Предел текучести что определяет

Предел текучести стали

За достаточно длительный период работы, связанной с металлом, я понял, что далеко не каждый человек может похвастаться возможностью предельно легко рассказать и показать, что же такое предел текучести.

Я же постараюсь достаточно быстро и без особых проблем рассказать все, что сам сумел понять за годы работы в этой отрасли. Всем устроиться поудобнее, сейчас мы начнём.

Текучесть металла

Механические свойства металла, крайне важны для каждого конструктора, который использует их для своей работы. Что касательно данной особенности, то она в обязательном порядке влияет на максимально допустимую нагрузку на деталь, либо конструкцию. При повышении показателя возникает деформация, в некоторых случаях конструкция может быть полностью разрушена. Стоит понимать, что данная проблема может в свою очередь привести к очень серьезным разрушениям и к человеческим жертвам.

Если говорить о пределе текучести, то это, по сути, максимально допустимая нагрузка, которая возможна, до момента разрушения конструкции. Чем выше допустимый предел, тем выше вероятность устойчивости всей конструкции.

Если говорить с практической точки зрения, то здесь в первую очередь речь идет о работоспособности материала либо изделия. Люди на протяжение длительного времени прогнозировали максимально допустимые нагрузки на определенные изделия и не только. Теория сопротивляемости металлов появилось только в начале 19 века, а до этого, все эти особенности определялись, что называется на практике.

В настоящее время, в век высоких технологий, справиться с поставленной задачей возможно даже с помощью специальных компьютерных программ.

Величина предела текучести металла

В то время, когда атомная физика начала развиваться в значительной степени, удалось рассчитать значение параметра путем теории. Что касательно данной работы, то ее впервые выполнил знаменитый Яков Френкель, еще в далеком 1924 году.

Предел текучести что определяет

Собственно говоря, его работа была достаточно сложной и действительно требующей внимания, именно по этой причине была изобретена особая формула, которая поможет всем справиться с поставленной задачей.

Величина текучести металла равна Тт=G/2тт, где G является модулем сдвига.

Для начала пластической деформации считалось, что будет достаточным, чтобы первая половина тела подверглась сдвигу относительно другой, до того эффекта, что возвращение в начальное положение невозможно.

Физический предел текучести

Если говорить более простым и понятным для каждого человека языком, то в настоящее время для каждого материала имеется своя характеристика этого важного показателя.

Физический предел текучести, равен значению напряжения, при этом, невзирая на деформацию, удельная нагрузка совершенно не изменяется, или же меняется, но в незначительной степени. Это необходимо понимать в обязательном порядке, поскольку именно данное значение имеет огромное значение.

Условный предел текучести

Значительная часть металлов, а также сплавов при работах на разрыв показывают слабо выраженную площадку текучести, либо совершенно никакой текучести. Именно в этом случае речь и идет о так называемом условном пределе текучести. Чаще всего речь идет о напряжении, при котором имеется деформация в 0.2 процента.

Если говорить о таких материалах, то в данном случае речь идет о бронзе, дюралюминий и так далее. В том случае, если материал пластичный, то и показатель остаточной деформации будет высоким. Что касательно пластичных материалов, то здесь можно выделить медь, латунь, алюминий и так далее.

Предел текучести стали

Если говорить о стали, то ни для кого не секрет, что данный материал является одним из наиболее популярных и востребованных металлов, по этой причине и со стороны специалистов имеется достаточно высокий предел внимания в смысле нагрузок.

Что касательно стальных сооружений, то они в свою очередь действительно серьезным образом подвергаются нагрузкам. Тем не менее, вам необходимо понимать, что металл должен обязательно сопротивляться нагрузкам, иметь высокий показатель безопасности и так далее.

Предел текучести что определяет

Также сталь должна иметь высокий показатель механических свойств. Сбалансированность в данном случае должна быть одной из главных особенностей.

Предел текучести стали является одним из главных показателей, на который в обязательном порядке необходимо обращать пристальное внимание.

Влияние содержания углерода на свойства сталей

Изменение физических свойств материалов определяется наличием углерода. В том случае, если присутствует до 1.2 процентов углерода, то получается добиться наиболее прочного материала.

Тем не менее, нужно понимать, что более высокий показатель содержания углерода приводит к не самым положительным последствиям. К примеру, снижается свариваемость и предельная деформация. А это, очень важный показатель, на который в обязательном порядке стоит обратить внимание.

Очень надеюсь, что вам действительно было интересно и полезно!

Источник

Условный предел текучести формула

Пределом текучести называют механическую характеристику материала, характеризующую напряжение, при котором деформации продолжают расти без увеличения нагрузки.

Обозначение σ т Единица измерения – Паскаль [Па] либо кратные [МПа].

На диаграмме напряжений (рис. 1) обозначается точкой, в которой начинается практически горизонтальный участок диаграммы, называемый площадкой текучести.

Предел текучести что определяет

Рис. 1. Предел текучести

Это важный параметр, с помощью которого рассчитываются допустимые напряжения для пластичных материалов.

После прохождения предела текучести в металле образца начинают происходить необратимые изменения, перестраивается кристаллическая решетка металла, появляются значительные пластические деформации. При этом металл самоупрочняется, об этом говорит то, что после площадки текучести деформации растут при возрастающем значении растягивающей силы.

Условный предел текучести

В случаях, когда на диаграмме напряжений нет выраженной площадки текучести, определяют так называемый условный предел текучести

σ 0,2. Это величина напряжений, при которых относительные остаточные деформации равны 0,2%.

Рис. 2. Условный предел текучести

Для его определения (рис. 2) вдоль оси ε откладывается значение равное 0,2%, откуда проводится луч параллельный начальному участку диаграммы напряжений.

Точка пересечения луча с линией диаграммы есть условный предел текучести для данного материала.

Изделия из стали востребованы во всех отраслях народного хозяйства. Сталь используется при строительстве домов, мостов и других сооружений. При создании той или иной стальной конструкции учитываются прочностные характеристики. Одной из них является предел текучести стали. Его определение позволяет увеличить срок службы металлического изделия.



Текучесть металлов. Факторы, определяющие наличие зуба текучести

Текучесть — свойство тел пластически или вязко деформироваться под действием напряжений.

Основой современной теории тезкой текучести, которую еще нельзя считать окончательно установившейся, является все то же положение, выдвинутое Коттреллом: зуб и площадка текучести обусловлены резким увеличением числа подвижных дислокаций в начале пластического течения. Это значит, что для их появления требуется выполнение двух условий: 1) в исходном образце число свободных дислокаций должно быть очень малым, и 2) оно должно иметь возможность быстро увеличиться по тому или иному механизму в самом начале пластической деформации.

Если продеформировать железный образец, например до точки, разгрузить его и тут же вновь растянуть, то зуба и площадки текучести не возникнет, потому что после предварительного растяжения в новом исходном состоянии образец содержал множество подвижных, свободных от примесных атмосфер дислокаций. Если теперь после разгрузки от точки А образец выдержать при комнатной или слегка повышенной температуре, т.е. дать время для конденсации примесей на дислокациях, то при новом растяжении на диаграмме опять появится зуб и площадка текучести. Необходима конденсация примесей на дислокациях, тогда снова получим зуб текучести.

Теория площадки и зуба текучести

Основой современной теории тезкой текучести, которую еще нельзя считать окончательно установившейся, является все то же положение, выдвинутое Коттреллом: зуб и площадка текучести обусловлены резким увеличением числа подвижных дислокаций в начале пластического течения. Это значит, что для их появления требуется выполнение двух условий: 1) в исходном образце число свободных дислокаций должно быть очень малым, и 2) оно должно иметь возможность быстро увеличиться по тому или иному механизму в самом начале пластической деформации.

Упрочнение при торможении дислокаций

Дислокации связаны атмосферами (распределением атомов вокруг дислокации), которые не могут следовать за дислокацией. Для отрыва дислокации от атмосферы требуется сила, большая, чем для ее движения. Следовательно, если дислокация «заторможена» атмосферами, то для дальнейшей деформации нужно создать большее напряжение. Это ведет к образованию «зуба текучести» и упрочнению металла.

Так же: упрочнение происходит при увеличении плотности дислокаций на границах зерен, до их отрыва и движения

Дислокация — линейный дефект, образующий внутри кристалла зону сдвига. Бывает краевая (линейный сдвиг кристалла) и винтовая (сдвиг кристалла по плоскости).

Лекция 8

Кратко рассмотрим, какие основные стадии накопления повреждений свойственны периоду зарождения трещин при кратковременном статическом деформировании.

Первая стадия — стадия микротекучести. Это стадия простирается от начала нагружения до возникновения первых линий скольжения на площадке текучести. На этой стадии определяются такие характеристики как предел пропорциональности и предел упругости. Несмотря на то, что остаточная макродеформации на этой стадии практически равна нулю, в металле протекает микропластическая деформация, причем наиболее интенсивно в приповерх­ностных слоях металла глубиной порядка размера зерна. Это связано с тем, что в приповерхностных слоях металла в благоприятно ориентированных зернах пластическое течение начинается раньше, чем во внутренних объемах металла. Причина такого поведения связана с рядом факторов: особенностью закреп­ления приповерхностных источников дислокации (имеющих одну точку закрепления), у которых критическое напряжение начала их работы значи­тельно ниже, чем у источников в объеме; наличием в поверхностном слое более грубой, чем в объеме, дислокационной сетки Франка и в этом случае для генерирования дислокаций требуется меньшее напряжение; наличием поверхностных концентраторов напряжения; различием скоростей движения дислокаций у поверхности и внутри металла и рядом других факторов. Внутри металла на этой стадии наблюдается движение отдельных дислокаций и локальный процесс размножения дислокаций в благоприятно ориентированных зернах, преимущественно в области границ зерен. Для металлических материалов с физическим пределом текучести окончание этой стадии четко фиксируется началом негомогенной деформации Людерса-Чернова.

Вторая стадия — стадия текучести, на которой наблюдается негомогенная деформация в виде прохождения по всей рабочей зоне образца фронта Людерса — Чернова. В металлах, проявляющих площадку текучести при статическом растяжении, гетерогенная деформация на площадке текучести, происходящая путем лавинообразного распространения пластического течения, связана с быстрым размножением дислокаций на линии продвигающегося фронта деформации. Плотность дислокаций в этой зоне возрастает от исходной в отожженном материале (107 – 108 см-2) до величины порядка 1010 см-2. Позади фронта деформации средняя плотность дислокаций остается затем практически постоянной в течении всего времени деформации на площадке текучести и начинает увеличиваться вновь лишь с последующим ростом напряжений по окончании стадии текучести и перехода в стадию деформационного упрочнения. Основным источником возникновения новых дислокаций на фронте текучести являются границы зерен и другие поверхности раздела. Степень пластической деформации поликристаллических металлов на площадке текучести неоднородна и зависит от ориентации отдельных зерен. В наиболее деформированных зернах уже действует множественное скольжение и возникает дислокационная структура с признаками ячеистой.

И на этой стадии эволюция дислокационной структуры также более существенна в приповерхностных слоях металла и области границ зерен. С точки зрения синергетического подхода резкий физический предел текучести можно рассматривать как точку бифуркации, а сам переход от упругой деформации к пластической, как аналог неравновесного фазового перехода II рода, хотя есть мнение, что при процессах пластической деформации и разрушения проявляются особенности фазовых переходов обоих типов.

В основе современной теории площадки текучести и зуба текучести лежит идея Коттрелла о резком увеличении числа подвижных дислокаций в начале пластического течения. Для этого требуется два условия: 1) в исходном образце число подвижных дислокаций должно быть очень малым; 2) оно должно иметь возможность быстро увеличиваться. Резко увеличится число подвижных дислокаций может за счет следующих факторов: а) разблокировки дислокаций от атмосфер: б) образования новых дислокаций; в) размножения дислокаций при их взаимодействии. Было показано, что появление площадки текучести на кривых деформирования металлических материалов может быть также объяснено барьерным эффектом приповерхностного слоя. Более прочный приповерхностный слой может быть создан предварительно путем поверхностного упрочнения или сформироваться в непосредственно в процессе пластической деформации за счет опережающего пластического течения приповерхностных слоев в металлических материалах.

Третья стадия — стадия деформационного упрочнения. На этой стадии в металлах продолжается увеличиваться плотность дислокаций в условиях сдвигообразования по нескольким плоскостям скольжения и формируется дислокационная ячеистая структура с критической плотностью дислокаций 1013 …1014 см-2 (рис 2.7, в). Эта дислокационная структура является диссипативной и ее образование связано с термодинамической неустойчивостью системы в точке бифуркации, когда, например, хаотичная структура перейдет на новый более дифференцированный и более высокий уровень упорядоченности или организации. Кульман — Вильсдорф такие структуры называет низкоэнергетическими дислокационными структурами, для которых характерно наличие объемов, практически свободных от дислокаций, с граничными областями, в которых плотность дислокаций очень высока. Следует отметить, что уже в самом начале стадии деформационного упрочнения в локальных объемах металла формируется области с критической плотностью дислокаций, в которых после определенной степени пластической деформации зарождаются субмикротрещины порядка 100 нм. И. А. Одингом и Ю. П. Либеровым на этой стадии было обнаружено критическое напряжение, при котором на поверхности металла появляются субмикротрещины размером 1-2 мкм. Близкий по физическому смыслу критерий рассмотрен в работах Л. М. Рыбаковой и Б. А. Прусакова, однако кривая растяжения в этом случае строится в координатах S — 5 с определением истинных напряжения и деформации. При этом кривая растяжения выглядит в виде линейных участков с разным углом наклона.

Описанная выше периодичность и стадийность разрушения при кратковременном статическом растяжении характерна для пластичных металлических материалов. Естественно, что в зависимости от структурного состояния материалов и условий деформирования (высокие и низкие температуры, скорость деформирования, окружающая среда) характер разрушения может изменяться, однако сохраняются общие закономерности стадийности накоплений повреждений.

Лекция 9



Предел текучести – общее определение

В процессе эксплуатации любое сооружение испытывает нагрузки. Под влиянием атмосферных явлений и других неблагоприятных факторов стальные конструкции подвергаются комбинированным нагрузкам, к числу которых относятся сжатие, растяжение и удары.

Стальные элементы чаще всего используются при возведении несущих стен, на которые оказывается основная нагрузка. В целях экономии материалов конструкторы стремятся уменьшить диаметр металлической арматуры таким образом, чтобы не допустить снижения несущей способности возводимого сооружения.

Выполнить это условие можно, если на этапе проектирования сооружения произвести правильный расчет прочности и пластичности. В первую очередь при расчетах учитывается предел текучести материала. Данный параметр обозначает напряжение, при котором происходит пластическая деформация детали без увеличения нагрузки.

Предел текучести измеряется в Паскалях. Его определение позволяет рассчитать максимальную нагрузку, которую способна выдержать пластичная сталь. Превышение этого предела вызывает необратимый процесс деформации и разрушения кристаллической решетки.

Состав стальных сплавов

Свойства металла зависят от сформированной кристаллической решетки, которая, в свою очередь, определяется содержанием углерода. Зависимость типов решетки от количества углерода хорошо прослеживается на структурной диаграмме. Если, например, в решетке стали насчитывается до 0.06% углерода, то это классический феррит, который имеет зернистую структуру. Такой материал непрочный, но текучий и имеет большой предел ударной вязкости.

По структуре стали делятся на:

Добавки углерода и прочность

Закон аддитивности подтверждается процентными изменениями цементита и феррита в стали. Если количество углеродной добавки составляет около 1,2%, то предел текучести стального материала увеличивается и повышается твердость, прочность и температуростойкость. При последующем увеличении содержания углерода технические параметры ухудшаются. Сталь плохо сваривается и неохотно поддается штамповке. Самым лучшим образом при сварке ведут себя сплавы с небольшим содержанием углерода.

Читать также: Кладочные сетки для кирпичной кладки

Марганец и кремний

В виде добавки, чтобы увеличить степень раскисления, дополнительно добавляют марганец. Кроме того, этот элемент уменьшает вредное воздействие серы. Содержание марганца обычно не более 0.8% и он не влияет на технологические свойства сплава. Присутствует как твердый компонент.

Кремний тоже особо не влияет на характеристики металла. Он необходим для увеличения качества сварки деталей. Содержание этого элемента не превышает 0.38% и он добавляется во время процесса раскисления.

Сера и фосфор

Сера содержится в виде хрупких сульфитов. Повышенное количество этого элемента влияет на механические показатели сплава. Чем больше серы, тем хуже пластичность, текучесть и вязкость сплава. Если превышен предел в 0.06%, то изделие сильнее подвержено коррозии и становится способным к сильному истиранию.

Наличие фосфора увеличивает показатель текучести, но при этом уменьшается пластичность и вязкость. В общем, завышенное содержание фосфора значительно ухудшает качество металла. Особенно вредно сказывается на характеристиках совместное высокое содержание фосфора и углерода. Допустимыми пределами содержания фосфора считаются значения от 0.025 до 0.044%.

Азот и кислород

Это неметаллические примеси, которые понижают механические свойства сплава. Если содержание кислорода больше чем 0.03%, то металл быстрее стареет, падают значения пластичности и вязкости. Азотные добавки увеличивают прочность, но в этом случае предел текучести уменьшается. Увеличенное содержание азота делает сталь ломкой и способствует быстрому старению металлической конструкции.

Поведение легирующих добавок

Для улучшения всех физических показателей стали, в сплав добавляют специальные легирующие элементы. Такими добавками могут быть вольфрам, молибден, никель, хром, титан и ванадий. Совместное добавление в необходимых пропорциях, дает самые приемлемые результаты.

Легирование значительно повышает показатель текучести, ударной вязкости и препятствует деформации и растрескиванию.

Как рассчитывается величина текучести стали

Первые расчеты величины текучести металла были выполнены в 30-х годах прошлого столетия советским ученым Яковом Френкелем. В их основу была положена прочность межатомных связей. Ученому удалось определить, какое напряжение требуется для начала пластической деформации простых тел.

Для расчета данной величины применяется следующая формула:

ττ=G/2π, где величина G является модулем сдвига, определяющим устойчивость межатомных связей.

Как физик-теоретик, Френкель предположил, что материалы состоят из кристаллов, между которыми есть пространство. Там в определенном порядке расположены атомы. Чтобы достичь пластической деформации, необходимо разорвать межатомные связи в плоскости, разделяющей половинки тела.

Ряды атомов сместятся и половинки тела разорвутся, если на них оказать напряжение, величина которого соответствует определенному значению. Если воздействие будет оказываться и дальше, атомы одной половинки потеряют связь с атомами другой половинки.

Отчасти Френкель оказался прав. Только разрушение произойдет не между половинками тела, то есть посередине, а в том месте, где структура материала неоднородна.

Для каждого вида металла существует несколько значений предела текучести.

Физический предел текучести. Данной величиной обозначают силу напряжения, при которой тело деформируется без изменения прилагаемой нагрузки.

Как проводятся испытания на производствах

Для проведения испытаний, целью которых является определение текучести материала, берут цилиндрическую заготовку диаметром 20 мм и длиной более 10 мм. На детали делают насечки для получения отрезка длиной 10 мм. Сама заготовка должна быть больше этой длины для того, чтобы ее можно было захватить с двух сторон.

Деталь зажимают в тиски и начинают растягивать, постепенно увеличивая силу растяжения. В процессе произведения нагрузки производят замеры растущего удлинения образца. Полученные данные заносят в график, называемый диаграммой условного растяжения.

Если на заготовку оказывается небольшая нагрузка, она растягивается в обе стороны пропорционально. По мере увеличения силы растяжения достигается предел пропорциональности, после чего деталь растягивается неравномерно. Предел текучести стали определяется в тот момент, когда материал уже не может вернуться к первоначальной длине.

Существуют Государственные Стандарты и Технические Условия, в которых значения предела текучести разделены на четыре класса:

Определение пластичности

Показатель пластичности является не менее важным параметром, который обязательно учитывается в процессе проектирования конструкций. Он определяется двумя параметрами:

Чтобы рассчитать остаточное удлинение, производят замер двух частей детали после разрыва. Длину каждой части складывают, а затем определяют процентное соотношение к первоначальной длине. У более прочных металлических сплавов этот показатель меньше.

Предел текучести что определяет

Определение хрупкости

Хрупкость – это свойство, противоположное пластичности. Показатель хрупкости зависит от множества факторов. К ним относятся:

Изменение этих условий приводит к изменению показателя хрупкости. К примеру, чугун – хрупкий материал. Но если чугунную деталь зажать со всех сторон, она способна перенести значительные нагрузки. А стальной прут с насечками становится невероятно хрупким.

Предел текучести что определяет

Определение прочности

Прочность – это характеристика металла, определяющая его способность выдерживать нагрузки, не разрушаясь полностью. Для испытаний берут деталь и создают для нее условия, максимально приближенные к эксплуатационным, путем постепенного увеличения нагрузок.

Предел текучести что определяет

Видео по теме: Испытание стали разных марок

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

Предел текучести что определяет

Предел текучести (σт)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Предел выносливости или предел усталости (σR)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7 ). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ.

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.

Предел текучести что определяет

Усталость стали

Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.

Читать также: Уроки сварки инвертором ресанта для начинающих видео

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Предел пропорциональности (σ)

Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.

Предел текучести что определяет

Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *