Приливной захват что это
Буря в пустыне, сумерки и торосы. Каково жить на планете, попавшей в приливный захват
С 1988 года до наших дней открыто более пяти тысяч планет, обращающихся вокруг других звезд. Основной прорыв в поиске и классификации этих планет был связан с работой орбитального телескопа «Кеплер», функционировавшего с 2009 по 2018 год и за этот период открывшего более 3500 небесных тел, сочтенных «кандидатами в экзопланеты». Более 1000 объектов, найденных «Кеплером», действительно оказались экзопланетами. Рассмотрение этой миссии – тема для целой книги (кстати, такая книга уже написана и переведена на русский язык, называется «Фабрика планет»).
Как известно, убежденность в существовании обитаемых миров поблизости от «других солнц» была одним из ключевых положений философии Джордано Бруно, сожженного в 1600 году, когда еще даже не была официально осуждена теория Коперника, изрядно мозолившая глаза католической церкви (работа Коперника попала в «Индекс запрещенных книг» только в 1612 году). Со времен Бруно и до наших дней человек ищет именно обитаемые или хотя бы пригодные для обитания миры, вся остальная россыпь небесных тел и открытий в планетологии – не более чем побочный продукт этого процесса.
Поиск экзопланет значительно расширил наши представления о том, что такое «зона обитаемости», и какие планеты в нее попадают. Мы считаем потенциально обитаемыми такие планеты или спутники, на поверхности которых в значительном количестве существует жидкая вода (а значит – и плотная атмосфера, не позволяющая ей испариться). Оказалось, что созданию подобных условий на планете способствует не только близость к родительской звезде, но, в какой-то степени, и приливный захват. Именно об этом феномене и его потенциальном значении для обитаемости небесных тел пойдет речь ниже.
В апреле я уже публиковал в блоге статью «Водные миры», в которой поднимал тему потенциальной жизнепригодности океанов на спутниках Юпитера и Сатурна. Европа, Энцелад, Ганимед и некоторые другие небесные тела обладают не просто жидкой водой на поверхности, но и настоящими океанами, что делает их хорошими кандидатами на роль обитаемых миров. При этом вода сохраняется в жидком виде не благодаря лучистой энергии Солнца (до Солнца слишком далеко), а благодаря приливной энергии Юпитера или Сатурна. Приливные силы большой планеты немного сминают спутник на каждом витке. Так стимулируется не только гидрологическая, но и тектоническая активность. Спутник остается теплым, и в его недрах идет геохимическая активность.
Аналогичная ситуация должна возникать и в звездной системе с планетами, расположенными слишком близко к родительской звезде. Естественно, с принципиальным отличием: звезда в лучшем случае провоцировала бы на дневной стороне планеты нолановские приливы, но скорее – выжигала бы дотла ее дневное полушарие.
Звездное население примерно на 75% состоит из звезд спектрального класса M, то есть, из красных карликов. Поскольку сам красный карлик очень тусклый, зона обитаемости должна располагаться в непосредственной близости от него, возможно, в 0,3 – 0,4 астрономических единицах. Это означает, что все потенциально обитаемые планеты красного карлика могут оказаться в приливном захвате.
Это знаменитая система звезды TRAPPIST-1 – красного карлика класса M8, находящегося в созвездии Водолея на расстоянии 39,5 световых лет от Солнца. TRAPPIST-1 в 2017 году стала большим инфоповодом, поскольку в ее крошечной зоне обитаемости (обратите внимание на масштаб) могли находиться три из семи планет этой системы. Конечно, конфигурация планет может свидетельствовать лишь в пользу нахождения жидкой воды на их поверхности, а не в пользу обитаемости. Подобная близость к звезде чревата разнообразными осложнениями — например, хаотичным колебанием орбит или купанием в запредельно жестком ионизирующем излучении.
Предположительно, в системе TRAPPIST-1 планеты расположены настолько близко, что одна планета может вызывать приливы на другой. В результате приливного воздействия планета может настолько разогреваться, что это приведет к запуску тектонических процессов. В случае развития вулканизма на таком небесном теле, особенно вулканизма, активизирующегося при приливах, планета может накапливать солидную атмосферу, которая, однако, по составу совершенно неблагоприятна для жизни земного типа (такая атмосфера должна быть сернистой).
Обратите внимание на планету TRAPPIST-f. Она находится в зоне обитаемости, но лучистой энергии звезды хватает лишь для того, чтобы растопить океан в одном ее полушарии. Второе (ночное) полушарие должно быть постоянно сковано коркой льда. Вот как выглядит увеличенное художественное изображение планеты TRAPPIST-f.
Такие климатические условия называются в англоязычных источниках «планета-глаз» (eyeball planet). Фиксация планеты в таком положении должна быть распространенным последствием приливного захвата, и ниже мы рассмотрим подобный климат подробнее.
Что касается тектонического разогрева в результате приливного воздействия – уже найдена и такая планета.
Здесь оговорюсь, что среди планет земной группы в Солнечной системе тектоника литосферных плит обнаружена только на Земле. Самые высокие потухшие вулканы Марса сравнительно компактно расположены в областях Тарсис и Элизий, а бурная вулканическая активность на спутнике Юпитера Ио как раз обусловлена приливными взаимодействиями с планетой. Таким образом, чрезмерные приливные силы со стороны звезды могут сделать планету безжизненной. Именно такова, по-видимому, скалистая планета LHS 3844b, обращающаяся вокруг красного карлика в созвездии Индейца на расстоянии около 49 световых лет от Земли. Дневное ее полушарие раскалено до 770 °C, а в ночном полушарии стоит мороз около —250 °C. При таких перепадах температуры вся атмосфера должна была постепенно выпасть в виде снега и льда на ночной стороне. В свою очередь, на дневной стороне должны плавиться горные породы, и из-за разницы в их температуре и вязкости все ночное полушарие может быть покрыто вулканами, постоянно извергающими дым и таким образом поддерживающими на планете подобие атмосферы и осадков.
С другой стороны, логично предположить, что на многих планетах, попавших в приливный захват, должна существовать экваториальная «сумеречная зона», относительно приемлемая для жизни. Далее рассмотрим, какие условия, благоприятствующие существованию жизни, могут складываться на таких планетах.
Атмосфера и океаны при приливном захвате
Такая гипотеза, активно эксплуатируемая и в научной фантастике, несколько приукрашена. Жизнь в такой зоне (в окрестностях терминатора) могла бы сохраниться при наличии подходящей плотной атмосферы, обеспечивающей конвекцию и осадки. Баланс очень шаткий: атмосфера не должна слишком сильно укутывать планету, чтобы не провоцировать там венерианского парникового эффекта, а ночная сторона планеты не должна быть слишком холодной, чтобы вся атмосфера не выпала там в виде снега.
В 2016 году Эббот и Колл из университета Чикаго разработали симуляцию, согласно которой такой баланс достижим. На некоторых планетах в приливном захвате может существовать атмосфера, благодаря циркуляции которой вся ночная сторона планеты может оставаться теплой, тогда как дневная будет раскаленной.
Колл, один из авторов модели, полагает, что это была бы странная картина: «в условиях полной темноты постоянно сохраняются приемлемые условия». Подобная ситуация могла бы сложиться на Земле в условиях глобального потепления, когда на экваторе уже слишком жарко, а на полюсах сохраняется и жизнь, и жидкая вода (океаны). Если бы океан сохранился в условиях приливного захвата, то движение вод океана и циркуляция атмосферы помогли бы перераспределять тепло, получаемое от светила. Могли бы образовываться облака, дополнительно повышающие отражательную способность планеты и немного охлаждающие ее дневную сторону. Но, опять же, при минимальном нарушении баланса вся влага могла бы улетучиться из-за эффекта влажной стратосферы. При сохранении атмосферы она все равно была бы очень насыщена влагой, в океане и на побережьях бушевали бы штормы и тайфуны.
Жизнь в сумеречной зоне
Итак, климат в сумеречной зоне на планете земного типа в зоне приливного захвата может в экстремальной форме напоминать резко континентальный. На дневной стороне океанов нет, только постоянные жаркие ветры или самум. Ближе к неосвещенному полюсу – замерзший океан, фактически — поля торосов как из водяного, так и из углекислотного льда, отдаленно напоминающие лавкрафтовские Хребты Безумия. Климат в сумеречной зоне, вероятно, не был бы полностью однородным, образовалось бы несколько климатических поясов. В этом сумеречном регионе солнце постоянно находилось бы низко над горизонтом либо частично выглядывало из-за горизонта. Временами бушевали бы планетарные ураганы, которые заносили бы пыль с дневной стороны, а в другое время небо постоянно оставалось бы розоватым или желто-оранжевым, поэтому в сумеречном регионе планеты совершенно не просматривались бы звезды. Подтаивающие окраины ледяной стены на ночной стороне могли бы давать исток широким коротким рекам, проникавшим бы даже на дневную сторону и, возможно, терявшимся бы в болотах подобно Окаванго. По их берегам могли бы располагаться обжитые долины, подобные нильской.
В таком мире совершенно иначе воспринималось бы время. Мы привыкли к ходу времени, так как большинству процессов на Земле присуща сезонная и суточная цикличность, а живым организмам — циркадные ритмы. Более того, на планете в зоне приливного захвата светило также не движется вдоль горизонта, то есть, не меняет зодиакального положения (или это малозаметно, так как радиус орбиты невелик). Поэтому постоянный «жаркий вечер» мог бы в крайнем случае заронить «следы времени» в жизненные циклы живых организмов. Определенными «несолнечными часами» могли бы служить сталактиты и сталагмиты в пещерах. Наверняка пещеры привлекали бы жителей такого мира, поскольку там прохладно и значительно ниже перепады температур, так что изучение карстовых процессов могло бы натолкнуть их на идею времени.
Жизнь (в том числе, разумная) на такой планете наверняка стремилась бы закрепиться и на темной стороне; ночь давала бы определенные эволюционные преимущества теневыносливым или хищным растениям, кровососущим насекомым, хищникам; также ночная сторона и особенно пещеры на ней могли бы восприниматься как перманентное надежное убежище для беглецов из сумеречной зоны – например, для изгоев или преступников. Конечно, рано или поздно до жителей сумеречной зоны дошли бы легенды о звездном небе, которое стоит над ночной стороной мира — и чем дальше в ночь и холод, тем оно четче, так как зона циклонов и атмосферных возмущений остается ближе к терминатору. Астрономы составили бы достойную компанию тем авантюристам, что стремятся укрыться на ночной стороне. Именно на ночной стороне можно было бы наблюдать движение небесных тел, в том числе, расположенных поблизости планет, которые в системе таких масштабов как TRAPPIST-1 выглядели бы огромными:
Даже при отсутствии времен года как таковых, в сумеречной зоне постоянно наблюдались бы вторжения горячих или холодных воздушных масс с дневной или ночной стороны, они были бы тем чаще и сильнее, чем меньше ширина сумеречного пояса. Поэтому все живое на такой планете могло бы зависеть от постоянных экстренных миграций или впадало бы в «зимнюю» и «летнюю» спячку.
Предполагается, что такие экосистемы могли бы отлично способствовать быстрой эволюции растительных и микробных форм жизни. Зеленые растения зависят от теплоустойчивости хлорофилла, который начинает серьезно сбоить уже при +75°C. Поэтому зеленые растения в условиях приливного захвата могли бы держаться поближе к ледяной стене; сама ледяная шапка служила бы не только источником влаги, но и дополнительным щитом от ультрафиолета, и в подледных полостях могли бы развиваться как фототрофные, так и хемотрофные микроорганизмы. Хемотрофные организмы оказываются в тем более выигрышной ситуации, учитывая вышеупомянутую активную тектонику, в частности, условия для образования гидротермальных источников. В таких экосистемах могли бы сложиться условия и для систем метаболизма, не существующих на Земле – например, для извлечения энергии из серпентина или оливина.
Заключение
Я сделал все, что было в моих силах, чтобы эта статья не скатилась в хаб «Научная фантастика». Но, завершая ее, хочу оставить еще одну ссылку — на дискуссию о том, могла бы оказаться на месте системы «Земля-Луна» (где планета и спутник находятся во взаимном приливном захвате) принципиально иная система из двух обитаемых планет.
Вероятно, такое соседство самым определяющим образом повлияло бы на мировоззрение цивилизации на любой из планет, на экспансионизм, космогонию и широту мышления ее представителей. Гораздо раньше могли бы появиться идеи о космонавтике, небесной механике, полете. Очень рано мог быть изобретен телескоп. При существовании биосферы на обеих планетах жизнь на них могла бы развиваться примерно в одном темпе, но в разных направлениях, что могло бы привести к вспышкам эпидемий или эпизоотий при попадании микроорганизмов с одной планеты на другую. Идея космического лифта была бы буквально перед глазами – причем, отсутствовал бы вопрос, «а на чем его заякорить»? Впрочем, это уже точно научная фантастика, которую я бы с удовольствием почитал.
Почему Луна всегда повёрнута к Земле одной стороной
Это довольно популярный вопрос, на который многие не знают ответа. Некоторые даже видят в этом какие-то происки инопланетян и строят очередные теории заговора. Но ответ прост – Луна всегда повёрнута к Земле одной стороной, потому что находится в приливном захвате.
Что это означает и как так произошло, давайте попробуем разобраться без математических формул, хотя это вполне укладывается в школьный курс.
Как Луна оказалась повёрнутой к Земле одной стороной
Луна на самом деле вращается вокруг своей оси, но полный её оборот занимает столько же времени, сколько и оборот по орбите, поэтому мы всегда видим только одну её сторону. Мало того, это явление наблюдается и у многих других спутников других планет, особенно крупных – Юпитера и Сатурна. Там происходит то же самое, что и у нас с Луной.
Как вы знаете, Луна – довольно массивное и большое тело, имеющее в поперечнике 3474 километра. Она оказывает гравитационное влияние на Землю, вызывая приливы и отливы. При обороте Луны по орбите по водной поверхности Земли движется выпуклость, которая на побережье и вызывает прилив. Она огибает Землю вместе с Луной и всегда находится напротив неё. А с обратной стороны Земли, наоборот, уровень воды немного понижается и там наблюдается отлив.
Конечно, Луна оказывает влияние и на твёрдую поверхность Земли, но мы этого не замечаем. Всё-таки она гораздо твёрже и не так пластична, как вода. К тому же, расстояние большое.
В свою очередь, Земля тоже оказывает своё гравитационное воздействие на Луну, но оно гораздо сильнее, ведь наша планета гораздо больше и массивнее. И именно это за миллиарды лет привело к тому, что Луна практически «остановилась».
Дело в том, что Луна – не точка. Это огромный каменный шар, имеющий в поперечнике 3474 км. А сила гравитации сильно меняется с расстоянием, и эти 3474 довольно существенны. Почему?
Представьте себе, что Луна вращается вокруг своей оси. При этом та половина, которая повёрнута к Земле, притягивается к неё сильнее, чем обратная. Можно даже подсчитать, что она притягивается на 1.7% сильнее. И при повороте Луны возникает некоторый дисбаланс – более близкая к Земле половина оказывается всегда «тяжелее». Поэтому вращение Луны будет постепенно замедляться – это называется приливным трением.
Конечно, Луна – большое и массивное тело, его вращение очень сложно затормозить. Но раньше она находилась гораздо ближе к Земле, и разница между притяжением на близкой и дальней точке была гораздо больше. Поэтому замедление вращения происходило гораздо быстрее. И за миллиарды лет Луна оказалась полностью синхронизирована с вращением планеты – теперь она всегда повернута к Земле одной стороной.
Миллиарды лет назад Луна была гораздо ближе к Земле.
Кстати, и Земля раньше вращалась гораздо быстрее, но Луна замедлила её вращение таким же образом. Ведь она была ближе в 15 раз и воздействовала на Землю гораздо сильнее. Длительность суток была 5 часов, а за 4 миллиарда лет растянулась до 24 часов. Когда динозавры только появились, сутки длились уже 22 часа 40 минут и с тех пор удлинились не очень сильно. Дело в том, что Луна удаляется от Земли, и её гравитационное влияние ослабевает.
Представьте, какие приливы были, когда она была в 15 раз ближе, чем сейчас. Это, вероятно, было похоже на ежедневные катаклизмы. Землетрясения и извержения вулканов тогда также происходили гораздо чаще и повсеместно, и приливное действие Луны к этому тоже имело отношение.
Почему мы видим больше, чем половину Луны
На самом деле мы видим не точно половину Луны, а больше – примерно 60%. Потому что она иногда поворачивает больше то одну сторону, то другую, и мы можем как бы заглядывать дальше за её край. Это называется либрацией.
Почему так происходит, если Луна всегда повёрнута к Земле одной стороной? Здесь всё тоже просто – дело в том, что орбита Луны не строго круговая, а немного вытянутая. Поэтому иногда, когда она находится в этих самых удалённых точках эллипса, нам становится поверхность «за лунным горизонтом».
Приливной захват на других планетах
Практически все спутники у других планет также находятся в приливном захвате у своих планет и повёрнуты к ним одной стороной. Даже Фобос и Деймос у Марса, несмотря на свои малые размеры, тоже синхронизировали своё вращение с планетой.
Самое интересное проявление приливного захвата можно наблюдать у Плутона и его спутника Харона. Они не очень отличаются по размерам и оба попали в приливной захват. То есть Харон всегда повёрнут к Плутону одной стороной, но и Плутон также повёрнут одной стороной к Харону.
А вот другие, мелкие спутники Плутона, в захвате не находятся, и вращаются каждый сам по себе. Что любопытно – центр тяжести (барицентр) системы Плутон – Харон находится над поверхностью Плутона, и они оба вращаются вокруг этого центра, повернувшись друг к другу одной стороной.
А что будет, если спутник окажется слишком близко к планете? Тогда приливные силы окажутся сильнее, чем собственная сила гравитации, и спутник просто разорвёт на части. Так образовались кольца Сатурна и других планет-гигантов, из раздробленных в пыль остатков разорванных гравитацией спутников.
В нашей Солнечной системе в приливном захвате находятся только спутники планет, но ни одна планета не повёрнута к Солнцу одной стороной, даже Меркурий. Но в других системах это вполне возможно, например, в системах красных карликов планеты должны находиться очень близко к звезде и находиться под действием приливного захвата. Такие близкие экзопланеты уже известны, и их довольно много.
Приливный захват
Приливный захват случается, когда гравитация заставляет небесное тело всегда быть обращённым одной своей стороной к другому небесному телу, этот эффект так же известен как синхронное вращение. В качестве примера, Луна всегда обращена одной стороной к Земле. Тело с приливным захватом обращается вокруг собственной оси за то же время, которое ему требуется чтобы обернуться по орбите вокруг своего партнёра. Из-за этого одно полушарие постоянно обращено к партнёру. Обычно только спутник может быть в приливном захвате вокруг планеты, однако если разница в массах между двумя телами невелика, то они оба могут быть в приливном захвате относительно друг друга, как в случае с Плутоном и Хароном. Этот эффект используется для стабилизации некоторых искусственных спутников.
Луны планет
Большинство крупных лун в Солнечной Системе находятся в приливном захвате со своими центральными телами, так как их орбиты довольно малы, и приливные силы усиливаются с уменьшением дистанции в кубической прогрессии. Заметными исключениями являются нерегулярные спутники газовых гигантов чьи орбиты пролегают существенно дальше, чем орбиты хорошо известных лун.
Приливной захват астероидов по большей части неизвестен, но ожидаемо, что близко вращающиеся пары также должны быть в приливном захвате относительно друг друга.
masterok
Мастерок.жж.рф
Хочу все знать
Все мы знаем, что Луна всегда повернута к Земле только одной стороной. Есть даже такое устойчивое выражение, как «темная сторона Луны».
Но ведь это довольно странно. Большинство небесных тел не только летают по своим орбитам, но еще и крутятся вокруг своей оси. А у Луны период вращения вокруг оси синхронизирован с периодом вращением вокруг Земли.
Почему так получилось?
Чтобы быть повёрнутой к Земле всё время одной и той же стороной, Луна должна вращаться вокруг своей оси с той же угловой скоростью, что и вокруг Земли, но в противоположную сторону.
И вот как это выглядит в динамике (чтобы проще было отследить вращение Луны и вокруг своей оси тоже, обратите внимание на её «закреплённую копию» в правом нижнем углу иллюстрации).
Вращение одного массивного тела вокруг другого массивного тела заставляет эти тела слегка «вытягиваться» по оси, соединяющей их центры, и сжиматься по перпендикулярным ей направлениям.
В результате, если, скажем, на Земле есть океаны, то в них будут наблюдаться приливы — синхронизированные с вращением Луны вокруг Земли: ведь вода «растягивается» заметно лучше, чем твёрдая порода.
Вот и Луна не идеальный шар, она немного вытянута.
Если Луна попытается повернуться относительно этого устойчивого положения, возникают силы, которые стремятся вернуть ее обратно.
Гравитация тянет чуть сильнее за “горбик”, который ближе к поверхности Земли. И таким образом возвращает Луну обратно к устойчивому положению.
Почему же вытянулась Луна?
Потому что миллионы лет на нее воздействовало притяжение Земли, которое по чуть-чуть ее вытягивало. Луна тогда была разогретой. И когда начала кристаллизироваться и появилась явная неровность в форме.
Луна тянет Землю (и меняет ее форму, создавая приливы и отливы) с помощью силы гравитации. Земля аналогично тянет Луну.
Этот эффект синхронизации периодов вращения небесных тел называется “приливным захватом”. До того, как Земля взяла Луну в “приливный захват”, наш спутник поворачивался и другой стороной.
Примерно через 5 млрд лет и Земля будет повернута к Луне одной стороной. И с другой стороны Земли ее будет не видно. А сторона Земли, которая будет всегда повернута к Луне, затопится сместившимися туда водами мирового океана.
Еще интересный момент: Луну раз в месяц немного заносит и она чуть-чуть показывает нам свой правый бок, а через полмесяца — левый. Эти колебания называются либрациями. Из-за них с Земли реально наблюдается не половина Луны, а в совокупности почти 60% её поверхности. Приливное трение всегда успокаивает эти либрации и по этому происходит также и стабилизация орбиты самой Луны, но это очень медленный процесс.
Восход Земли на Луне… обычное дело
Практически все мы знаем, что Луна всегда повернута к Земле одной и той же своей стороной. Из школьных курсов физики мы так же знаем что причина этому – Земные приливы, навсегда скрывшие от нас обратную, «темную» сторону Луны. Принцип приливного захвата постулирует что планета – хозяйка практически всегда находится на одной точке небосвода своего спутника. Впрочем, я сказал это уж слишком однозначно, ибо на самом деле такое возможно только при идеальных условиях. Мир же к нашему счастью далеко не идеален, что вполне позволяет нам наблюдать на Луне полноценные восходы и закаты Земли…
Астрономы давно заметили что Луна своеобразно «покачивается» в течении лунного месяца, подставляя нам до 10% площади «темной» стороны. Вследствие чего еще до полета станции «Луна 3», астрономы располагали картами 60% лунной поверхности.
Явление это было названо либрацией. На данный момент выделяют 4 типа либраций, мы же остановимся на двух главных – либрации по широте и долготе.
1.Либрации по широте вызваны наклоном оси суточного вращения Луны к плоскости ее орбиты (амплитуда в 6° 50мин), вследствии чего Луна «подставляет» нам то северный, то южный полюс.
2.Либрации по долготе вызваны не нулевым эксцентриситетом лунной орбиты.
Эксцентриситет орбиты в упрощенном варианте отображает степень отклонения орбиты спутника или планеты от идеального круга. 0 означает идеально круглую орбиту. Больше 0, но меньше 1, в той или оной степени вытянутую орбиту (эллиптическую), при e=1 параболическую, а при e >1 – гиперболическую. Как вы заметили, орбита постепенно вытягивается при увеличении эксцентриситета от 0 до 1, разрываясь на е=1 (достижение второй космической на данной орбите).
Либрации Луны, вид с Земли.
Эксцентриситет Луны в среднем равен 0,05, чего вполне достаточно для появления небольших отклонений между скоростью вращения Луны вокруг Земли, и собственным вращением Луны вокруг своей оси. Это и провоцирует либрацию по долготе с амплитудой в 7° и 54 мин.
Очевидно что оба типа либрации вызывают движение Земли и на небосводе Луны – где голубая планета в течении месяца описывает огромный эллипс с наибольшим диаметром в 18°. Учитывая что угловые размеры Земли с Луны составляют «лишь» около 2° (вчетверо больше чем размеры Луны видимые с Земли), то это позволит будущим лунным колонистам наблюдать хоть и медленные, но зрелищные восходы и закаты родной планеты в определенных районах Луны.
Восход Земли в «зонах либрации», лунного полюса, средних широт и экватора (программа Stellarium).
Впрочем наименее терпеливые колонисты вполне могут наблюдать это «в быстрой перемотке» с орбиты Луны (зонд Kaguya/JAXA).
И небольшой бонус. Хотя на Япете, спутнике Сатурна, скорее всего и нет звездных врат куда умудрился угодить герой книги Артура Кларка «Космическая одиссея 2001», но все же благодаря неровностям орбиты этого спутника, там можно наблюдать вполне эпичные восходы «Властелина колец».