Правда ли что в космосе холодно
Почему в космосе холодно, если Солнце горячее
Солнце находится на расстоянии около 150 миллионов километров от Земли, но мы можем чувствовать его тепло каждый день. Удивительно, как горящий объект издалека может излучать тепло на таком большом расстоянии.
Мы не говорим о температурах, которые едва регистрируют его присутствие. В 2019 году температура в Кувейте достигла 63 ° C под прямыми солнечными лучами. Если вы будете стоять при таких температурах в течение длительного периода, вы рискуете умереть от теплового удара.
Но больше всего озадачивает то, что космическое пространство остается холодным. Итак, почему пространство такое холодное, если Солнце такое жаркое?
Чтобы понять это удивительное явление, важно сначала распознать разницу между двумя терминами, которые часто используются взаимозаменяемо: тепло и температура.
Роль тепла и температуры
Эта передача тепла может происходить через три режима: проводимость, конвекция и излучение.
Теплопередача через проводимость происходит в твердых телах. Когда твердые частицы нагреваются, они начинают вибрировать и сталкиваться друг с другом, передавая тепло при этом от более горячих частиц к более холодным.
Когда обогреватель нагревает окружающий воздух, температура воздуха будет повышаться, и воздух поднимется до верха комнаты. Присутствующий сверху холодный воздух вынужден двигаться вниз и нагреваться, создавая конвекционный ток.
При комнатной температуре все объекты, включая нас, людей, излучают тепло в виде инфракрасных волн. Из-за излучения тепловизионные камеры могут обнаруживать объекты даже ночью.
Чем горячее объект, тем больше он будет излучать. Солнце является отличным примером теплового излучения, которое переносит тепло через солнечную систему.
Теперь, когда вы знаете разницу между теплом и температурой, мы очень близки к тому, чтобы ответить на вопрос, поставленный в заголовке этой статьи.
Теперь мы знаем, что температура может влиять только на материю. Однако в космосе недостаточно частиц, и это почти полный вакуум и бесконечное пространство.
Это означает, что передача тепла неэффективна. Невозможно передать тепло посредством проводимости или конвекции.
Излучение остается единственной возможностью.
Когда солнечное тепло в форме излучения падает на объект, атомы, составляющие объект, начинают поглощать энергию. Эта энергия начинает двигаться атомы вибрировать и заставлять их производить в процессе тепло.
Однако с этим явлением происходит нечто интересное. Поскольку нет возможности проводить тепло, температура объектов в пространстве будет оставаться неизменной в течение длительного времени.
Горячие предметы остаются горячими, а холодные остаются холодными.
Но когда солнечные лучи попадают в земную атмосферу, появляется много материи для возбуждения. Следовательно, мы чувствуем излучение солнца как тепло.
Это естественно вызывает вопрос: Что произойдет, если мы поместим что-то вне атмосферы Земли?
Космическое пространство может с легкостью заморозить или сжечь вас
Когда объект находится за пределами земной атмосферы и при прямом солнечном свете, она будет нагрета до около 120°C. Объекты вокруг Земли, и в космическом пространстве, которые не получают прямых солнечных лучей находятся в пределах 10°C.
Температура 10°C обусловлена нагревом некоторых молекул, покидающих земную атмосферу. Однако, если мы измерим температуру пустого пространства между небесными телами в космосе, это будет всего на 3 Кельвина выше абсолютного нуля.
Итак, главный вывод здесь заключается в том, что температуру Солнца можно почувствовать только в том случае, если есть материя, чтобы поглотить ее, в космосе почти нет материи, отсюда и холод.
Две стороны солнечного тепла
Мы знаем, что в затененных областях холодно. Лучшим примером является ночное время, когда температура снижается, так как в этой части Земли нет излучения.
Однако в космосе все немного по-другому. Да, объекты, которые скрыты от солнечного излучения, будут холоднее, чем пятна, которые получают солнечный свет, но разница довольно существенная.
Объект в космосе столкнется с двумя экстремальными температурами с двух сторон.
