Правило что такое вычитаемое

Вычитание

Познакомимся с вычитанием.

Рассмотрим числовой ряд и вспомним, в каком порядке идут числа.

Правило что такое вычитаемое

Числа идут слева направо, по порядку, как при счёте.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Посмотри на числовой ряд, по которому идёт заяц.

Правило что такое вычитаемое

Какое действие выполняет заяц?

Вычитает число 6.

Из какого числа он вычитает число 6?

Из числа 9. Мы поставили зайчика на число 9.

В какую сторону он пойдёт?

Влево, потому что у него на табличке знак минус.

Сколько шагов влево сделает зайчик? 6.

На каком делении он остановится? На числе 3.

Когда вычитаем, становится меньше.

Чем левее, тем числа меньше.

Рассмотрим еще один пример.

Правило что такое вычитаемое

Какое действие выполняет заяц?

Вычитает число 3.

Из какого числа он вычитает число 3?

Из числа 7. Мы поставили зайчика на число 7.

В какую сторону он пойдёт?

Влево, потому что у него на табличке знак минус.

Сколько шагов влево сделает зайчик? 3.

На каком делении он остановится? На числе 4.

Когда вычитаем, становится меньше.

Чем левее, тем числа меньше.

Как называются числа при вычитании?

Правило что такое вычитаемое

Число, из которого вычитают, становится МЕНЬШЕ, уменьшается, поэтому его называют «уменьшаемое».

Число, которое вычитают, называют «вычитаемое».

Число, которое получается в результате вычитания, называют «разность».

Правило что такое вычитаемое

Правило что такое вычитаемое

У жонглёра было 9 шариков.

Когда несколько шариков упало, осталось ещё 5 шариков.

Сколько шариков упало?

Каким действием будем находить? Вычитанием.

Как называются числа при вычитании?

Как найти неизвестное вычитаемое

Правило что такое вычитаемое

У жонглера было 9 шариков. Когда несколько шариков упало, осталось 5. Упали, значит, убрали.

Решаем вычитанием. Что нужно найти?

Правило что такое вычитаемое

Нужно найти вычитаемое.

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Как найти неизвестное уменьшаемое

Правило что такое вычитаемое

Нужно найти уменьшаемое.

Чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое.

5 + 4 = 9

Проверка вычитания

Если к разности прибавить вычитаемое, получится уменьшаемое.

Именно эта связь между разностью, уменьшаемым и вычитаемым используют для проверки вычитания.

Правильно ли произведено вычисление? Можно проверить так:

20 + 15 = 35, мы к разности прибавили вычитаемое и получили уменьшаемое. Значит, вычисление произведено верно и пример решен правильно.

Поделись с друзьями в социальных сетях:

Источник

Свойства сложения и вычитания

Правило что такое вычитаемое

Свойства сложения

Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число

Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.

Слагаемые — это числа, единицы которых складываются.

Сумма — это число, которое получается в результате сложения.

Рассмотрим пример 2 + 5 = 7, в котором:

При этом саму запись (2 + 5) можно тоже назвать суммой.

Правило что такое вычитаемое

Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.

Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.

Свойства вычитания

Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.

Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.

Уменьшаемое — это число, из которого вычитают.

Вычитаемое — это число, которое вычитают.

Разность — это число, которое получается в результате вычитания.

Правило что такое вычитаемое

Примеры использования свойств сложения и вычитания

Мы узнали основные свойства сложения и вычитания — осталось попрактиковаться. Чтобы ничего не забыть, используйте эту шпаргалку:

Правило что такое вычитаемое

Пример 1

Вычислить сумму слагаемых с использованием разных свойств:

а) 4 + 3 + 8 = (4 + 3) + 8 = 7 + 8 = 15

б) 9 + 11 + 2 = (9 + 2) + 11 = 11 + 11 = 22

в) 30 + 0 + 13 = 30 + 13 = 43

Пример 2

Применить разные свойства при вычислении разности:

Пример 3

Найти значение выражения удобным способом:

а) 11 + 10 + 3 + 9 = (11 + 10) + (3 + 9) = 21 + 11 = 32

Источник

Общее представление о вычитании натуральных чисел

В рамках это материала мы разберемся с таким действием, как вычитание. Для начала мы попробуем дать общее представление о нем, пояснить сам смысл процесса вычитания. Потом введем и поясним необходимые обозначения и определения. В финальной части мы укажем, в решении каких задач нам может потребоваться вычитание.

Общий смысл процесса вычитания

Само по себе вычитание связано с разъединением некого множества на отдельные части. В этом смысле оно обратно сложению, которое, напротив, объединяет их (см. материал о сложении натуральных чисел).

Что конкретно это означает на практике?

Допустим, у нас есть некоторое количество шаров в вазе. Заберем из всей кучи один-два и положим в другое место. Тем самым мы совершили процесс вычитания, т.е. отняли от множества несколько предметов. То есть суть процесса вычитания состоит именно в исключении, отделении одних предметов от других.

Вернемся к сложению. Мы складываем одни числа с другими для того, чтобы получить сведения об их общем, суммарном количестве. А для чего мы вычитаем? Есть два подхода к пониманию сути этого процесса. От того, какой мы используем, будет зависеть смысл, придаваемый вычитаемому числу.

Для натуральных чисел результат вычитания говорит нам:

1) о том, сколько предметов останется, если убрать из их множества некое определенное количество;

2) о том, сколько нужно убрать предметов из заданного множества, чтобы получить требуемое количество.

Разберем сначала первый случай.

А во втором случае мы узнаем:

Ответ: 4

В этом смысле процесс вычитания натуральных чисел имеет смысл только тогда, когда вычитаемое число меньше, чем уменьшаемое. В самом деле, как можно убрать больше, чем у нас уже есть? В дальнейшем мы останемся в рамках этого ограничения, пока говорим о действиях с натуральными числами.

В результате вычитания у нас, разумеется, может получиться не только другое натуральное число, но и нуль, который говорит о полном отсутствии предметов. Это происходит тогда, когда уменьшаемое и вычитаемое равны. Получается, если мы уберем все предметы, которые у нас есть, то на столе не останется ни одного.

Основные понятия, связанные с вычитанием

Здесь мы укажем общепринятые обозначения и поясним их.

Выше мы уже использовали термины «уменьшаемое» и «вычитаемое». Легко понять, что они означают:

Уменьшаемое – это то, из чего вычитают, вычитаемое – то, которое вычитают.

Когда требуется определить, что получится в результате вычитания одного числа из другого, используются выражения: «вычислить разность», «найти разность», «вычесть одно число из другого», «отнять от одного числа другое».

Таким образом, весь процесс вычитания мы можем представить так: уменьшаемое минус вычитаемое равно разность.

Для решения каких задач нужно знать вычитание

С помощью вычитания можно решить широкий спектр задач. Перечислим их:

1. Найти количество предметов, которое получится после разбиения всего их множества на два других. Примером такой задачи может стать задача с шарами на столе, которую мы приводили в пункте о смысле процесса вычитания. Задачи с нахождением числа предметов, которое надо убрать из имеющегося множества, так же относятся в этому виду.

2. Решить задачи, в которых изменяются значения длины, объема, массы, времени и других измерений.

3. Узнать разницу между количеством предметов, которые входят в два разных множества, или разницу между двумя любыми величинами (скоростями, массами и др.)

Ответ: 10.

Возьмем пример с более сложными числами:

Источник

Что такое вычитаемое уменьшаемое и разность: правило

Существуют четыре основных арифметических действия: сложение, вычитание, умножение и деление. Они – основа математики, с их помощью производятся все остальные, более сложные вычисления. Сложение и вычитание – простейшие из них и взаимно противоположны. Но с терминами, используемыми при сложении, мы чаще сталкиваемся в жизни.

Говорим о «сложении усилий» при старании совместно получить нужный результат, о «слагаемых достигнутого успеха» и т.п. Названия же, связанные с вычитанием, остаются в пределах математики, редко появляясь в повседневной речи. Поэтому менее привычны слова вычитаемое, уменьшаемое, разность. Правило нахождения каждого из данных компонентов возможно применить лишь при понимании значения этих названий.

Значение терминов

В отличие от многих научных терминов, имеющих греческое, латинское или арабское происхождение, в данном случае используются слова с русскими корнями. Так что понять их значение несложно, а значит легко и запомнить, что каким термином обозначается.

Правило что такое вычитаемоеТермины

Что такое разность чисел в математике

Если присмотреться к самому названию, становится заметно, что оно имеет отношение к словам «разный», «разница». Из этого можно заключить, что имеется в виду установленная разница между количествами.

Это интересно! Как раскрыть модуль действительного числа и что это такое

Данное понятие в математике означает:

Обратите внимание! Если количества равны друг другу, то между ними нет разницы. Значит разность их равняется нулю.

Правило что такое вычитаемое

Что такое уменьшаемое и вычитаемое

Как следует из названия, уменьшаемое – это то, что делают меньше. А сделать количество меньшим можно, отняв от него часть. Таким образом, уменьшаемым называется число, от которого отнимают часть.

Вычитаемым, соответственно, называется то число, которое от него отнимают.

УменьшаемоеВычитаемоеРазность
1811=7
145=9
2622=4

Полезное видео: уменьшаемое, вычитаемое, разность

Правила нахождения неизвестного элемента

Разобравшись в терминах, несложно установить, по какому правилу находится каждый из элементов вычитания.

Поскольку разность – результат данного арифметического действия, то ее и находят с помощью этого действия, никаких других правил тут не требуется. Но они есть на случай, если неизвестен другой член математического выражения.

Это интересно! Уроки математики: умножение на ноль главное правило

Как найти уменьшаемое

Данным термином, как было выяснено, называют количество, из которого вычли часть. Но если одну вычли, а другая осталась в итоге, следовательно, из этих двух частей число и состоит. Получается, что найти неизвестное уменьшаемое можно, сложив два известных элемента.

Итак, в данном случае, чтобы найти неизвестное, следует выполнить сложение вычитаемого и разности:

?11=7

Искомое находится путем сложения известных элементов:

7+11=18

Так же и во всех подобных случаях:

?5=9
9+5=14
?22=4
4+22=26

Правило что такое вычитаемое

Как найти вычитаемое

Если целое состоит из двух частей (в данном случае количеств), то при вычитании одной из них в результате получится вторая. Таким образом, чтобы найти неизвестное вычитаемое, достаточно вместо него вычесть из целого разность.

18?=7

Из примера видно, что от 18 отняли некоторую величину, и осталось 7. Чтобы найти эту величину, надо от 18 отнять 7.

187=11

По тому же правилу решаются и другие подобные примеры.

14?=9
149=5
26?=4
264=22

Таким образом, зная точное значение названий, можно легко догадаться, по какому правилу следует искать каждый неизвестный элемент.

Это интересно! Как разложить на множители квадратный трехчлен: формула

Полезное видео: как найти неизвестное уменьшаемое

Вывод

Четыре основных арифметических действия – та база, на которой основываются все математические вычисления, от простых до самых сложных. Конечно, в наше время, когда люди стремятся перепоручить технике все вплоть до мыслительного процесса, привычнее и быстрее производить вычисления с помощью калькулятора. Но любое умение увеличивает независимость человека – от технических средств, от окружающих. Не обязательно делать математику своей специальностью, но обладать хотя бы минимальными знаниями и умениями – значит иметь дополнительную опору для собственной уверенности.

Источник

Вычитание натуральных чисел

Понятие «вычитание»

Обозначения

Правило что такое вычитаемое

Свойства вычитания натуральных чисел

1) При вычитании натуральных чисел уменьшаемое всегда должно быть больше вычитаемого.

2) Разность показывает на сколько больше уменьшаемое больше вычитаемого.

34 больше, чем 7 на 17 единиц.

3) Если вычитаемое равно 0, разность равна уменьшаемому.

4) Если от любого числа вычесть 1, то получим число предшествующее данному.

5) Вычитание натурального числа из суммы натуральных чисел.

Чтобы вычесть натуральное число из суммы натуральных чисел, необходимо сначала сложить числа, а затем вычесть данное натуральное число, или первым действием вычесть данное натуральное число из любого слагаемого, а к разности прибавить оставшееся слагаемое.

6) Вычитание суммы чисел из натурального числа.

Чтобы вычесть сумму чисел из натурального числа, необходимо сначала сложить два числа, после этого вычесть полученную сумму из данного числа, или вычесть из данного числа любое из слагаемых, поле этого вычесть второе.

Вычитание чисел с разными разрядами

Для того чтобы вычесть числа с разным разрядом, необходимо разложить числа по разрядам.

567 = 500 + 60 + 7 = 400 + 100 + 60 + 7

Из единиц вычтем единицы, из десятков десятки, из сотен сотни и т.д.

Поскольку из 60 нельзя вычесть 70, разложим 500 на 400 и 100, прибавим 100 к 60

Полученное число: 400 + 90 + 4 = 494.

Вычитание в столбик

Многозначные числа удобнее всего вычитать в столбик. Для того чтобы вычесть число из числа в столбик, необходимо:

1. Правильно записать числа. Первым записываем уменьшаемое, под уменьшаемым пишем вычитаемое, так чтобы каждый разряд вычитаемого находился строго под соответствующим разрядом вычитаемого. Слева поставим знак «-» под столбиком, состоящим из уменьшаемого и вычитаемого проводим черту

2. Справа налево последовательно вычитаем из разряда уменьшаемого соответствующий разряд вычитаемого. Результат запишем под чертой, это будет разность.

3 Если разряд уменьшаемого окажется меньше разряда вычитаемого занимаем 10 у разряда стоящего слева (см. рисунок).

Правило что такое вычитаемое

Вычитание с помощью координатного луча

Правило что такое вычитаемое

Для вычитания с помощью координатного луча, отметим точку соответствующую уменьшаемому, в нашем примере, это число 12. Для вычитания отсчитываем влево количество единичных отрезков равных вычитаемому (8). Получившаяся точка будет являться разницей (4).

Поделись с друзьями в социальных сетях:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *