимались сами физики, но потом, когда счет пошел на сотни тысяч кадров, положение спасли появившиеся к тому времени компьютеры и полуавтоматические сканирующие устройства. Без них справиться с такой горой информации было бы просто невозможно. Общее число стереоснимков, полученных в экспериментах на пузырьковых камерах, превышает 100 млн!
Последние из могикан
За 30 лет в мире было построено чуть больше сотни пузырьковых камер, позволивших разглядеть целую плеяду новых частиц, предсказанных теорией, и подтвердить существование «очарованного» кварка. Какие только жидкости (вернее, сжиженные газы) в них не использовались: водород, дейтерий, пропан, ксенон, неон, фреон и даже гелий. Рабочие температуры тоже были разнообразны: от сверхнизкой для гелия или водорода до почти комнатной для ксенона, пропана или фреона. Начав с небольших размеров, в несколько десятков сантиметров, камеры в итоге приобрели поистине гигантские масштабы. Последняя пузырьковая камера в Европейском центре ядерных исследований была построена к 1971 году и называлась «Гаргамель». Это был цилиндр диаметром 1,85 м и длиной 4,85 м, наполненный 18 т фреона. Именно с ней связано последнее достижение камерной эпохи — открытие необычных взаимодействий элементарных частиц, названных нейтральными токами. В том же году в США была изготовлена и самая большая в мире пузырьковая камера почти сферической формы диаметром 4,5 м для работы с жидким водородом и дейтерием. Но никакие инженерные достижения уже не могли принципиально изменить ситуацию: эти детекторы не могли работать с новыми ускорителями, которые выдавали пучки частиц с огромной энергией и интенсивностью. Эпоха пузырьковых камер подходила к концу.
Новое — не до конца забытое старое
Но фотографии с пузырьковых камер еще рано списывать в архив иллюстраций. Не далее как в 2002 году две экспериментальные группы (одна, работающая на синхротроне Spring-8 в Японии, а другая из Института теоретической и экспериментальной физики в Москве) почти одновременно сообщили об обнаружении новых частиц, названных пентакварками. Российские ученые наткнулись на это явление при анализе своих экспериментальных данных, полученных много лет назад на ксеноновой пузырьковой камере «Диана»! Может, среди 100 млн снимков обнаружится и еще что-нибудь интересное?
Принцип действия пузырьковой камеры
В начале пятидесятых годов прошлого столетия Дональд Глейзер придумал прибор, регистрирующий элементарные частицы. Он получил название пузырьковой камеры. Основная часть модели камеры — стеклянная колба с эфиром объемом несколько кубических сантиметров. Жидкость нагревается и находится под давлением около 20 атм. Специальное устройство позволяет быстро сбрасывать давление. Если во время «ожидания» пролетала заряженная частица, то вдоль следа появлялись пузырьки пара. Сфотографировав след, можно было снова повысить давление, пузырьки исчезали — и прибор снова в работе.
Почему пузырьки появлялись именно на пути частицы?
Возьмем две пробирки, одну из них тщательно вымоем, проследим, чтобы на стенках не было царапин или посторонних частиц, и наполним ее дистиллированной водой (приблизительно 10 см 3 ). Во вторую пробирку нальем такое же количество водопроводной воды и еще бросим кусочек мела. Будем подогревать пробирки в одинаковых условиях и при отсутствии прямого соприкосновения с огнем.
Описание описанных свойств жидкости связано с силами поверхностного натяжения, которые стремятся раздавить образовавшийся пузырек. Дополнительное давление тем больше, чем меньше радиус пузырька. Так что процесс кипения подавляется в самом зародыше. Именно потому однородную жидкость удается перегревать.
1. С какой целью проводился эксперимент, описанный в тексте?Для объяснения принципа действия пузырьковой камеры.
2. Почему в пробирке с водопроводной водой пузырьки образуются в основном на кусочке мела? Что является «кипелкой» для процесса кипения воды в обычном чайнике? Мел-неоднородность. Неровности, накипь.
3. Объясните, как вы понимаете смысл понятия «перегретая жидкость». В идеально чистом сосуде с однородной жидкостью кипение не наступает вплоть до температуры 140°С..
4. Почему важнейшим условием работы камеры Глейзера является однородность жидкости и чистота ампулы? Чтобы жидкость была перегретой.
Дата добавления: 2015-04-18 ; просмотров: 95 ; Нарушение авторских прав