Но почему земля не имеет таких же эффектов? Благодаря нашей атмосфере инфракрасные волны от солнца отражаются, и те, которые входят в атмосферу Земли, равномерно распределены.
Вот почему мы чувствуем постепенное изменение температуры, а не крайнюю жару или холод.
Солнечный зонд «Паркер»
В апреле 2019 года зонд находился всего в 15 миллионах миль от Солнца. Чтобы защитить себя, он использовал теплозащитный экран.
Когда нагревать нечего, температура системы остается прежней. Это относится и к космосу. Солнечное излучение может проходить через него, но нет молекул или атомов, чтобы поглотить это тепло.
Даже когда скала нагревается выше 100°C излучением Солнца, пространство вокруг нее не будет поглощать никакой температуры по той же причине. Когда нет материи, передача температуры не происходит.
Следовательно, даже когда солнце излучает, пространство остается холодным как лед!
Какая температура в космосе?
Всем нам с самого детства известно, что в африканских странах обычно царит жаркая погода, а в Антарктиде — всегда холодно. Но задумывались ли вы когда-нибудь о том, насколько тепло или холодно в открытом космосе? Температура является результатом движения молекул, из которых состоят все материальные объекты — чем быстрее движутся эти крошечные частицы, тем объект горячее. Так как в космосе нет никаких частиц и он считается вакуумным пространством, понятие «температура» к нему совершенно не применимо. Однако, чтобы ответ на интересующий многих людей все-таки существовал, ученые уверяют, что температура космоса — это «абсолютный ноль». Но значит ли это, что космические корабли не нагреваются в космосе до высоких температур и там всегда относительно хорошая погода? Что-то не верится, поэтому давайте разбираться.
В открытом космосе не помогут ни шорты, ни шуба — нужен специальный костюм
Вакуум — это пространство, в котором нет никаких веществ, даже воздуха. С переводе с латинского, слово «vacuus» переводится как как «пустой».
Погода в космосе
Экстремальные условия космоса
Вообще, существует три способа передачи тепла:
Как вы уже догадались, в космосе объекты нагреваются под воздействием активности элементарных частиц — ведь мы уже выяснили, что температура является результатом движений молекул? Фотоны и другие элементарные частицы могут излучаться Солнцем и другими космическими объектами.
Насколько сильно и быстро будут нагреваться или охлаждаться попавшие в космос объекты, напрямую зависит от их местоположения относительно звезд и планет, размеров, формы и так далее. Например, летящий в космосе космический корабль будет буквально раскален со стороны Солнца, а его теневая сторона будет очень холодной. Чем дальше корабль находится от небесного светила — тем сильнее будет разница в степени нагрева.
При строительстве космических кораблей важно учитывать экстремальные изменения температур
Международная космическая станция постоянно находится под воздействием солнечного света. Сторона, которая обращена к Солнцу, нагревается до 260 градусов Цельсия. Теневая сторона, в свою очередь, охлаждена до 100 градусов Цельсия. Экипажу космической станции иногда приходится выходить на поверхность конструкции и подвергаться резким сменам температур. Поэтому их костюмы оснащены системой нагрева и охлаждения, благодаря которой исследователи космоса чувствуют себя относительно комфортно.
О том, какие бывают скафандры, недавно писал мой коллега Артем Сутягин. Оказывается, они бывают не только космическими.
Если вам интересны новости науки и технологий, подпишитесь на наш канал в Яндекс.Дзен. Там вы найдете материалы, которые не были опубликованы на сайте!
В общем если вы когда-нибудь фантастическим образом окажетесь в открытом космосе, вам понадобится костюм, внутри которого температура будет регулироваться автоматически. Но резкие изменения температуры — не единственная проблема, которая будет вас поджидать. В космическом пространстве человеческое тело терпит много изменений, о которых можно почитать в этом материале.
О космическом тепле и холоде
В жаркие летние дни самое время поговорить о жаре и холоде космоса. Благодаря научно-фантастическим фильмам, научно- и не очень научно-популярным передачам, у многих закрепилось убеждение, что космос — это невообразимо холодное место, в котором самое главное — найти как согреться. Но на самом деле все гораздо сложнее.
Фото космонавта Павла Виноградова
Чтобы разобраться тепло или холодно в космосе, надо сначала вернуться к азам физики. Итак, что такое тепло? Понятие температуры применимо к телам, чьи молекулы находятся в постоянном движении. При получении дополнительной энергии, молекулы начинают двигаться активнее, а при потере энергии — медленнее.
Из этого факта следует три вывода:
1) у вакуума температуры нет;
2) в вакууме есть только один способ теплопередачи – излучение;
3) объект в космосе, фактически группу движущихся молекул, можно охладить, если обеспечить контакт с группой медленно движущихся молекул или нагреть, обеспечив контакт с быстро движущейся группой.
Первый принцип используется в термосе, где вакуумные стенки удерживают температуру горячего чая и кофе. Точно так же перевозят сжиженный природный газ в танкерах. Второй принцип определяет так называемые условия внешнего теплообмена, то есть взаимодействие Солнца (и/или других источников излучения) и космического аппарата. Третий принцип используется при проектировании внутренней конструкции космических аппаратов.
Когда говорят о температуре космоса, то могут подразумевать две разные температуры: температуру рассеянного в пространстве газа или температуру тела, находящегося в космосе. Как все знают, в космосе вакуум, но это не совсем так. Почти все пространство там, по крайней мере внутри галактик, наполнено газом, просто он настолько сильно разрежен, что не оказывает почти никакого теплового воздействия на помещенное в него тело.
В разреженном космическом газе молекулы встречаются крайне редко, и воздействие их на макро тела, такие как спутники или космонавты, незначительно. Такой газ может быть разогрет до экстремальных температур, но из-за редкости молекул, космические путешественники его не почувствуют. Т.е. для большинства обычных космических аппаратов и кораблей совсем не важно какая температура у межпланетной и межзвездной среды: хоть 3 Кельвина, хоть 10000 градусов Цельсия.
Важно другое: что из себя представляет наше космическое тело, какой оно температуры, и какие источники излучения есть поблизости.
Главный источник теплового излучения в нашей Солнечной системе — это Солнце. И Земля довольно близко к нему, поэтому, на околоземных орбитах очень важно настроить «взаимоотношения» космического аппарата и Солнца.
Чаще всего рукотворные объекты в космосе стараются укутать в многослойное одеяло, не дающее теплу спутника уходить в космос и не позволяющее лучам Солнца поджаривать нежные внутренности аппарата. Многослойное одеяло называется ЭВТИ — экранно-вакуумная теплоизоляция, «золотая фольга», которая на самом деле не золотая и не фольга, а покрытая специальным сплавом полимерная пленка, похожая на ту, в которую заворачивают цветы.
Впрочем, в некоторых случаях и у некоторых производителей, ЭВТИ не похожа на фольгу, но выполняет ту же изолирующую функцию.
Иногда некоторые поверхности спутника специально оставляют открытыми для того, чтобы они или поглощали солнечное излучение, или отводили в космос тепло изнутри. Обычно в первом случае поверхности покрывают черной эмалью, сильно поглощающей излучение Солнца, а во втором – белой эмалью, хорошо отражающей лучи.
Бывают случаи, когда на борту космического аппарата приборы должны работать при очень низкой температуре. Например, обсерватории «Миллиметрон» и JWST будут наблюдать тепловое излучение Вселенной и для этого и зеркалам их бортовых телескопов, и приёмникам излучения нужно быть очень холодными. На JWST главное зеркало планируется охлаждать до — 173 градусов Цельсия, а на «Миллиметроне» — ещё ниже, до — 269 градусов Цельсия. Для того, чтобы Солнце не нагревало космические обсерватории, они укрываются так называемым радиационным экраном: своеобразным многослойным солнечным зонтиком, похожим на ЭВТИ.
Кстати, как раз для таких «холодных» спутников важным становится небольшой нагрев от разреженного космического газа и даже от заполняющих всю Вселенную фотонов реликтового излучения. Отчасти поэтому, что «Миллиметрон», что JWST отправляют подальше от теплой Земли в точку Лагранжа, за 1,5 млн км. Кроме солнечных зонтиков на этих научных спутниках будет сложная система с радиаторами и многоступенчатыми холодильниками.
Перегрев является одним из препятствий в создании космического аппарата с мощным ядерным источником энергии. Электричество на борту получается из теплоты с КПД гораздо меньше 100%, поэтому излишек тепла приходится сбрасывать в космос. Традиционные, используемые сейчас радиаторы были бы слишком большими и тяжелыми, поэтому сейчас в нашей стране проводятся работы по созданию капельных холодильников-излучателей, в которых теплоноситель в виде капелек пролетает через открытый космос и отдает ему тепло изучением.
Главный источник излучения в Солнечной системе – это Солнце, но планеты, их спутники, кометы и астероиды, вносят свой весомый вклад в тепловое состояние космического аппарата, который пролетает около них. Все эти небесные тела обладают своей температурой и являются источниками теплового излучения, которое, к тому же, взаимодействует со внешними поверхностями аппарата иначе, чем более «горячее» излучение Солнца. А ведь планеты еще и отражают солнечное излучение, причем планеты с плотной атмосферой отражают диффузно, безатмосферные небесные тела – по особому закону, а планеты с разреженной атмосферой типа Марса – ещё совершенно иначе.
При создании космических аппаратов требуется учитывать не только «взаимоотношения» аппарата и космоса, но и всех приборов и устройств внутри, а также и ориентацию спутников относительно источников излучения. Для того чтобы одни не нагревали других, а третьи не замерзали, и чтобы поддерживалась рабочая температура на борту, разрабатывается отдельная служебная система. Она называется «Система обеспечения теплового режима» или СОТР. В нее могут входить нагреватели и холодильники, радиаторы и тепловоды, датчики температуры и даже специальные компьютеры. Могут использоваться активные системы или пассивные, когда роль обогревателей выполняют работающие приборы, а радиатора — корпус аппарата. Именно такая простая и надежная система создана для частного российского спутника «Даурии Аэроспейс».
Более сложные активные системы задействуют циркулирующий теплоноситель или тепловые трубы, подобные тем, что часто используются для отвода тепла от центрального процессора к радиатору в компьютерах и ноутбуках.
Соблюдение теплового режима, зачастую, оказывается решающим фактором работоспособности аппарата. Например, чуткий к перепадам температуры «Луноход-2» погиб из-за какой-то смехотворной горсти черного реголита на своей крыше. Солнечное излучение, которое уже не отражалось теплоизоляцией, привело к перегреву оборудования и выходу из строя «лунного трактора».
В создании космических аппаратов и кораблей, соблюдением теплового режима занимаются отдельные инженерные специалисты по СОТР. Один из них — Александр Шаенко из «Даурии Аэроспейс», занимался спутником DX1, и он помог в создании данного материала. Сейчас Александр занялся чтением лекций о космонавтике и созданием собственного спутника, который послужит популяризации космоса, став самым ярким объектом в небе после Солнца и Луны.
Поэтому нам в «Даурии» нужен новый специалист по СОТР. Если у вас есть такой знакомый, пусть напишет в наш сколковский офис.
10 заблуждений о космосе, в которые стыдно верить
Эти мифы заботливо культивируются голливудскими фильмами и низкопробными фантастическими романами
Во многих фильмах можно увидеть такую картину: человек оказывается в открытом космосе без скафандра (либо с повреждённым скафандром) и быстро замерзает, превращаясь в хрупкую ледяную статую, трескающуюся от любого воздействия.
И если вы окажетесь в космосе без скафандра в тени планеты, то, скорее всего, испытаете лёгкую прохладу из‑за испарения воды с поверхности кожи. Но до твёрдого состояния точно не заморозитесь.
2. Люди могут лопнуть в космосе
Бытует мнение, что в вакууме или в атмосфере с низким давлением, например на Марсе, человек может взорваться, как воздушный шарик. Глаза вылезут из орбит, сосуды полопаются, и незадачливый астронавт превратится в кровавое месиво.
Эксперименты Some cardiovascular responses in anesthetized dogs during repeated decompressions to a near‑vacuum на собаках показали, что в вакууме можно без последствий находиться до полутора минут, и после этого организм быстро восстановится. А вот более длительное пребывание летально из‑за гипоксии, то есть нехватки кислорода.
3. У Луны есть тёмная сторона
Когда люди говорят «тёмная сторона Луны », то представляют себе мрачное место, куда никогда не падает солнечный свет. Наверное, именно поэтому там строят свои базы нацисты и десептиконы.
Что на самом деле. Все стороны Луны освещаются What Is the Dark Side of the Moon? Солнцем, и на ней есть день и ночь — правда, длятся они по две недели. Тем не менее у спутника Земли есть обратная сторона. Но из‑за того, что период вращения вокруг нашей планеты и вокруг собственной оси у Луны схожи, с Земли видно только одно её полушарие. А первые снимки другого были сделаны советской АМС «Луна‑3» ещё в 1959 году. И ничего особо таинственного там нет.
z_k Думаю, что немногие акцентировали на этом свое внимание. И мало, кто задумывался, почему «The Dark Side of the Moon»?
4. Чёрные дыры выглядят как воронки
Из‑за фильмов и картинок в интернете многие люди полагают, что чёрные дыры выглядят как вихрь, засасывающий всё вокруг себя. Или как воронка в раковине, куда стекает вода.
Что на самом деле. Впервые чёрную дыру показали реалистично в фильме «Интерстеллар», основываясь на теоретических моделях физика Кипа Торна. Уже позже NASA сделало первый её снимок с помощью системы из восьми радиотелескопов Event Horizon Telescope. В реальности чёрная дыра выглядит не как воронка, а как тёмная сфера, окружённая аккреционным диском из падающего на неё газа.
5. Солнце жёлтое
Если вы попросите кого‑нибудь нарисовать наше светило, то начинающий художник непременно возьмёт жёлтый карандаш. Взгляните на Солнце, и убедитесь, что оно имеет такой оттенок.
z_k Здесь все понятно. Всем хоть раз приходилось покупать лампы освещения. Если они 2700 градусов (цветовая температура), то они желтого свечения, если
6000 градусов, нетрудно догадаться о цвете нашего светила в космосе. Все остальные цветовые эффекты связаны с состоянием атмосферы Земли.
6. Первой в космос полетела собака Лайка
Кто первым полетел в космос? Конечно, Юрий Гагарин. А из братьев наших меньших? Собака по имени Лайка, это всем известно. Она была обычной дворнягой из приюта, отправившейся первой покорять космос.
Что на самом деле. Лайка действительно первой оказалась на орбите Земли. Но в космосе бывали живые существа и до неё. В феврале 1947 года американцы с помощью трофейной немецкой ракеты «Фау‑2» отправили в суборбитальный полёт несколько плодовых мушек (дрозофил), чтобы изучить на них воздействие космической радиации. Они долетели до высоты в 109 км, а границей космоса считается отметка в 80 км. Так что первыми его увидели мухи.
z_k Вопрос далеко не философский. Чего проще напихать в банку мух. И, не то же самое, отправить на орбиту собаку. Это две большие разницы.
7. NASA потратило миллиарды на пишущую в космосе ручку
Что на самом деле. Поначалу и американцы, и русские пользовались в космосе карандашами, но это приводило к ряду проблем: частицы графита отслаивались и попадали в воздушные фильтры космических кораблей. А специальную ручку изобрёл Пол Фишер из Fisher Pen Company, и сделал он это независимо от NASA. Мужчина продал ведомству 400 штук по 2,95 доллара за каждую.
