Прессорная поддержка реанимация что это
Искусственная вентиляция легких (ИВЛ): инвазивная и неинвазивная респираторная поддержка
К искусственной вентиляции легких (ИВЛ) прибегают для оказания помощи пациентам с острой или хронической дыхательной недостаточностью, когда больной не может самостоятельно вдыхать необходимый для полноценного функционирования организма объем кислорода и выдыхать углекислый газ. Необходимость в ИВЛ возникает при отсутствии естественного дыхания или при его серьезных нарушениях, а также во время хирургических операций под общим наркозом.
Что такое ИВЛ?
Искусственная вентиляция в общем виде представляет собой вдувание газовой смеси в легкие пациента. Процедуру можно проводить вручную, обеспечивая пассивный вдох и выдох путем ритмичных сжиманий и разжиманий легких или с помощью реанимационного мешка типа Амбу. Более распространенной формой респираторной поддержки является аппаратная ИВЛ, при которой доставка кислорода в легкие осуществляется с помощью специального медицинского оборудования.
Показания к искусственной вентиляции легких
Искусственная вентиляция легких проводится при острой или хронической дыхательной недостаточности, вызванной следующими заболеваниями или состояниями:
Инвазивная вентиляция легких
Эндотрахеальная трубка вводится в трахею через рот или через нос и подсоединяется к аппарату ИВЛ
При инвазивной респираторной поддержке аппарат ИВЛ обеспечивает принудительную прокачку легких кислородом и полностью берет на себя функцию дыхания. Газовая смесь подается через эндотрахеальную трубку, помещенную в трахею через рот или нос. В особо критических случаях проводится трахеостомия – хирургическая операция по рассечению передней стенки трахеи для введения трахеостомической трубки непосредственно в ее просвет.
Инвазивная вентиляция обладает высокой эффективностью, но применяется лишь случае невозможности помочь больному более щадящим способом, т.е. без инвазивного вмешательства.
Кому и когда необходима инвазивная ИВЛ?
Подключенный к аппарату ИВЛ человек не может ни говорить, ни принимать пищу. Интубация доставляет не только неудобства, но и болезненные ощущения. Ввиду этого пациента, как правило, вводят в медикаментозную кому. Процедура проводится только в условиях стационара под наблюдением специалистов.
Инвазивная вентиляция легких отличается высокой эффективностью, однако интубация предполагает введение пациента в медикаментозную кому. Кроме того, процедура сопряжена с рисками.
Традиционно инвазивную респираторную поддержку применяют в следующих случаях:
Как работает аппарат инвазивной ИВЛ?
Принцип работы приборов для инвазивной ИВЛ можно описать следующим образом.
Особенности оборудования для инвазивной вентиляции
Оборудование для инвазивной вентиляции легких имеет ряд характерных особенностей.
Неинвазивная вентиляция легких
За последние два десятилетия заметно возросло использование оборудования неинвазивной искусственной вентиляции легких. НИВЛ стала общепризнанным и широко распространенным инструментом терапии острой и хронической дыхательной недостаточности как в лечебном учреждении, так и в домашних условиях.
Одним из ведущих производителей медицинских респираторных устройств является австралийская компания ResMed
НИВЛ — что это?
Неинвазивная вентиляция легких относится к искусственной респираторной поддержке без инвазивного доступа (т.е. без эндотрахеальной или трахеостомической трубки) с использованием различных известных вспомогательных режимов вентиляции.
Оборудование подает воздух в интерфейс пациента через дыхательный контур. Для обеспечения НИВЛ используются различные интерфейсы – носовая или рото-носовая маска, шлем, мундштук. В отличие от инвазивного метода, человек продолжает дышать самостоятельно, но получает аппаратную поддержку на вдохе.
Когда применяется неинвазивная вентиляция легких?
Ключом к успешному использованию неинвазивной вентиляции легких является признание ее возможностей и ограничений, а также тщательный отбор пациентов (уточнение диагноза и оценка состояния больного). Показаниями для НИВЛ являются следующие критерии:
Инотропная поддержка в терапии больных ИБС, осложненной ХСН, рефрактерной к стандартной терапии
В России около 3,3 млн пациентов страдают хронической сердечной недостаточностью. ХСН является наиболее частой причиной госпитализации.
Расходы на госпитализацию по поводу обострений ХСН достигают 184,7 млрд рублей.
В начале 90-х годов прошлого века, учитывая мультифакторность развития синдрома ХСН, была выдвинута концепция сердечно-сосудистого континуума [Dzau V.J., Braunwald Е., 1991]. В основе концепции лежит предположение о ключевой роли сочетания (синтропности) многих самостоятельных риск-факторов (артериальной гипертонии, гипертрофии левого желудочка, сахарного диабета 2-го типа, ожирение и дислипидемии) в формировании выраженной сердечной недостаточности и развитии патофизиологического и сердечно-сосудистого континуума.
Главными стpатегическими задачами лечения ХСН должны быть: восстановление насосной деятельности сеpдца, устpанение излишней нейpогоpмональной активности плазмы кpови, ликвидация поpочного кpуга пpогpессиpования СH, котоpый, в случае успешного pешения пеpвой задачи будет устраняться сам при условии одновременного устpанения биоэнергетической недостаточности ткани, миокарда, почек. Рис.№1
В отделение кардиологии нашей больницы в течении года от 50% до 85% находятся пациенты с сердечной недостаточностью, из них с декомпенсацией ХСН до 30%. Это тяжелая ХСН (III-IV ФК по NYHA), с дисфункцией миокарда, обусловленной ишемической и дилатационной кардиомиопатиями, с большими полостями сердца, низкой ФВ (40 и довольно часто менее 30), массивным отёчным синдромом, одышкой. Рис. №2
Для лечения декомпенсации ХСН мы использовуем стандартную терапию, включающую ИАПФ, мочегонные, антиагреганты, б-блокаторы, антикоагулянты (по показаниям), дополнительно препараты калия, магния. Даже при длительном лечении вышеуказанными препаратами встречаемся с ХСН, рефрактерной к стандартной терапии,. Такая сердечная недостаточность относится к стадии Д сердечного- сосудистого континуума- самой дорогой и самой сложной для лечения.. В подобных клинических ситуациях применяем инотропные препараты. Начиная с 2004года таким пациентам мы проводим инфузию левосимендана. Это кардиотоник с вазодилатирующим эффектом. Рис.№3.
10 больным с ХСН III и IV ФК (по NYHA) препарат вводился в виде 24_часовой инфузии со скоростью 0,1 мкг/кг/мин ежемесячно в течение полугода. Сравнение показателей ФВ ЛЖ выявило улучшение сократительной функции ЛЖ после терапии левосименданом – ФВ увеличилась с 28,3±6,9 до 32,1±7,4% (p=0,01). Таким образом, курсовая инфузия левосимендана улучшила как объективные ЭхоКГ_признаки, так и субъективно оцениваемое пациентами качество жизни. Уровень мозгового натрийуретического пептида (BNP) значительно снизился после инфузий левосимендана – с 1081,1 до 176,0.
На фоне проводимой терапии удалось уменьшить функциональный класс сердечной недостаточности Рис 5.
Принимая во внимание то, что явные клинические симптомы появляются только при достаточно далеко зашедшем процессе, современные принципы терапии сердечной недостаточности требуют агрессивного, раннего, постоянного клинически и патогенетически обоснованного лечения, можно сформулировать шесть очевидных целей при лечении ХСН:
В настоящее время в нашем отделении препарат назначается пациентам с хсн при повышении маркёров сердечной недостаточности, (BNP). Степень эффективности зависит от тяжести течения сердечной недостаточности. Более выраженный эффект у тех пациентов, у которых сократительная способность от 30% до 40%.
Таким образом применение и своевременное назначение современных иноторопных препаратов улучшает клиническое течение ХСН, оказывает долгосрочное позитивное влияние на частоту нежелательных исходов (смерть, необходимость в повторной госпитализации).
Источник: К.м.н. ДОНЕЦКАЯ О.П., ТУЛУПОВА В.А., ШУЛЬДЕШОВА Н.В.
Коронавирус и ИВЛ: как лечат самых тяжелых пациентов
— На какие сутки обычно развивается коронавирусная пневмония, требующая серьезной медицинской помощи? Часто слышу, что поражение легких начинается еще до первых симптомов заболевания.
Степень тяжести и распространенность воспалительного процесса в легких напрямую зависят от так называемой вирусной нагрузки, то есть количества вирусных частиц, которые попали в организм человека. Свою роль играют и состояние иммунной системы, генетические особенности, наличие сопутствующих заболеваний. Соответственно, чем больше вирусных частиц, слабее иммунитет, тем быстрее развивается и тяжелее протекает процесс. Хронические заболевания или какие-то генетические особенности, врожденные патологии тоже могут привести к более тяжелому течению COVID-19.
Действительно, поражение легких начинается еще до появления первых симптомов заболевания, но это вполне закономерно. Не будет клинических симптомов, если нет поражения. Я бы сформулировала эту мысль по-другому: главной особенностью COVID-19 является то, что имеющаяся у пациента клиническая картина часто не соответствует степени поражения легких. Этот феномен проявляется, например, неожиданными находками двусторонних пневмоний при случайно выполненных рентгенографии или компьютерной томографии легких. То есть человек чувствует себя хорошо, серьезных жалоб нет, а обратился в учреждение здравоохранения с каким-то другим заболеванием, ему выполнили КТ или рентген и нашли пневмонию. При этом характерных признаков воспаления (кашля, температуры, одышки) не было. Эта особенность коронавирусной инфекции и ставит ее в уникальное положение, когда приходится предпринимать комплекс шагов для своевременного выявления.
— В ситуации, если это случайно выявленная пневмония, она протекает легко или может перейти в тяжелую форму?
К слову, на многих смартфонах, фитнес-трекерах, умных часах есть функция пульсоксиметра. Например, в некоторых моделях смартфонов на задней панели рядом с камерой находится датчик сердечного ритма. К нему надо приложить палец и с помощью установленного приложения измерить уровень сатурации и частоту сердечных сокращений.
— В каких случаях принимается решение о подключении пациента с COVID-19 к аппарату искусственной вентиляции легких? Речь идет о пограничных состояниях?
— В принципе некорректно сравнивать летальность среди тех пациентов, которые находились на аппарате искусственной вентиляции легких, и тех, которые обошлись без ИВЛ. Это две совершенно разные группы. В аппаратном дыхании нуждаются люди, которые по каким-то причинам не могут дышать самостоятельно, у них критически нарушен газообмен в легких: кислород не может перейти из легочной альвеолы в кровь, а углекислый газ, наоборот, из крови в альвеолу. Это угрожающая жизни ситуация, поэтому перевод на ИВЛ действительно в какой-то мере последний шанс на спасение.
Что касается SARS-COV-2, который вызывает COVID-19, на сегодня лекарственных средств с хорошей доказательной базой против этого вируса нет. Мы уповаем на ответ собственной иммунной системы человека. Аппаратная поддержка (по сути, искусственное жизнеобеспечение) дает время организму справиться с вирусной нагрузкой.
— Есть ли методы, позволяющие отсрочить перевод пациентов с коронавирусом на искусственную вентиляцию легких?
На ИВЛ переводятся только те пациенты, у которых кислородотерапия с помощью носовых катетеров или лицевой маски и поворот на живот были неэффективны. Если эти меры не позволяют добиться улучшения оксигенации, мы принимаем решение о переводе на аппаратное дыхание, что позволяет моделировать функцию дыхания и увеличить процент кислорода в подаваемой смеси.
— Пожалуй, только высококлассный специалист четко знает, когда человека нужно переводить на ИВЛ. Ведь промедление, как и спешка, может сыграть не в пользу человека.
— Действительно, это должны быть высококвалифицированные анестезиологи-реаниматологи со стажем. На самом деле есть ряд еще более тонких и информативных показателей, кроме сатурации. Например, в реанимационных отделениях мы берем артериальную кровь для проведения лабораторных исследований, анализируются ее кислотно-основное состояние и газовый состав. Если парциальное напряжение кислорода меньше определенного уровня, это является абсолютным основанием для перевода на искусственную вентиляцию легких.
— А проводится ли обучение врачей в регионах? Ежедневно появляются новые знания по ведению коронавирусных пациентов, этот опыт важно донести до коллег.
— За каждым регионом закреплены консультанты, которые оказывают методологическую и практическую помощь, при необходимости могут выехать в конкретную больницу. Например, я закреплена за Гомельской областью. Кроме того, мы записываем видеолекции для докторов. Работы много, но она слаженная, врачи знают, что им делать.
Что касается перевода на ИВЛ, после 2009 года, когда была вспышка пневмоний, вызванных свиным гриппом, наша служба получила уникальный опыт. За эти годы мы очень далеко шагнули. В Беларуси накоплены знания и методики выхаживания пациентов с тяжелыми респираторными дистресс-синдромами, поэтому к этой пандемии мы были хорошо подготовлены. Аппаратов искусственной вентиляции легких у нас достаточно, есть квалифицированные кадры.
По данным наших зарубежных коллег, и мы это видим тоже, частота тромбозов у пациентов с COVID-19, находившихся в отделениях реанимации и интенсивной терапии, составляет порядка 30%. То есть у каждого третьего пациента с тяжелым течением COVID-19 имеют место какие-либо тромботические осложнения. Это могут быть тромбозы глубоких вен, тромбоэмболия легочной артерии, острый коронарный синдром, инфаркты или ишемические инсульты. Еще одной особенностью коронавирусной инфекции является то, что при COVID-19 отмечается полиорганность повреждения. То есть страдают не только легкие, но и сердце, и почки, и нервная система. А в этом случае ИВЛ не поможет, нужно улучшать реологические свойства крови.
— Многих ли пациентов удается отключить от ИВЛ и перевести в палату?
— Вопреки распространенному среди обывателей мнению, ИВЛ не приговор, отключить от аппарата удается достаточно много пациентов. Однако нужно понимать, что процесс отлучения может занимать до двух третей всего времени нахождения на искусственной вентиляции легких. Снять пациента с ИВЛ непросто, это искусство.
У человека, которого в критическом состоянии перевели на аппаратное дыхание, в течение нескольких дней развивается атрофия мышц. Особенно это касается пожилых людей, которым и так свойственна возрастная естественная потеря массы и силы мышц. Если пациент неделю находился на ИВЛ, заставить его мышцы снова работать становится очень сложно. Процесс отлучения пожилых от искусственной вентиляции легких занимает дни, недели. Обязательно приходит реабилитолог, делаем гимнастику и т.д.
— Как проходит отлучение пациента от ИВЛ? Есть ли какие-либо техники тренировки дыхания?
Процесс отлучения от аппарата постепенный. Как я отмечала, он может занимать от нескольких дней до нескольких недель в зависимости от возраста пациента, тяжести заболевания. Сначала мы тренируем дыхание с помощью аппарата, постепенно изменяя параметры. Условно говоря, здоровый человек делает 16 вдохов в минуту. Мы выставляем специальный режим вентиляции, чтобы аппарат дышал за пациента 12 раз, а остальные четыре вдоха он делал сам. Затем начинаем снижать аппаратную поддержку и в итоге выставляем режим спонтанного дыхания. И только тогда, когда у человека появляются силы, ставится вопрос о том, чтобы полностью снять его с ИВЛ.
— Нуждаются ли пациенты с COVID-19 после этого в длительной реабилитации?
— Все пациенты, которые проходят через критические состояния в реанимации, в том числе после пневмоний, нуждаются в длительной реабилитации. И легкие нужно восстановить, и оправиться от стресса. У нас ежегодно есть пациенты с тяжелыми пневмониями, дистресс-синдромами, система их реабилитации хорошо налажена.
— Может ли экстракорпоральная мембранная оксигенация (ЭКМО) стать альтернативой ИВЛ при лечении коронавирусных пациентов?
— ЭКМО широко применяется, в частности, в кардиохирургии. Что касается тяжелых форм ОРДС, экстракорпоральная мембранная оксигенация показана пациентам с тяжелыми его формами, когда кислород не проходит из альвеол в кровь, то есть при неэффективности поддержания газообмена с помощью ИВЛ. Однако эта процедура непростая, очень дорогая и требует специально подготовленного персонала. Ни в одной стране мира ЭКМО не является панацеей и не может служить полноценной альтернативой ИВЛ, потому что тяжесть состояния связана не только с респираторными нарушениями, но и тромбозами, тромбоэмболиями и диссеминированным внутрисосудистым свертыванием крови.
Метод может точечно использоваться в отдельных случаях при ряде условий. При COVID-19 ЭКМО на сегодня используется нечасто. С момента начала эпидемии пациентам с подтвержденным диагнозом во всем мире проведено более 800 таких процедур, в том числе свыше 200 в Европе. С учетом количества заболевших это очень маленький процент.
— По прогнозам экспертов, коронавирусом переболеет большая часть земного шара. К счастью, 80-85% перенесут заболевание бессимптомно или в легкой степени. Какие рекомендации можно дать населению, чтобы не допустить тяжелого течения болезни и, соответственно, не попасть на ИВЛ?
Избежать встречи с вирусом будет трудно. Сейчас многие эксперты действительно прогнозируют, что около 70% населения земного шара переболеют. Этот вирус имеет тенденцию встроиться в обычную сезонную заболеваемость, поэтому не встретим его сегодня или завтра, встретим через год. В любом случае нужно постараться снизить вирусную нагрузку с помощью тех рекомендаций, которые дает наша система здравоохранения. Это очень простые правила, которые можно соблюдать и при этом работать и жить активной жизнью.
Например, группе риска в общественных местах желательно носить маски. Здоровым людям, кто не входит в группу риска, это не обязательно. Вместе с тем призываю к ответственности: если вы чувствуете себя плохо, вам не здоровится, проявите уважение к обществу и тоже наденьте маску, чтобы не заразить тех, кто находится рядом с вами.
Если вы не равнодушны и заботитесь об экологии, пользуйтесь в быту многоразовыми масками. Сейчас их в магазинах полно, на любой вкус и цвет, и стоят недорого. Неприятно видеть кучи выброшенных масок, валяющихся на земле возле лечебных учреждений, магазинов, во дворах. Да и в океане уже плавают тонны масок.
Применение вазопрессоров повышает риск внутригоспитальной смертности при травматическом геморрагическом шоке (Critical Care Medicine, сентябрь 2018)
Обзор
В журнале Critical Care Medicine 07 сентября 2018 г. опубликована статья: «Применение вазопрессоров повышает риск внутригоспитальной смертности при травматическом геморрагическом шоке».
Вазопрессоры могут применяться у пациентов с травматическим геморрагическим шоком для повышения АД и для снижения объема жидкостной инфузии. Европейские руководства, на основании ограниченных доказательств, рекомендуют применение вазопрессоров у пациентов с травматическим геморрагическим шоком только при наличии жизнеугрожающей гипотензии. Однако, в других клинических руководствах нет рекомендаций по раннему применению вазопрессоров у пациентов с травматическим геморрагическим шоком.
Польза от применения вазопрессоров у пациентов с травматическим геморрагическим шоком была показана в ограниченных экспериментальных данных, и только одно клиническое исследование показало, что применение вазопрессоров у пациентов с травмами было связано с повышенным риском смертности.
В представленном ретроспективном когортном исследовании, которое прошло в Японии, участвовали 3551 пациент старше 16 лет (средний возраст 59 лет, мужчины 64%) с травмами из 260 больниц страны, у которых при поступлении в стационар была систолическая гипотензия ( 3 баллов по шкале Abbreviated Injury Scale для головы),
— пациенты с повреждениями спинного мозга (5 баллов по шкале Abbreviated Injury Scale для позвоночника),
— остановка сердечной или легочной деятельности на догоспитальном этапе,
— пациенты с сердечно-легочной реанимацией.
Из 3551 пациентов после поступления в стационар:
— 459 пациентов получили лечение вазопрессорами.
— 3092 пациента не получили вазопрессоры при лечении.
Первичным исходом исследования являлась внутригоспитальная смертность. Вторичным исходом являлась смертность в отделении неотложной помощи (Emergency Department mortality).
По результатам исследования:
— внутригоспитальная смертность составила 43% в группе с вазопрессорами и 16% в группе без них.
— смертность в отделении неотложной помощи составила 6,8% в группе с вазопрессорами и 2,5% в группе без них.
После проведения тщательного анализа с исключением других факторов (причина травмы и механизм травмы, данные жизненных показателей в отделении неотложной помощи, тяжесть травмы по шкале Injury Severity Score, догоспитальное применение внутривенных жидкостей, и объем трансфузий крови в первые 24 часа), авторы заключают, что применение вазопрессоров было связано более высокой смертностью.
Авторы отмечают, что результаты данного исследования показывают, что пациентам, которым применялись вазопрессоры в больнице, потребовались более большие объемы жидкостных инфузий, что потенциально привело данных пациентов к смерти в стационаре.
Авторы отмечают, что таким образом врачам советуется быстрее обеспечить остановку кровотечения без применения вазопрессоров.
Подробнее смотрите в прикрепленном файле.
Современная вазопрессорная терапия септического шока (обзор)
Полный текст:
Аннотация
Септический шок, как наиболее тяжелая форма течения сепсиса, характеризуется высокой летальностью, достигающей 40%, несмотря на использование самых современных стандартов диагностики и лечения. В патогенезе септического шока ведущая роль принадлежит вазоплегии, соответственно, и терапия обсуждаемого состояния предполагает использование вазоконстрикторов, наряду со стандартным назначением инфузионной терапии, антибиотиков и симптоматическим лечением. Выбор конкретного вазоактивного препарата — сложная задача для практикующего анестезиолога, т. к. наряду с, несомненно, положительными свойствами, каждый вазоконстриктор обладает своим спектром нежелательных побочных эффектов, что, конечно же, необходимо учитывать при определении тактики лечения.
Цель обзора: комплексная оценка многофакторного воздействия на пациента различных вазоконстрикторов для определения критериев выбора оптимального препарата (или комбинации препаратов) при септическом шоке.
Поиск проводили по базам данных PubMed и Scopus, окончательный отбор 89 источников осуществили в соответствии со следующими критериям: отношение к теме данного обзора и характер статьи — в окончательный анализ вошли только рандомизированные контролируемые исследования, рекомендации и аналитические обзоры.
Рассмотрели внешние и внутренние механизмы регуляции сосудистого тонуса, включая факторы вырабатываемые эндотелием (оксид азота, простациклин, эндотелин); вазоактивные метаболиты и аутокоиды — сигнальные молекулы локального действия (серотонин, простагландины, тромбоксан А2). Соответственно, проанализировали препараты, механизм действия которых связан с влиянием на адренергические (адреналин, дофамин, норадреналин, фенилэфрин, добутамин), вазопрессиновые (вазопрессин, терлипрессин, селепрессин) рецепторы, синтетические аналоги ангиотензина (ангиотензин II) и препараты, вазопрессорный эффект которых не связан с рецепторным аппаратом (метиленовый синий, левосимендан, гидрокортизон).
Заключение. Высокая эффективность норадреналина, его положительные гемодинамические эффекты делают этот препарат, во многом, универсальным средством для купирования септического шока. Однако рефрактерный шок обуславливает использование высоких доз норадреналина, что приводит к увеличению риска неблагоприятных реакций. Предотвратить подобные осложнения призвана сочетанная стимуляция адренергических и лиганда V — рецепторов терлипрессином. Однако, на сегодняшний день не существует четких рекомендаций по применению терлипрессина при септическом шоке, что ограничивает его использование в клинической практике.
Ключевые слова
Об авторах
Александр Александрович Кочкин
129110, г. Москва, ул. Щепкина, д. 61/2
129110, г. Москва, ул. Щепкина, д. 61/2; 119991, г. Москва, ул. Трубецкая, д. 8, стр. 2
Список литературы
1. Burgdorff A.-M., Bucher M., Schumann J. Vasoplegia in patients with sepsis and septic shock: pathways and mechanisms. J Int Med Res. 2018; 46 (4): 1303–1310. PMID: 29332515, DOI: 10.1177/0300060517743836
2. Rhodes A., Evans L.E., Alhazzani W., Levy M.M., Antonelli M., Ferrer R., Kumar A., Sevransky J.E., Sprung C.L., Nunnally M.E., Rochwerg B, Rubenfeld G.D., Angus D.C., Annane D., Beale R.J., Bellinghan G.J., Bernard G.R., Chiche J.D., Coopersmith C., De Backer D.P., French C.J., Fujishima S., Gerlach H., Hidalgo J.L., Hollenberg S.M., Jones A.E, Karnad D.R., Kleinpell R.M., Koh Y., Lisboa T.C., Machado F.R., Marini J.J., Marshall J.C., Mazuski J.E., McIntyre L.A., McLean A.S., Mehta S., Moreno R.P., Myburgh J., Navalesi P., Nishida O., Osborn T.M., Perner A., Plunkett C.M., Ranieri M., Schorr C.A., Seckel M.A., Seymour C.W., Shieh L., Shukri K.A., Simpson S.Q., Singer M., Thompson B.T., Townsend S.R., Van der Poll T., Vincent J.L., Wiersinga W.J., Zimmerman J.L., Dellinger R.P. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock. 2016. Intensive Care Med. 2017; 43: 304–377. PMID: 28101605, DOI: 10.1007/s00134-017-4683-6.
3. Malbrain M.L., Marik P.E., Witters I., Cordemans C., Kirkpatrick A.W., Roberts D.J., Van Regenmortel N. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014; 46 (5): 361–380. PMID: 25432556, DOI: 10.5603/AIT.2014.0060
4. Colling K.P., Banton K.L., Beilman G.J. Vasopressors in Sepsis. Surg Infect (Larchmt). 2018; 19 (2): 202–207. PMID: 29336676, DOI: 10.1089/sur.2017.255
5. Сепсис: классификация, клинико-диагностическая концепция и лечение. Под редакцией академика РАН Б.Р. Гельфанда — 4-е издание, дополненное и переработанное — Москва: ООО «Медицинское информационное агенство». 2017 г. ISBN 978-5-8948-1988-4
6. Lambden S., Creagh-Brown B.C., Hunt J., Summers C., Forni L.G. Definitions and pathophysiology of vasoplegic shock. Critical Care. 2018; 22: 174–181. DOI: 10.1186/s13054-018-2102-1
7. Ильина Я. Ю., Фот Е. В., Изотова Н. Н., Сметкин А. А., Волков Д. А., Яковенко Э. А., Чернова Т. В., Кузьков В. В., Киров М. Ю. Взаимосвязь эндотелиального гликокаликса с гемодинамикой и метаболизмом у пациентов с септическим шоком и при кардиохирургических операциях с искусственным кровообращением. Вестник анестезиологии и реаниматологии. 2018; 15 (6): 10–19. DOI: 10.21292/2078-5658-2018-15-6-10-19
8. Seddon M.D., Chowienczyk P.J., Brett S.E., Casadei B., Shah A.M. Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo. Circulation. 2008; 117 (15): 1991–1996. PMID: 18391107, DOI: 10.1161/CIRCULATIONAHA.107.744540
9. Lange M., Enkhbaatar P., Nakano Y., Traber D.L. Role of nitric oxide in shock: the large animal perspective. Front Bioscie. 2009; 14: 1979– 1989. PMID: 19273179, DOI: 10.2741/3357
10. Palmer R.M., Ferrige A.G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987; 327 (6122): 524–526. PMID: 3495737, DOI: 10.1038/327524a0
11. Landry D.W., Oliver J.A. The pathogenesis of vasodilatory shock. N Engl J Med. 2001; 345: 588–595. DOI: 10.1056/NEJMra002709
12. Riedo F.X., Munford R.S., Campbell W.B., Reisch J.S., Chien K.R., Gerard R.D. Deacylated lipopolysaccharide inhibits plasminogen activator inhibitor-1, prostacyclin, and prostaglandin E2 induction by lipopolysaccharide but not by tumor necrosis factor-alpha. J Immunol. 1990; 144 (9): 3506–3512. PMID: 2109778
13. Parkington H.C., Coleman H.A., Tare M. Prostacyclin and endothelium dependent hyperpolarization. Pharmacol Res. 2004; 49 (6): 509–514. PMID: 15026028, DOI: 10.1016/j.phrs.2003.11.012.
14. Narumiya S., Sugimoto Y., Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev. 1999; 79 (4): 1193–1226. PMID: 10508233, DOI: 10.1152/physrev.1999.79.4.1193
15. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988; 332 (6163): 411–415. PMID: 2451132, DOI: 10.1038/332411a0
16. Luscher T.F., Barton M. Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation. 2000; 102 (19): 2434–2440. PMID: 11067800, DOI: 10.1161/01.cir.102.19.2434
17. Ильина Я.Ю., Фот Е.В., Кузьков В.В., Киров М.Ю. Сепсис-индуцированное повреждение эндотелиального гликокаликса (обзор литературы). Вестник интенсивной терапии имени А.И. Салтанова. 2019; 2: 32–39 DOI: 10.21320/1818-474X-2019-2-32-39
18. Yeager M.E., Belchenko D.D., Nguyen C.M., Colvin K.L., Ivy D.D., Stenmark K.R. Endothelin-1, the unfolded protein response, and persistent inflammation: role of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2012; 46 (1): 14–22. PMID: 21778413, DOI: 10.1165/rcmb.2010-0506OC.
19. Kimmoun A., Novy E., Auchet T., Ducrocq N., Levy B. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care. 2015; 19: 175–187. PMID: 25887061, DOI: 10.1186/s13054-015-0896-7
20. Russell J.A. Bench-to-bedside review: vasopressin in the management of septic shock. Crit Care. 2011; 15 (4): 226–244. PMID: 21892977, DOI: 10.1186/cc8224
21. Velissaris D., Karamouzos V., Ktenopoulos N., Pierrakos C., Karanikolas M. The use of sodium bicarbonate in the treatment of acidosis in sepsis: a literature update on a long term debate. Crit Care Res Pract. 2015; 2015: 605–830. PMID: 26294968, DOI: 10.1155/2015/605830
22. Förstermann U., Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006; 113 (13): 1708–1714. PMID: 16585403, DOI: 10.1161/CIRCULATIONAHA.105.602532
23. Marik P.E., Khangoora V., Rivera R., Hooper M.H., Catravas J. Hydrocortisone, vitamin C and thiamine for the treatment of severe Sepsis and septic shock: a retrospective before-after study. Chest. 2017; 151 (6): 1229–1238. PMID: 27940189, DOI: 10.1016/j.chest.2016.11.036.
24. Liaudet L., Rosenblatt-Velin N., Pacher P. Role of peroxynitrite in the cardiovascular dysfunction of septic shock. Curr Vasc Pharmacol. 2013; 11 (2): 196–207. PMID: 23506498, DOI: 10.2174/1570161111311020009.
25. Szabo C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov. 2007; 6 (11): 917–935. PMID: 17948022, DOI: 10.1038/nrd2425
27. Ali M.Y., Ping C.Y., Mok Y.Y., Ling L., Whiteman M., Bhatia M., Moore P.K. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br J Pharmacol. 2006; 149 (6): 625–634. PMID: 17016507, DOI: 10.1038/sj.bjp.0706906
28. Keung E.C., Li Q. Lactate activates ATP-sensitive potassium channels in Guinea pig ventricular myocytes. J Clin Invest. 1991; 88 (5): 1772– 1777. PMID: 1939661, DOI: 10.1172/JCI115497
29. Levy B., Fritz C., Tahon E., Jacquot A., Auchet T., Kimmoun A. Vasoplegia treatments: the past, the present, and the future. Crit Care. 2018; 22 (1): 52–62. PMID: 29486781, DOI: 10.1186/s13054-018-1967-3.
30. Kimmoun A., Ducrocq N., Levy B. Mechanisms of vascular hyporesponsiveness in septic shock. Curr Vasc Pharmacol. 2013; 11: 139–149. PMID: 23506493, DOI: 10.2174/1570161111311020004
31. Ghosh S., Liu M.S. Changes in alpha-adrenergic receptors in dog livers during endotoxic shock. J Surg Res. 1983; 34 (3): 239–245. PMID: 6300552, DOI: 10.1016/0022-4804(83)90066-5.
32. Barrett L.K, Singer M., Clapp L.H. Vasopressin: mechanisms of action on the vasculature in health and in septic shock. Crit Care Med. 2007; 35: 33–40. PMID: 17133186, DOI: 10.1097/01.CCM.0000251127.45385.CD
33. Morales D., Madigan J., Cullinane S., Chen J., Heath M., Oz M., Oliver J.A., Landry D.W. Reversal by vasopressin of intractable hypotension in the late phase of hemorrhagic shock. Circulation. 1999; 100: 226–229. PMID: 10411844, DOI: 10.1161/01.cir.100.3.226
34. Spink J., Cohen J., Evans T.J. The cytokine responsive vascular smooth muscle cell enhancer of inducible nitric oxide synthase. Activation by nuclear factor-kappa B. J Biol Chem. 1995; 270 (49): 29541–7. PMID: 7493996, DOI: 10.1074/jbc.270.49.29541
35. Boillot A., Massol J., Maupoil V., Grelier R., Bernard B., Capellier G., Berthelot A., Barale F. Myocardial and vascular adrenergic alterations in a rat model of endotoxin shock: reversal by an antitumor necrosis factor-alpha monoclonal antibody. Crit Care Med. 1997; 25: 504–511. PMID: 9118669, DOI: 10.1097/00003246-199703000-00021
36. Сапичева Ю.Ю., Лихванцев В.В., Петровская Э.Л., Лопатин А.Ф. Тактика ведения пациентов с сепсисом и септическим шоком в многопрофильном стационаре. Москва: Москва; 2015. 35 с. ISBN 978-5-98511-299-3
37. Rachoin J.-S. and Dellinger R. Timing of norepinephrine in septic patients: NOT too little too late. Crit Care. 2014; 18 (6): 691–692. PMID: 25672524, DOI: 10.1186/s13054-014-0691-x.
38. Arslantas M.K., Gul F., Kararmaz A., Sungur F., Ayanoglu H.O., Cinel I. Early administration of low dose norepinephrine for the prevention of organ dysfunctions in patients with sepsis. Intensive Care Med Exp. 2015; 3 (1): A417–418. PMCID: PMC4798466, DOI: 10.1186/2197-425X-3-S1-A417-418
39. Dubin A., Lattanzio B., Gatti L. The spectrum of cardiovascular effects of dobutamine — from healthy subjects to septic shock patients. Rev Bras Ter Intensiva. 2017; 29 (4): 490–498. PMID: 29340539, DOI: 10.5935/0103-507X.20170068
40. Avni T., Lador A., Lev S., Leibovici L., Paul M., Grossman A. Vasopressors for the treatment of septic shock: systematic review and metaanalysis. PLoS One. 2015; 10 (8): e0129305. PMID: 26237037, DOI: 10.1371/journal.pone.0129305
41. Myburgh J.A., Higgins A., Jovanovska A., Lipman J., Ramakrishnan N., Santamaria J. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008; 34 (12): 2226–2234. PMID: 18654759, DOI 10.1007/s00134-008-1219-0.
42. Zhou F., Mao Z., Zeng X., Kang H., Liu H., Pan L., Hou P.C. Vasopressors in septic shock: a systematic review and network meta-analysis. Ther Clin Risk Manag. 2015; 11: 1047–1059. PMID: 26203253, DOI: 10.2147/TCRM.S80060
43. Nagendran M., Maruthappu M., Gordon A.C., Gurusamy K.S. Comparative safety and efficacy of vasopressors for mortality in septic shock: A network meta-analysis. J Intensive Care Soc. 2016; 17 (2): 136–145. PMID: 28979478, DOI: 10.1177/1751143715620203
44. De Backer D., Biston P., Devriendt J., Madl C., Chochrad D., Aldecoa C., Brasseur A., Defrance P., Gottignies P., Vincent J.L. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010; 362 (9): 779–789. PMID: 20200382, DOI: 10.1056/NEJ-Moa0907118
45. Galley H.F. Renal-dose dopamine: will the message now get through? Lancet. 2000; 356 (9248): 2112–2113. PMID: 11191531, DOI: 10.1016/S0140-6736(00)03484-X
46. De Backer D., Aldecoa C., Njimi H., Vincent J.L. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med. 2012; 40 (3): 725–730. PMID: 22036860, DOI: 10.1097/CCM.0b013e31823778ee
47. Stratton L., Berlin D.A., Arbo J.A. Vasopressors and Inotropes in Sepsis. Emerg Med Clin North Am. 2017; 35 (1): 75–91. PMID: 27908339, DOI: 10.1016/j.emc.2016.09.005.
48. Jain G., Singh D.K. Comparison of phenylephrine and norepinephrine in the management of dopamine-resistant septic shock. Indian J Crit Care Med. 2010; 14 (1): 29–34. PMID: 20606906, DOI: 10.4103/0972-5229.63033.
49. Дмитриева Н.В., Петухова И.Н., Громова Е.Г. Сепсис: избранные вопросы диагностики и лечения. Москва: ИД «АБВпресс». 2018: 416 с. ISBN 978-5-903018-55-0
50. Beurton A., Ducrocq N., Auchet. T, Joineau-Groubatch F., Falanga A., Kimmoun A., Girerd N., Fay R., Vanhuyse F., Tran N., Levy B. Beneficial effects of norepinephrine alone on cardiovascular function and tissue oxygenation in a pig model of cardiogenic shock. Shock. 2016; 46 (2): 214–218. PMID: 26849625, DOI: 10.1097/SHK.0000000000000579
51. Khanna A., English S.W., Wang X.S., Ham K., Tumlin J., Szerlip H., Busse L.W., Altaweel L., Albertson T.E., Mackey C., McCurdy M.T., Boldt D.W., Chock S., Young P.J., Krell K., Wunderink R.G., Ostermann M., Murugan R., Gong M.N., Panwar R., Hästbacka J., Favory R., Venkatesh B., Thompson B.T., Bellomo R., Jensen J., Kroll S., Chawla L.S., Tidmarsh G.F., Deane A.M. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017; 377 (5): 419–430. PMID: 28528561, DOI: 10.1056/NEJMoa1704154
52. Bassi E., Park M., Azevedo L.C. Therapeutic strategies for high-dose vasopressor-dependent shock. Crit Care Res Pract. 2013; 2013: 654– 708. PMID: 24151551, DOI: 10.1155/2013/654708
53. Jentzer J.C., Coons J.C., Link C.B., Schmidhofer M. Pharmacotherapy update on the use of vasopressors and inotropes in the intensive care unit. J Cardiovasc Pharmacol Ther. 2015; 20 (3): 249–260. PMID: 25432872, DOI: 10.1177/1074248414559838
54. Auchet T., Regnier M.-A., Girerd N., Levy B. Outcome of patients with septic shock and high-dose vasopressor therapy. Ann Intensive Care. 2017; 7: 43–51. PMID: 28425079, DOI: 10.1186/s13613-017-0261-x
55. Shin J.Y., Roh S.G., Lee K.M., Yang K.M. Ischemic Necrosis of Upper Lip, and All Fingers and Toes After Norepinephrine Use. J Craniofac Surg. 2016; 27 (2): 453–454. PMID: 26854781, DOI: 10.1097/SCS.0000000000002463.
56. Cox J., Roche S. Vasopressors and development of pressure ulcers in adult critical care patients. Am J Crit Care. 2015; 24 (6): 501–510. PMID: 26523008, DOI: 10.4037/ajcc2015123
57. Medina-Concepción A., del Cristo Acosta-Ramos M., Pérez-García I., García-Díaz A., Plasencia-Hernández C., Díaz-Melián A., Jiménez-Sosa A. Effect of infused norepinephrine dosage on pressure ulcers in perianesthesia care unit patients: a pilot study. J Perianesth Nurs. 2011; 26 (1): 25–34. PMID: 21276546, DOI: 10.1016/j.jopan.2010.11.002
58. Theaker C., Mannan M., Ives N., Soni N. Risk factors for pressure sores in the critically ill. Anaesthesia. 2000; 55 (3): 221–224. PMID: 10671839, DOI: 10.1046/j.1365-2044.2000.01216.x
59. Yamamura H., Kawazoe Y., Miyamoto K., Yamamoto T., Ohta Y., Morimoto T. Effect of norepinephrine dosage on mortality in patients with septic shock. J Intensive Care. 2018; 6: 12–18. PMID: 29497535, DOI: 10.1186/s40560-018-0280-1
60. Martin C., Medam S., Antonini F., Alingrin J., Haddam M., Meyssignac B., Vigne C., Zieleskiewicz L., Leone M. Norepinephrine: not too much, too long. Shock. 2015; 44 (4): 305–309. PMID: 26125087, DOI: 10.1097/SHK.0000000000000426.
61. Jenkins C.R., Gomersall C.D., Leung P., Joynt G.M. Outcome of patients receiving high dose vasopressor therapy: a retrospective cohort study. Anaesth Intensive Care. 2009; 37 (2): 286–289. PMID: 19400494, DOI: 10.1177/0310057X0903700212.
62. Wu J.Y., Stollings J.L., Wheeler A.P., Semler M.W., Rice T.W. Efficacy and Outcomes After Vasopressin Guideline Implementation in Septic Shock. Ann Pharmacother. 2017; 51 (1) 13–20. PMID: 27630192, DOI: 10.1177/1060028016669163
63. Козлов И. А., Тюрин И. Н., Раутбарт С. А. Ранние гемодинамические предикторы летального исхода абдоминального сепсиса. Вестник анестезиологии и реаниматологии. 2018; 15 (2): 6–15. DOI: 10.21292/2078-5658-2018-15-2-6-15
64. Enrico C., Kanoore Edul V.S., Vazquez A.R., Pein M.C., Pérez de la Hoz R.A., Ince C., Dubin A. Systemic and microcirculatory effects of dobutamine in patients with septic shock. J Crit Care. 2012; 27 (6): 630– 638. PMID: 23084135, DOI: 10.1016/j.jcrc.2012.08.002
65. Sato R., Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015; 3: 48–54. PMID: 26566443, DOI: 10.1186/s40560-015-0112-5
66. Marks J.A., Pascual J.L. Selepressin in septic shock: sharpening the VASST effects of vasopressin? Crit Care Med. 2014; 42 (7): 1747–1748. PMID: 24933060, DOI: 10.1097/CCM.0000000000000420.
67. Russell J.A., Fjell C., Hsu J.L., Lee T., Boyd J., Thair S., Singer J., Patterson A.J., Walley K.R. Vasopressin compared with norepinephrine augments the decline of plasma cytokine levels in septic shock. Am J Respir Crit Care Med. 2013; 188: 356–364. PMID: 23796235, DOI: 10.1164/rccm.201302-0355OC
68. Dünser M.W., Mayr A.J., Tür A., Pajk W., Barbara F., Knotzer H., Ulmer H., Hasibeder W.R. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003; 31 (5): 1394– 1398. PMID: 12771608, DOI: 10.1097/01.CCM.0000059722.94182.79.
69. Patel B.M., Chittock D.R., Russell J.A., Walley K.R. Beneficial affects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002; 96 (3): 576–582. PMID: 11873030, DOI: 10.1097/00000542-200203000-00011
70. Xiao X., Zhang J., Wang Y., Zhou J., Zhu Y., Jiang D., Liu L., Li T. Effects of terlipressin on patients with sepsis via improving tissue blood flow. J Surg Res. 2016; 200 (1): 274–282. PMID: 26253455, DOI: 10.1016/j.jss.2015.07.016
71. Bihari S., Prakash S., Bersten A. Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42 (2): 671–674. PMID: 25233186
72. Hammond D.A, Ficek O.A., Painter J.T., McCain K., Cullen J., Brotherton A.L., Kakkera K., Chopra D., Meena N. Prospective, open-label trial of early, concomitant vasopressin and norepinephrine therapy versus initial norepinephrine monotherapy in septic shock. Pharmacotherapy. 2018; 38 (5): 531–538. PMID: 29600824, DOI: 10.1002/phar.2105.
73. Morelli A., Ertmer C., Rehberg S., Lange M., Orecchioni A., Cecchini V., Bachetoni A., D’Alessandro M., Van Aken H., Pietropaoli P., Westphal M. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Crit Care. 2009; 13 (4): R130–143. PMID: 19664253, DOI: 10.1186/cc7990
74. Zhou F.H., Song Q. Clinical trials comparing norepinephrine with vasopressin in patients with septic shock: a meta-analysis. Mil Med Res. 2014; 1: 6–12. PMID: 25722864, DOI: 10.1186/2054-9369-1-6
75. Russell J.A., Walley K.R., Singer J., Gordon A.C., Hebert P.C., Cooper D.J., Holmes C.L., Mehta S., Granton J.T., Storms M.M., Cook D.J., Presneill J.J., Ayers D. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008; 358 (9): 877–887. PMID: 18305265, DOI: 10.1056/NEJMoa067373.
76. O’Brien A., Clapp L., Singer M. Terlipressin for norepinephrine-resistant septic shock. Lancet. 2002; 359 (9313): 1209–1210. PMID: 11955542, DOI: 10.1016/S0140-6736(02)08225-9
77. Svoboda P., Scheer P., Kantorova I., Doubek J., Dudra J., Radvan M., Radvanova J. Terlipressin in the treatment of late phase catecholamine-resistant septic shock. Hepato-gastroenterology. 2012; 59 (116): 1043–1047. PMID: 22580654, DOI: 10.5754/hge10550
78. Asfar P., Hauser B., Ivanyi Z., Ehrmann U., Kick J., Albicini M., Vogt J., Wachter U., Bruckner U.B., Radermacher P., Bracht H. Low-dose terlipressin during long-term hyperdynamic porcine endotoxemia: effects on hepatosplanchnic perfusion, oxygen exchange, and metabolism. Crit Care Med. 2005; 33 (2): 373–380. PMID: 15699842, DOI: 10.1097/01.ccm.0000152253.45901.fb
79. Morelli A., Donati A., Ertmer C., Rehberg S., Kampmeier T., Orecchioni A., Di Russo A., D’Egidio A., Landoni G., Lombrano M.R., Botticelli L., Valentini A., Zangrillo A., Pietropaoli P., Westphal M. Effects of vasopressinergic receptor agonists on sublingual microcirculation in norepinephrine-dependent septic shock. Crit Care. 2011; 15 (5): R217– 226. PMID: 21929764, DOI: 10.1186/cc10453
80. Choudhury A., Kedarisetty C.K., Vashishtha C., Saini D., Kumar S., Maiwall R., Sharma M.K., Bhadoria A.S., Kumar G., Joshi Y.K., Sarin S.K. A randomized trial comparing terlipressin and noradrenaline in patients with cirrhosis and septic shock. Liver Int. 2017; 37 (4): 552–561. PMID: 27633962, DOI: 10.1111/liv.13252.
81. Morelli A., Ertmer C., Lange M., Dunser M., Rehberg S., Van Aken H., Pietropaoli P., Westphal M. Effects of short-term simultaneous infusion of dobutamine and terlipressin in patients with septic shock: the DOBUPRESS study. Br J Anaesth. 2008; 100 (4): 494–503. PMID: 18308741, DOI: 10.1093/bja/aen017
82. Zhu Y., Huang H., Xi X., Du B. Terlipressin for septic shock patients: a meta-analysis of randomized controlled study. Journal of Intensive Care. 2019; 7: 16–24. DOI: 10.1186/s40560-019-0369-1
83. Russell J.A., Vincent J.L., Kjolbye A.L., Olsson H., Blemings O., Spapen H., Carl P., Laterre P.-F., Grundermar L. Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Crit Care. 2017; 21 (1): 213–222. PMID: 28807037. DOI: 10.1186/s13054-017-1798-7.
84. Gutteling J., Armand R.J. Girbes. Vasoactive medication and RCTs: an impossible marriage. ICU Management & Practice. 2018; 18 (3): 164–170.
85. Chawla L.S., Busse L., Brasha-Mitchell E., Davison D., Honig J., Alotaibi Z., Seneff M.G. Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care. 2014; 18 (5): 534–542. PMID: 25286986, DOI: 10.1186/s13054-014-0534-9
86. Jentzer J.C., Vallabhajosyula S., Khanna A.K., Chawla L.S., Busse L.W., Kashani K.B. Management of Refractory Vasodilatory Shock. Chest. 2018; 154 (2): 416–426 PMID: 29329694, DOI: 10.1016/j.chest.2017.12.021.
87. Kwok E.S., Howes D. Use of methylene blue in sepsis: a systematic review. J Intensive Care Med. 2006; 21: 359–363. PMID: 17095500, DOI: 10.1177/0885066606290671
88. Kirov M.Y., Evgenov O.V., Evgenov N.V., Egorina E.M., Sovershaev M.A., Sveinbjørnsson B., Nedashkovsky E.V., Bjertnaes L.J. Infusion of methylene blue in human septic shock: a pilot, randomized, controlled study. Crit Care Med. 2001; 29: 1860–1867. PMID: 11588440, DOI: 10.1097/00003246-200110000-00002
89. Волков В.Е., Волков С.В. Роль глюкокортикойдных гормонов и вазопрессоров в комплексной терапии септического шока. Acta medica Eurasica. 2018; 4: 1–8
Для цитирования:
Кочкин А.А., Яворовский А.Г., Берикашвили Л.Б., Лихванцев В.В. Современная вазопрессорная терапия септического шока (обзор). Общая реаниматология. 2020;16(2):77-93. https://doi.org/10.15360/1813-9779-2020-2-77-93
For citation:
Kochkin A.A., Yavorovskiy A.G., Berikashvili L.B., Likhvantsev V.V. Modern Vasopressor Therapy of Septic Shock (Review). General Reanimatology. 2020;16(2):77-93. https://doi.org/10.15360/1813-9779-2020-2-77-93