Предел прочности и предел выносливости в чем разница
Предел прочности
Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].
Предел текучести (σт)
Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.
После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.
Предел выносливости или предел усталости (σR)
Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7 ). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ0.
Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.
Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:
Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:
Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.
Предел пропорциональности (σ)
Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.
Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).
Предел прочности стали при сжатии и растяжении: разбираемся по порядку
Величины предела прочности
Статический предел прочности
Статический предел прочности, также часто называемый просто пределом прочности есть пороговая величина постоянного механического напряжения, превышая который постоянное механическое напряжение разрушит некое тело из конкретного материала. Согласно ГОСТ 1497-84 «Методы испытаний на растяжение», более корректным термином является временное сопротивление разрушению — напряжение, соответствующее наибольшему усилию, предшествующему разрыву образца при (статических) механических испытаниях. Термин происходит от представления, по которому материал может бесконечно долго выдержать любую статическую нагрузку, если она создаёт напряжения, меньшие статического предела прочности, то есть не превышающие временное сопротивление. При нагрузке, соответствующей временному сопротивлению (или даже превышающей её — в реальных и квазистатических испытаниях), материал разрушится (произойдет дробление испытываемого образца на несколько частей) спустя какой-то конечный промежуток времени (возможно, что и практически сразу, — то есть не дольше чем за 10 с).
Динамический предел прочности
Динамический предел прочности есть пороговая величина переменного механического напряжения (например при ударном воздействии), превышая которую переменное механическое напряжение разрушит тело из конкретного материала. В случае динамического воздействия на это тело время его нагружения часто не превышает нескольких секунд от начала нагружения до момента разрушения. В такой ситуации соответствующая характеристика называется также условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.
Предел прочности на сжатие
Предел прочности на сжатие есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) сожмет тело из конкретного материала — тело разрушится или неприемлемо деформируется.
Предел прочности на растяжение
Предел прочности на растяжение есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) разорвет тело из конкретного материала. (На практике, для детали какой либо конструкции достаточно и неприемлемого истончения детали.)
Внутренние усилия при растяжении-сжатии
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Другие прочностные параметры
Мерами прочности также могут быть предел текучести, предел пропорциональности, предел упругости, предел выносливости, предел прочности на сдвиг и др. так как для выхода конкретной детали из строя (приведения детали в негодное к использованию состояние) часто достаточно и чрезмерно большого изменения размеров детали. При этом деталь может и не разрушиться, а лишь только деформироваться. Эти показатели практически никогда не подразумеваются под термином «предел прочности».
Напряжения при растяжении-сжатии
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Прочностные особенности некоторых материалов
Значения предельных напряжений (пределов прочности) на растяжение и на сжатие у многих материалов обычно различаются.
У композитов предел прочности на растяжение обычно больше предела прочности на сжатие. Для керамики (и других хрупких материалов) — наоборот, характерно многократное превышение пределом прочности на сжатие предела прочности на растяжение. Для металлов, металлических сплавов, многих пластиков, как правило, характерно равенство предела прочности на сжатие и предела прочности на растяжение. В большей степени это связано не с физикой материалов, а с особенностями нагружения, схемами напряженного состояния при испытаниях и с возможностью пластической деформации перед разрушением.
Некоторые значения прочности на растяжение в МПа (1 кгс/мм² = 100 кгс/см² ≈ 10 МН/м² = 10 МПа) (1 МПа = 1 Н/мм² ≈ 10 кгс/см²):
Материалы | , МПа | |
---|---|---|
Бор | 5700 | 0,083 |
Графит (нитевидный кристалл) | 2401 | 0,024 |
Сапфир (нитевидный кристалл) | 1500 | 0,028 |
Железо (нитевидный кристалл) | 1300 | 0,044 |
Тянутая проволока из высокоуглеродистой стали | 420 | 0,02 |
Тянутая проволока из вольфрама | 380 | 0,009 |
Стекловолокно | 360 | 0,035 |
Мягкая сталь | 60 | 0,003 |
Нейлон | 50 | 0,0025 |
Предел прочности чугуна
Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ0.
Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.
Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:
Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:
Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.
Расчеты на прочность и жесткость при растяжении и сжатии
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); — коэффициент запаса прочности. Для пластических материалов = = 1,2 … 2,5; для хрупких материалов = = 2 … 5, а для древесины = 8 ÷ 12.
Механические свойства материалов
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость – свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Расчет на жесткость при растяжении и сжатии
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Как определяют свойства металлов
Классы прочности и их обозначения
Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:
Пределы выносливости
Предел выносливости не является постоянной, присущей данному материалу характеристикой, и подвержен гораздо большим колебаниям, чем механические характеристики при статическом нагружении. Он зависит от условий нагружения, типа цикла, в частности, от степени его асимметрии, формы и размеров детали, технологии ее изготовления, состояния поверхности и других факторов.
Таким образом, при испытании на усталость стандартных образцов определяется собственно не предел выносливости материала, а предел выносливости образца, изготовленного из данного материала. При переходе от образца к реальной детали следует вводить ряд поправок, учитывающих форму и размеры детали, состояние ее поверхности и т. д. В связи с этим возникло понятие сопротивление усталости деталей. В этом понимании предел выносливости далеко отходит от первоначального понятия как характеристики материала, хотя предел выносливости, определенный на стандартных образцах, по-прежнему приводят в числе основных прочностных показателей материала.
Пределы выносливости на изгиб имеют минимальное значение при симметричном знакопеременном цикле, повышаются с увеличением степени его асимметрии, возрастают в области пульсирующих нагрузок, а с уменьшением амплитуды пульсаций приближаются к показателям статической прочности материала. Пределы выносливости при растяжении примерно е 1,1—1,5 раза больше, а при кручении в 1,5—2 раза меньше, чем в случае симметричного знакопеременного изгиба.
Между характеристиками сопротивления усталости и статической прочности нет определенной зависимости. Наиболее устойчивые соотношения существуют между σ–1 (пределом выносливости на изгиб с симметричным циклом) и σв (пределом прочности), а также σ0,2 (условным пределом текучести) при статическом растяжении.
По опытным данным, эти соотношения следующие:
— для стальных отливок, высокопрочного чугуна и медных сплавов
— для алюминиевых и магниевых сплавов
На основании обработки результатов испытаний на усталость улучшенных конструкционных сталей Шимек получил следующие зависимости (рис. 163) пределов выносливости от предела прочности:
— на растяжение-сжатие при симметричном цикле
— на растяжение-сжатие при пульсирующем цикле
— на изгиб при симметричном цикле
— на кручение при симметричном цикле
— на кручение при пульсирующем цикле
Пределы выносливости при симметричном цикле связаны между собой следующими ориентировочными зависимостями:
Пределы выносливости при пульсирующем и знакопеременном симметричном циклах связаны следующими приближенными зависимостями:
Пределы выносливости при асимметричных циклах можно приближенно определить по эмпирическим зависимостям между наибольшим напряжением цикла σmax, средним напряжением цикла σm, и предельной амплитудой цикла σa. Например,
где σв — предел прочности при статическом растяжении.
Приведенные соотношения дают представление лишь об общих закономерностях. Для расчетов необходимо пользоваться справочными данными, приводимыми в литературе по циклической долговечности.
Кривая усталости. Предел выносливости
Для оценки прочности материала при действии повторно-переменных нагрузок используется специальная механическая характеристика, определяемая опытным путем, и называемая пределом выносливости.
Пределом выносливости материала называется наибольшее значение максимального по величине напряжения цикла, при котором материал может без разрушения выдержать базовое число циклов напряжений.
Наиболее опасным для материала является симметричный цикл, который легче осуществить технически при опытных испытаниях. Опытные испытания по определению предела выносливости материала сопровождаются построением кривой выносливости.
При проектировании элементов конструкции‚ срок службы которых ограничен‚ за основную механическую характеристику прочности материала принимается ограниченный предел выносливости. Это максимальное напряжение выше предела выносливости‚ которое материал может выдержать без усталостного разрушения только ограниченное число циклов‚ соответствующее сроку службы элемента конструкции.
σmax
σ׳max 1
0 N1 N2 N3 N
Так как определение предела выносливости материала требует проведения испытания большого количества образцов с последующей статистической обработкой результатов‚ то в практических расчетах можно использовать эмпирические зависимости‚ выражающие предел выносливости материала с пределом прочности.
Характеристики прочности материалов
В чем заключается исследование?
Для исследования на статическое растяжение подготавливается образец металла цилиндрической формы или в виде пластины стандартных размеров, который равномерно растягивают с неизменной скоростью. Испытание заканчивается, когда образец разрывается на две части.
Во время растяжения датчики разрывной машины фиксируют прилагаемую нагрузку и размеры образца, и воспроизводят информацию в виде диаграммы. Для материалов разных классов прочности могут требоваться разные нагрузки, поэтому разрывные машины подразделяются на три основных уровня в зависимости от максимального растягивающего усилия в 5, 10 и 40 тонн.
Диаграмма растяжения материалов
Испытание на статическое растяжение устанавливает следующие основные прочностные характеристики исследуемого материала:
Предел прочности сталей
В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.
Читать также: Посудомоечная машина выдает ошибку
Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм 2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.
Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации):
Категории прочности сталей
Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести. Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.
Предел текучести
Наиболее интересный параметр — это предел текучести. В начале испытания, когда образец начинают растягивать, деформации в его структуре носят обратимый характер. То есть, если прекратить растяжение до определенного момента, исследуемый образец вернет свое прежнее состояние за счет упругой деформации.
Однако, после достижения «точки невозврата» металл уже не может упруго вернуться к своим изначальным размерам — начинается необратимая пластическая деформация. Напряжение, при котором это происходит, фиксируется аппаратурой, и впоследствии учитывается при описании прочностных характеристик образца.
Интересно, что при расчете несущих конструкций инженеры в основном опираются на предел текучести, а не на предел прочности металла.
Предел прочности металла
Предел прочности меди
. При комнатной температуре предел прочности отожжённой технической меди σВ=23 кгс/мм 2 [8]. С ростом температуры испытания предел прочности меди уменьшается. Легирующие элементы и примеси различным образом влияют на предел прочности меди, как увеличивая, так и уменьшая его.
Предел прочности алюминия
Пластическая деформация
Почти всегда пластические деформации при растяжении имеют локальный характер. Металл сужается и рвется в конкретном месте, чаще всего — в центральной части образца, где наблюдается максимальная объемная нагрузка. Под действием растягивающих напряжений на образце появляется так называемая «шейка», которая утоняется до тех пор, пока в структуре металла не начинают зарождаться микротрещины, и не происходит разрыв. Момент начала образования «шейки» характеризует предел прочности материала, при достижении которого на дальнейшее растяжение образца требуется приложение меньшего усилия за счет сужения площади поперечного сечения в области шейки.
Измерение – предел – прочность
Измерения предела прочности относятся к системам, тиксотропно восстановленным после полного механического разрушения. [1]
Измерение предела прочности и относительного удлинения производят по ГОСТ 10446 – 63 или по ГОСТ 1497 – 61 на образцах с расчетной длиной 200 мм, отобранных на расстоянии не менее 1 м от начала или конца бухты. [2]
Читать также: Ремонт кислородного редуктора своими руками
Для измерения предела прочности при статическом изгибе а пластмасс используют образцы, представляющие собой бруски длиной I 120 мм, шириной 615 мм и толщиной h 10 мм. Изгибающее усилие Р прикладывают к стальному пестику 1, располагаемому на середине образца. [4]
При измерении предела прочности гранулу равномерно сжимают вдоль одной оси. Давление увеличивают до разрушения гранулы. Предел прочности находят как а – Р / А, где Р – нагрузка, а А – площадь поперечного сечения. Дефекты поверхности сильно снижают прочность материалов. Не следует упускать из виду чистоту поверхности, так как трещины могут начать распространяться от частиц примеси к чистой поверхности. Напряжения, возникающие при охлаждении порошков и гранул после прокаливания, могут привести к образованию микротрещин, которые затем увеличиваются в условиях реакции. Если возможно, то нужно избегать быстрого охлаждения и циклических изменений температуры. Как указывалось ранее, микротрещины образуются также при дроблении. Пластическая деформация вязких металлов предотвращает развитие трещин в них. В поликристаллической керамике аналогичные процессы поглощения энергии не происходят, и образование трещин продолжается до разрушения. Поры могут предотвращать развитие трещин, поэтому оптимальная пористость желательна и с этой точки зрения. [5]
При измерении пределов прочности у пластичных систем при очень низких скоростях даже при сравнительно высоких степенях однородности напряженного состояния обычно бывает трудно установить, распространяется сдвиг равномерно по всему зазору или зона разрушения структурного каркаса локализуется в более или менее узком участке, прилегающем к измерительной поверхности, на которой действует наивысшее напряжение. [6]
На основе измерений предела прочности на растяжение, относительного удлинения и твердости Харрингтон [49] делает следующие выводы о влиянии акрилонитрила. [7]
Стандартная методика измерения предела прочности на сжатие не позволяет устанавливать одновременно и характеристики деформативности тампонажного камня, поскольку датчики можно прикрепить только к образцу с одним из размеров сечения не более 10 мм. [8]
Метод основан на измерении предела прочности на разрыв после разрушения и при последующем отдыхе. Установлено, что с увеличением концентрации нафтената алюминия улучшается механическая стабильность смазок. [9]
Механические свойства пленок определяются измерением предела прочности при растяжении, относительным удлинением при разрыве и модулем упругости. [10]
В табл. 36 представлены результаты измерения предела прочности однонаправленного материала при растяжении в направлении армирования. [12]
Таким образом, оказывается, что измерения предела прочности не характеризуют в достаточной мере условий разрушения материала, которые определяются структурными изменениями при предшествующем разрыву нагружении. Известно лишь очень ограниченное число экспериментов, в которых изучалось изменение вязкоупругих свойств полимера при нагружении до разрушения. Тем не менее имеющиеся результаты весьма интересны. Так, Нильсен [3] при исследовании образцов армированного стекловолокном полиамида обнаружил, что при деформациях, предшествующих разрушению, происходит заметное увеличение тангенса угла механических потерь и снижение модуля упругости. Поскольку частично кристаллические полимеры можно рассматривать как двухфазные системы, естественно предположить, что аналогичные изменения механических характеристик должны наблюдаться также в неармированных частично-кристаллических полимерных волокнах. [13]
Из-за различной плотности пропитываемых материалов изменчивость результатов измерения предела прочности на растяжение при изгибе проявляется по-разному, однако для всех пропитанных изделий она ниже, чем у непропитанных образцов. Снижение изменчивости объясняется меньшей дефектностью структуры материалов после пропитки, причем заметнее это проявляется у фибролита. [14]
Характеристики пластичности
Относительное удлинение — это разница между начальной и конечной длиной и растягиваемого образца, показывающая возможность металла пластически деформироваться до момента разрушения. У металлов с одинаковым пределом прочности относительное удлинение может различаться. Например, у ковкого чугуна марки КЧ50-5 этот показатель не превышает 5%, а у конструкционной стали 09Г2С достигает 20% при пределе прочности равном 490МПа для обоих материалов.
Металлургическая промышленность всегда стремится к созданию металлических материалов высокой прочности без потери пластичности, подбирая оптимальные химические составы стали, совершенствуя технологии производства. Для достижения высоких механических свойств, при сохранении того же состава и объемов изделия, подбираются уникальные режимы выплавки, механической, термической, химико-термической обработки для создания однородной, мелкозернистой, чистой и бездефектной структуры стали.
Динамическая прочность при циклических нагрузках
Характеристикой динамической прочности при повторно-переменных нагрузках является предел прочности (предел выносливости, усталости) материала, величина которого меньше величины статической прочности.
Максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение материала в течение заданного количества циклов нагрузки.
Величина предела прочности зависит от ряда факторов:
• вида, структуры и дефектов материала, • технологии изготовления и обработки, • среды и температуры испытаний, • состояния поверхности, • концентрации напряжений, • размеров образца, • режима нагрузки и т.д.
Предел прочности может изменяться в больших пределах – при самых неблагоприятных условиях может уменьшаться в 5-10 раз по сравнению с пределом прочности материала в обычных условиях. Эти изменения вызывают значительные сложности при проектировании машин и конструкций в связи с необходимостью исключения их усталостных разрушений.
Для каждого случая условий эксплуатации предел прочности определяется экспериментально в условиях действия переменных напряжений при определенном виде цикла изменения нагрузки.
Получение характеристик прочности
Характеристики прочности при увеличенных скоростях деформирования получают, используя пневмо-гидравлические устройства. Действие ударов и взрывов используют для деформирования с очень большими скоростями. Если скорость относительного деформирования меньше чем 104 с-1, кривую деформации определяют в квазистатических испытаниях, которые обеспечивают однородное напряженное состояние по всему объему рабочей части образца, при сохранении этой скорости. Влияние скорости деформирования незначительно для хрупких материалов высокой прочности и увеличивается с ростом их пластичности.
Наличие конструктивно-технологических концентраторов напряжений (отверстий, резких переходов форм, мест с неоднородной структурой материала) значительно снижает динамическую прочность элементов конструкции.