Наши космонавты тоже пользовались такими ручками. В своё время их закупали для работы на станции «Мир». Кстати, если хотите, можете тоже приобрести себе космическую ручку.
8. Через пояс астероидов трудно пролететь
Помните, как в «Звёздных войнах» Хан Соло мастерски пилотировал свой «Тысячелетний сокол», чтобы пробраться через пояс астероидов? Он умудрился обогнуть множество этих космических тел, да ещё и от погони имперских истребителей оторвался, хотя ежесекундно рисковал врезаться в парящие повсюду каменные глыбы.
Что на самом деле. В нашей Солнечной системе тоже есть свой пояс астероидов между орбитами Марса и Юпитера. Астрономы не уверены, сколько там каменных глыб, и называют приблизительное число в 10 миллионов. Но вы, даже не будучи крутым пилотом вроде Соло, легко пролетите сквозь них. Потому что среднее расстояние между астероидами в поясе — полтора миллиона километров. Это примерно в четыре раза больше, чем расстояние между Землёй и Луной.
Поэтому, чтобы в реальности врезаться в астероид, понадобится немалое старание и тщательные орбитальные манёвры. Вероятность не то что столкновения, но и просто незапланированного сближения космического корабля с каменной глыбой составляет New Horizons Crosses The Asteroid Belt менее чем один к миллиарду.
z_k Здесь все просто, важно только представлять массштабы космоса. Примерно та же ситуация в кольцах Сатурна.
9. Космические корабли летают по прямой
В фильмах космические аппараты легко перемещаются из одного места в другое, просто развернувшись прямо к цели и включив двигатели. Точно так же, как автомобили или корабли на Земле. А если космолёту надо сесть на планету, он просто устремляется в её атмосферу на полной скорости.
Что на самом деле. В реальности Ценный дар небесной механики космические аппараты двигаются от одной орбиты к другой по дугообразной гомановской траектории. И у них при этом отключены двигатели. Они включаются два раза, для разгона в начале и для торможения в конце, остальной путь корабль проделывает по инерции.
Если хотите самостоятельно поуправлять шаттлом и вживую увидеть движение по гомановской траектории, попробуйте поиграть в космический симулятор Kerbal Space Program. Он даёт наглядное представление об основах орбитальной механики.
Да, и ещё: корабли, собирающиеся приземлиться, сходят с орбиты, развернувшись двигателями по ходу движения, чтобы затормозить. В голливудских блокбастерах вроде «Прометея» такого не покажут, чтобы у зрителя не возникло вопроса, почему челноки летают задом наперёд.
z_k Здесь все сложно. И обычный человек вряд ли в состоянии представить себе, что лететь нужно не на планету, а в точку, где она появится в нужное время. Еще сложнее представить себе планетарную пращу, чтобы понять, как можно ускориться, не прикладывая к этому никаких усилий.
10. Летом тепло, потому что Земля ближе к Солнцу
Смена времён года вызвана меняющимся расстоянием от Земли до Солнца. Логично, правда? К сожалению, иногда так думают не только маленькие дети, но и вполне взрослые люди.
Что на самом деле. Орбита Земли не совсем круглая — она эллиптическая. Наша планета достигает перигелия (точки на орбите, ближайшей к Солнцу) в январе и афелия (самой дальней точки от Солнца) примерно через шесть месяцев. Если бы от этого зависела погода, у нас было бы лето в январе и зима в июле.
Сезоны меняются What causes the seasons? из‑за наклона оси вращения Земли относительно её орбитальной плоскости (эклиптики). Движение по орбите действительно вызывает температурные колебания в пределах 5 °С, но этого недостаточно, чтобы устроить смену времён года.
z_k Человек, знающий, что такое апогелий и перигелий может быть сбит с толку. Диссонанс возникает лишь тогда, когда мы понимаем, что времена года в южном и северном полушарии не зависят от удаленности Земли от нашего Светила. Но, вспомнив, что угол наклона оси вращения нашей планеты от оси эклиптики равен 23 градусам, мы все расставляем по местам.