При умножении дробей нужно умножить числитель на что

Умножение дробей: теория и практика

При умножении дробей нужно умножить числитель на что

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие дроби

Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Существует два формата записи:

Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление — в 5 классе уже это знают.

Дроби могут быть двух видов:

Дробь называют правильной, когда ее числитель меньше знаменателя:

Неправильной — ту, у которой числитель больше знаменателя или равен ему:

Такое число называют смешанным, читают как «пять целых одна четвертая», а записывают так: 5 1\4.

Основные правила дробей

Умножение дробных чисел

Рассмотрим несколько вариантов умножения обыкновенных дробей.

Как умножить дробь на дробь

Числитель равен произведению числителей обеих дробей, а знаменатель равен произведению знаменателей:

Важно проверить возможность сокращения — так решать будет легче:

Как умножить смешанные дроби

Преобразовать смешанные числа в неправильные, перемножить числители и знаменатели, при необходимости сократить и перевести в смешанную дробь.
При умножении дробей нужно умножить числитель на что

Как умножить дробь на натуральное число

Метод 1. Числитель умножить на натуральное число, а знаменатель оставить без изменения. Если в результате произведения получилась неправильная дробь, нужно выделить целую часть, то есть превратить неправильную в смешанную.

Метод 2. Знаменатель разделить на натуральное число, а числитель оставить прежним.

Этот способ будет удобнее предыдущего, если знаменатель делится на натуральное число без остатка.

Решение задач

Ребятам в 5 и 6 классе нужно практиковаться как можно чаще, чтобы решать такие примеры быстро и легко.

Задание 1. Выполнить умножение 2/17 на 5.

Как решаем: перемножим делимое и натуральное число.

Ответ:

Задание 2. Выполнить умножение 4/15 и 55/6.

Как решаем:

Ответ:
При умножении дробей нужно умножить числитель на что

Задание 3. Выполнить умножение одной целой трех седьмых на шесть.

Как решаем:

Ответ:

Онлайн-курсы по математике для детей и подростков — прекрасный способ разобраться в новом материале и закрепить его на практике.

Источник

Дроби. Умножение и деление дробей.

Умножение обыкновенной дроби на дробь.

Чтобы перемножить обыкновенные дроби, необходимо умножить числитель на числитель (получим числитель произведения) и знаменатель на знаменатель (получим знаменатель произведения).

Формула умножения дробей:

При умножении дробей нужно умножить числитель на что

При умножении дробей нужно умножить числитель на что

Перед тем, как приступить к умножению числителей и знаменателей, необходимо проверить на возможность сокращения дроби. Если получится сократить дробь, то вам легче будет дальше производить расчеты.

Обратите внимание! Здесь не нужно искать общий знаменатель!!

Деление обыкновенной дроби на дробь.

Деление обыкновенной дроби на дробь происходит так: переворачиваете вторую дробь (т.е. меняете числитель и знаменатель местами) и после этого дроби перемножаются.

Формула деления обыкновенных дробей:

При умножении дробей нужно умножить числитель на что

При умножении дробей нужно умножить числитель на что

Умножение дроби на натуральное число.

Обратите внимание! При умножении дроби на натуральное число, числитель дроби умножается на наше натуральное число, а знаменатель дроби оставляем прежним. Если результатом произведения оказалась неправильная дробь, то обязательно выделите целую часть, превратив неправильную дробь в смешанную.

При умножении дробей нужно умножить числитель на что

Деление дробей с участием натурального числа.

Это не так страшно, как кажется. Как и в случае со сложением, переводим целое число в дробь с единицей в знаменателе. Например:

При умножении дробей нужно умножить числитель на что

Умножение смешанных дробей.

Правила умножения дробей (смешанных):

Обратите внимание! Чтобы умножить смешанную дробь на другую смешанную дробь, нужно, для начала, привести их к виду неправильных дробей, а далее умножить по правилу умножения обыкновенных дробей.

При умножении дробей нужно умножить числитель на что

Второй способ умножения дроби на натуральное число.

Бывает более удобно использовать второй способ умножения обыкновенной дроби на число.

Обратите внимание! Для умножения дроби на натуральное число необходимо знаменатель дроби разделить на это число, а числитель оставить без изменения.

При умножении дробей нужно умножить числитель на что

Из, приведенного выше, примера понятно, что этот вариант удобней для использования, когда знаменатель дроби делится без остатка на натуральное число.

Многоэтажные дроби.

В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример:

При умножении дробей нужно умножить числитель на что

Чтобы привести такую дробь к привычному виду, используют деление через 2 точки:

При умножении дробей нужно умножить числитель на что

Обратите внимание! В делении дробей очень важен порядок деления. Будьте внимательны, здесь легко запутаться.

Обратите внимание, например:

При умножении дробей нужно умножить числитель на что

При делении единицы на любую дробь, результатом будет таже самая дробь, только перевернутая:

При умножении дробей нужно умножить числитель на что

Практические советы при умножении и делении дробей:

1. Самым важным в работе с дробными выражениями является аккуратность и внимательность. Все вычисления делайте внимательно и аккуратно, сосредоточенно и чётко. Лучше запишите несколько лишних строчек в черновике, чем запутаться в расчетах в уме.

3. Все дроби сокращаем до тех пор, пока сокращать уже будет невозможно.

4. Многоэтажные дробные выражения приводим в вид обыкновенных, пользуясь делением через 2 точки.

5. Единицу на дробь делим в уме, просто переворачивая дробь.

Источник

Умножение обыкновенных дробей: правила, примеры, решения

Еще одно действие, которое можно выполнять с обыкновенными дробями, – умножение. Мы попробуем разъяснить его основные правила при решении задач, покажем, как умножается обыкновенная дробь на натуральное число и как правильно выполнить умножение трех обыкновенных дробей и больше.

Как умножить одну обыкновенную дробь на другую

Запишем сначала основное правило:

Посмотрим на примере, как правильно применить это правило. Допустим, у нас есть квадрат, сторона которого равна одной числовой единице. Тогда площадь фигуры составит 1 кв. единицу. Если разделить квадрат на равные прямоугольники со сторонами, равными 1 4 и 1 8 числовой единицы, у нас получится, что он теперь состоит из 32 прямоугольников (потому что 8 · 4 = 32 ). Соответственно, площадь каждого из них будет равна 1 32 от площади всей фигуры, т.е. 1 32 кв. единицы.

Далее нам надо выделить цветом часть исходного квадрата так, как это сделано на рисунке:

При умножении дробей нужно умножить числитель на что

5 8 · 3 4 = 5 · 3 8 · 4 = 15 32

Разберем решения нескольких задач на умножение обыкновенных дробей.

Решение

Все решение можно записать так:

7 11 · 9 8 = 7 · 9 11 · 8 = 63 88

Если в ответе у нас получилась сократимая дробь, нужно довести вычисление до конца и выполнить ее сокращение. Если же у нас получилась неправильная дробь, из нее надо выделить целую часть.

Решение

Cогласно изученному выше правилу, нам надо умножить числитель на числитель, а знаменатель на знаменатель. Запись решения будет выглядеть так:

4 15 · 55 6 = 4 · 55 15 · 6 = 220 90

Поясним, как это выглядит, используя данные конкретной задачи.

Решение

Запишем вычисления, исходя из правила умножения. У нас получится:

4 15 · 55 6 = 4 · 55 15 · 6

Далее мы можем просто сократить некоторые множители и получить следующее: При умножении дробей нужно умножить числитель на что.

Нам осталось подсчитать несложные произведения в числителе и знаменателе и выделить целую часть из получившейся в итоге неправильной дроби:

2 · 11 3 · 3 = 22 9 = 2 4 9

Числовое выражение, в котором имеет место умножение обыкновенных дробей, обладает переместительным свойством, то есть при необходимости мы можем изменить порядок следования множителей:

a b · c d = c d · a b = a · c b · d

Как перемножить обыкновенную дробь с натуральным числом

Запишем сразу основное правило, а потом попробуем объяснить его на практике.

Понять эту формулу легко, если вспомнить, что любое натуральное число может быть представлено в виде обыкновенной дроби со знаменателем, равным единице, то есть:

a b · n = a b · n 1 = a · n b · 1 = a · n b

Поясним нашу мысль конкретными примерами.

Решение

2 27 · 5 = 2 · 5 27 = 10 27

Ответ: 2 27 · 5 = 10 27

Когда мы перемножаем натуральное число с обыкновенной дробью, то часто приходится сокращать результат или представлять его как смешанное число.

Решение

Также мы могли сократить дробь с помощью разложения числителя и знаменателя на простые множители, и результат получился бы точно таким же.

Числовое выражение, в котором натуральное число умножается на дробь, также обладает свойством перемещения, то есть порядок расположения множителей не влияет на результат:

a b · n = n · a b = a · n b

Как выполнить умножение трех и более обыкновенных дробей

Мы можем распространить на действие умножения обыкновенных дробей те же свойства, которые характерны для умножения натуральных чисел. Это следует из самого определения данных понятий.

Благодаря знанию сочетательного и переместительного свойства можно перемножать три обыкновенные дроби и более. Допустимо переставлять множители местами для большего удобства или расставлять скобки так, как будет легче считать.

Покажем на примере, как это делается.

Перед тем, как начать умножение, мы можем немного облегчить себе задачу и разложить некоторые числа на простые множители для дальнейшего сокращения. Это будет проще, чем сокращать уже готовую дробь, получившуюся в результате.

1 · 12 · 3 · 5 20 · 5 · 7 · 8 = 1 · ( 2 · 2 · 3 ) · 3 · 5 2 · 2 · 5 · 5 · 7 ( 2 · 2 · 2 ) = 3 · 3 5 · 7 · 2 · 2 · 2 = 9 280

Решение

Источник

Умножение обыкновенных дробей

Чтобы умножить обыкновенную дробь на натуральное число, нужно ее числитель умножить на это число, а знаменатель оставить без изменения.

При умножении дробей нужно умножить числитель на что

Обратите внимание, если в ответе получается неправильная дробь, то из нее выделяют целую часть.

Если мы умножаем на натуральное число, которое можно сократить с числом, стоящим в знаменателе, то сначала выполняют сокращение, а затем умножение (такой ход действий облегчает вычисления).

При умножении дробей нужно умножить числитель на что

При умножении дробей нужно умножить числитель на что

Если мы перемножаем дроби, у которых можно сократить числитель первой и знаменатель второй дроби и (или) знаменатель первой и числитель второй дроби, то сначала выполняют сокращение, а затем умножение (такой ход действий облегчает вычисления).

При умножении дробей нужно умножить числитель на что

Умножение смешанных чисел

Чтобы выполнить умножение смешанных чисел, нужно записать эти числа в виде неправильных дробей, а затем воспользоваться правилом умножения дробей.

При умножении дробей нужно умножить числитель на что

Для обыкновенных дробей, как и для натуральных чисел, выполняются свойства умножения (переместительное свойство умножения, сочетательное свойство умножения, распределительные свойства умножения относительно сложения и относительно вычитания). Также при умножении дроби на ноль (или нуля на дробь) получаем ноль, и при умножении дроби на единицу (или единицы на дробь) получим равную ей дробь.

При умножении дробей нужно умножить числитель на что

Чтобы умножить смешанное число на натуральное число, можно представить смешанное число в виде неправильной дроби, а затем воспользоваться правилом умножения дроби на натуральное число или можно умножить целую часть на натуральное число, далее умножить дробную часть на натуральное число и полученные произведения сложить.

При умножении дробей нужно умножить числитель на что

Нахождение дроби от числа

Примеры:

а) Найти При умножении дробей нужно умножить числитель на чтоот числа 20.

Решение:

При умножении дробей нужно умножить числитель на что

б) Найти 0,6 от числа 9.

Решение:

в) Найти 30 % от числа 500.

Решение:

1) 30% = 30 : 100 = 0,30 = 0,3

Взаимно обратные числа

Два числа, произведение которых равно 1, называют взаимно обратными.

Примеры:

1) При умножении дробей нужно умножить числитель на что, значит, числа При умножении дробей нужно умножить числитель на что— взаимно обратные;

2) При умножении дробей нужно умножить числитель на что

Чтобы определить число обратное смешанному числу, нужно представить это смешанное число в виде неправильной дроби.

Пример:

При умножении дробей нужно умножить числитель на что, значит, числу При умножении дробей нужно умножить числитель на чтообратно число При умножении дробей нужно умножить числитель на что.

Запомните:

Поделись с друзьями в социальных сетях:

Источник

Обыкновенные дроби

При умножении дробей нужно умножить числитель на что

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Доля целого

Доля — это каждая равная часть, из суммы которых состоит целый предмет.

Для примера возьмем два мандарина. Когда мы их почистим, то получим в каждом мандарине разное количество долек или долей. В одном может быть 6, а в другом — целых 9. Размеры долей у каждого мандарина тоже разные.

У каждой доли есть свое название: оно зависит от количества долей в конкретном предмете. Если в мандарите шесть долей — каждая из них будет определяться, как одна шестая от целого.

Понятие доли можно применить не только к предметам, но и величинам. Так, например, картина занимает четверть стены — при этом ее ширина треть метра.

Чтобы быстрее запомнить соотношения частей и целого, можно использовать наглядную табличку:

Понятие дроби

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которой можно представить число. Есть два формата записи:

Виды дробей:

Какие еще бывают дроби:

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3\5.

Выделение целой части из неправильной дроби — это запись неправильной дроби в виде суммы натурального числа и правильной дроби. Например, 11/5 = 2 + 1/5.

Как устроена обыкновенная дробь

Обыкновенная дробь — это запись вида m/n, где m и n любые натуральные числа.

Такие дроби записываются с помощью двух натуральных чисел и горизонтальной черты, которая называется чертой дроби. Иногда ставится не горизонтальная черта, а косая.

Числитель обыкновенной дроби m/n — это натуральное число m, которое стоит над чертой. Числитель это делимое — то, что мы делим.

Знаменатель обыкновенной дроби m/n — натуральное число n, которое стоит под чертой. Знаменатель это делитель — то, на сколько делим.

Черта между числителем и знаменателем — символ деления.

Равные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых справедливо равенство: a * d = b * c. Пример равных дробей: 1/2 и 2/4, так как 1 * 4 = 2 * 2.

Неравные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых равенство: a * d = b * c не является верным.

Как устроена десятичная дробь

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. Выходит, что десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Свойства дробей

Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной. Формула выглядит так:

При умножении дробей нужно умножить числитель на чтогде a, b, k — натуральные числа.

Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:

У нас есть отличные курсы по математике для учеников с 1 по 11 классы, записывайтесь!

Действия с дробями

С дробями можно выполнять те же действия, что и с обычными числами: складывать, вычитать, умножать и делить. А еще дроби можно сокращать и сравнивать между собой. Давайте попробуем.

Сравнение дробей

Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.

Сравним 1/5 и 4/5. Как рассуждаем:

При умножении дробей нужно умножить числитель на что

Чтобы сравнить дроби с разными знаменателями, нужно привести дроби к общему знаменателю. А после приведения дробей к общему знаменателю, можно применить правило сравнения дробей с одинаковыми знаменателями.

Пример. Сравнить 2/7 и 1/14.

Важно запомнить: любая неправильная дробь больше любой правильной. Потому что неправильная дробь всегда больше или равна 1, а правильная дробь всегда меньше 1.

При умножении дробей нужно умножить числитель на что

Чтобы сравнить дроби с разными числителями и знаменателями, нужно:

Чтобы привести дроби к наименьшему общему знаменателю, нужно:

Сокращение дробей

Сокращение дроби — это деление числителя и знаменателя дроби на одно и то же натуральное число. Сократить дробь значит сделать ее короче и проще для восприятия. Например, дробь 1/3 выглядит намного проще и красивее, чем 27/81.

Сокращение дроби выглядит так: зачеркивают числитель и знаменатель, а рядом записывают результаты деления числителя и знаменателя на одно и то же число.

При умножении дробей нужно умножить числитель на что

В этом примере делим обе части дроби на двойку.

При умножении дробей нужно умножить числитель на что

Можно никуда не спешить и сокращать дроби последовательно, в несколько действий.

При умножении дробей нужно умножить числитель на что

Сложение и вычитание дробей

При сложении и вычитании дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель.

Не забудьте проверить, можно ли сократить дробь и выделить целую часть.

При умножении дробей нужно умножить числитель на что

При сложении и вычитании дробей с разными знаменателями нужно найти наименьший общий знаменатель, сложить или вычесть полученные дроби (используем предыдущее правило).

Для этого запишем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.

При умножении дробей нужно умножить числитель на что

НОК (15, 18) = 3 * 2 * 3 * 5 = 90

Полученные числа запишем справа сверху над числителем.

Ход решения одной строкой:

При умножении дробей нужно умножить числитель на что

Сложение или вычитание смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:

Необходимо приводить к общему, если знаменатели разные. Для этого воспользуемся знаниями из предыдущего примера.

Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.

Умножение и деление дробей

Произведение двух дробей равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей:

При умножении дробей нужно умножить числитель на что

Не забываем про сокращение. Это может облегчить вычисления.

При умножении дробей нужно умножить числитель на что

Чтобы умножить два смешанных числа, надо:

Чтобы разделить дробь на дробь нужно выполнить следующую последовательность действий:

Другими словами это правило звучит так: чтобы разделить одну дробь на другую, надо первую умножить на обратную от второй.

Числа, произведение которых равно 1, называют взаимно обратными.

Как делить дроби с разными знаменателями? На самом деле одинаковые или разные знаменатели у дробей — неважно, потому что все дроби делятся по правилу, описанному выше.

Для деления смешанных чисел необходимо:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *