Позистор для чего нужен

Что такое термистор и позистор и где они применяются

Терморезистором называется полупроводниковый компонент с температурозависимым электрическим сопротивлением. Изобретенный в далеком 1930 году ученым Самюэлем Рубеном, по сей день данный компонент находит самое широкое применение в технике.

Позистор для чего нужен

Непосредственно основной резистивный элемент получают посредством порошковой металлургии, обрабатывая халькогениды, галогениды и оксиды определенных металлов, придавая им различные формы, например форму дисков или стержней различных размеров, больших шайб, средних трубок, тонких пластинок, маленьких бусинок, размерами от единиц микрон до десятков миллиметров.

Позистор для чего нужен

Материалами для терморезисторов сегодня служат: смеси поликристаллических оксидов переходных металлов, таких как кобальт, марганец, медь и никель, соединений AIIIBV-типа, а также легированных, стеклообразных полупроводников, таких как кремний и германий, и некоторых других веществ. Примечательны позисторы из твердых растворов на базе титаната бария.

Терморезисторы в целом можно классифицировать на:

Низкотемпературного класса (рабочая температура ниже 170 К);

Среднетемпературного класса (рабочая температура от 170 К до 510 К);

Высокотемпературного класса (рабочая температура от 570 К и выше);

Отдельный класс высокотемпературных (рабочая температура от 900 К до 1300 К).

Все эти элементы, как термисторы, так и позисторы, могут работать при разнообразных климатических внешних условиях и при существенных физических внешних и токовых нагрузках. Однако в жестких термоцикличных режимах, со временем меняются их исходные термоэлектрические характеристики, как то номинальное сопротивление при комнатной температуре и температурный коэффициент сопротивления.

Данные приборы применяются в качестве переменных резисторов, управляемых напряжением, приложенным к нагревательному элементу терморезистора.

Позистор для чего нужен

В зависимости от того, как выбрана рабочая точка на ВАХ конкретного компонента, определяется и режим работы терморезистора в схеме. А сама ВАХ связана с конструктивными особенностями и с приложенной к корпусу компонента температурой.

Для контроля за вариациями температур и с целью компенсации динамически меняющихся параметров, таких как протекающий ток и приложенное напряжение в электрических цепях, изменяющихся вслед за изменениями температурных условий, применяют терморезисторы с выставлением рабочей точки на линейном участке ВАХ.

Позистор для чего нужен

Но рабочая точка выставляется традиционно на спадающем участке ВАХ (NTC-термисторы), если термистор применяется, например, в качестве пускового устройства, реле времени, в системе отслеживания и измерения интенсивности СВЧ-излучения, в системах пожарной сигнализации, термического контроля, в установках управления расходом сыпучих веществ и жидкостей.

Встречаются позисторы с относительно малым ТКС от 0,5% до 0,7% на 1 К, изготовленные на базе кремния. Их сопротивление изменяется практически линейно. Подобные позисторы широко применяются в системах температурной стабилизации и в системах активного охлаждения силовых полупроводниковых ключей в разнообразных современных электронных приборах, особенно — в мощных. Эти компоненты легко вписываются в схемы и не занимают много места на платах.

Позистор для чего нужен

Термисторы широко применяются в многочисленных областях электроники, особенно там, где важен точный контроль за температурным процессом. Это актуально для аппаратуры передачи данных, компьютерной техники, высокопроизводительных ЦПУ и промышленного оборудования высокой точности.

Один из простейших и весьма популярных примеров применения термистора – эффективное ограничение пускового тока. В момент подачи напряжения к блоку питания от сети, происходит чрезвычайно резкий заряд конденсатора значительной емкости, и в первичной цепи протекает большой зарядный ток, способный сжечь диодный мост.

Этот ток здесь и ограничивается термистором, то есть данный компонент схемы изменяет свое сопротивление в зависимости от проходящего по нему тока, поскольку в соответствии с законом Ома происходит его нагрев. Термистор после этого восстанавливает свое исходное сопротивление, через несколько минут, как только остынет до комнатной температуры.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Позистор определение электронного элемента + схемы

Главная страница » Позистор определение электронного элемента + схемы

Позистор для чего нужен

Позистор – описание функциональности электронного элемента

Позистор — фактически термистор, обладающий положительным температурным коэффициентом (термистор PTC). Если для стандартного термистора обычным явлением отмечается уменьшение сопротивления с увеличением температуры, позистор действует несколько иначе.

Сопротивление термистора PTC (позистора) резко возрастает, когда температура прибора превышает определённое значение. По сути, позистор увеличивает значение сопротивления при повышении температуры.

Позистор имеет сопротивление — температурные характеристики, которые вызывают экспоненциальное увеличение сопротивления, когда температура детали превышает температуру точки Кюри. То есть имеет место критический температурный фон, при котором значение сопротивления резко возрастает.

Как правило, в условиях температуры выше точки Кюри, сопротивление позистора увеличивается со скоростью от 15% до 60% на один градус Цельсия. Существует много различных точек Кюри (от 40 до 280ºC), что делает возможным легко выбрать подходящий вариант позистора для конкретного применения.

Таблица: температурная характеристика и точки Кюри позисторов

Температурная характеристикаТочка Кюри (С.P.), ºC
AD280
AE260
AF240
AG220
AH200
AK180
AL170
AM160
AN150
AP140
AS130
AR120
BA110
BB100
BC90
BD80
BE70
BF60
BG50
BH40
T-50

Ряд специальных позисторов представлен продуктами с точкой Кюри ниже значений комнатной температуры. Эти приборы демонстрируют более линейную скорость увеличения сопротивления — до 5% на градус выше точки Кюри.

Если резистор соединен с позистором последовательно или параллельно, характеристики сопротивления-температуры элемента несколько изменяются. В случае, когда позистор используется для температурной компенсации, например, транзистора – такой метод видится полезным для получения подходящих температурных характеристик.

Напряжение — текущие характеристики (статические характеристики)

Позистор может использоваться в качестве нагревателя постоянной температуры с функцией автоматической регулировки температуры. При этом прибор поддерживает постоянную мощность, независимо от колебаний напряжения, если пропускаемый ток поддерживается выше максимального значения тока прибора.

Позистором обеспечивается защита от перегрузки по току, если прибор включен в цепь последовательно. Когда ток, проходящий через позистор меньше максимального значения тока, указанного в спецификации как «защитный ток», позистор действует подобно обычному резистору с фиксированным значением.

Если же параметр тока превышает защитное значение, прибор резко увеличивает сопротивление по причине «саморазогрева», чем уменьшает ток, обеспечивая тем самым защиту рабочей цепи.

При добавлении к позистору включенного последовательно или параллельно резистора, фольт-амперная характеристика тока меняется. В качестве примера можно рассмотреть резистор, включенный параллельно позистору, что обеспечивает функцию постоянного тока с увеличением напряжения.

При подаче напряжения и протекании тока отмечается «саморазогрев» прибора. Если протекающий ток превышает точку максимального тока, «саморазогрев» приводит к превышению точки Кюри, сопротивление резко возрастет.

До момента, пока отмечается максимум тока, прибор стабилизируется выше точки Кюри, поддерживая высокое сопротивление. Когда ток уменьшается ниже точки максимального тока, «саморазогрев» также уменьшается до значения ниже точки Кюри, при условии отсутствия внешнего источника тепла.

Позистор — времятоковые характеристики (динамические характеристики)

Если к прибору приложено определённое напряжение, приводящее к превышению точки максимального тока, позистор пропускает большие токи, учитывая низкое сопротивление.

Соответственно, прибор разогревается до температуры, превышающей точку Кюри, когда сопротивление позистора резко увеличится. Благодаря такой функциональности, ток, в конечном итоге, стабилизируется на постоянном уровне.

Если начальное приложенное напряжение увеличивается, время, необходимое для разогрева позистора за пределами точки Кюри уменьшается из-за большего тока, чем вызывается более быстрый разогрев. Если последовательно или параллельно подключен резистор, отмечается изменение динамических характеристик.

Позистор – структурное исполнение и применение

Свинцовые изделия обычно имеют элемент, припаянный к свинцовым проводам, поверхность которого покрыта эпоксидной смолой. Либо элемент может удерживаться на месте с помощью пружинных клемм и заключаться в пластиковый корпус.

В последнем случае пружинные контакты обеспечивают электрическое соединение и выход контактных клемм из корпуса. Форменное исполнение приборов традиционно квадратное или круглое. Также более современная форма исполнения — тип чипа, получает в последнее время широкое распространение.

Позистор для чего нужен Типичное исполнение приборов: A – PRG или PRF; B – PTGL; С – PTFM; D – PTH6M/7M; E – PTWSB; 1 – керамика барий-титаната; 2 – терминал; 3 – резиновая оболочка; 4 – пайка; 5 – свинцовые проводники; 6 – покрытие; 7 – корпус; 8 – пружинный терминал; 9 – терминал; 10 – излучающая пластина и терминал

Применение позистора отмечается в самых разных случаях, например:

Так, позистор может использоваться в качестве саморегулирующегося нагревателя с постоянной температурой. Этот элемент не требует термостата для контроля температуры, плюс защищает от ненормального повышения температуры с последующим отказом. Постоянная температура может поддерживаться переменным приложенным напряжением.

В другом примере позисторы-пеллеты монтируются на алюминиевый радиатор воздушного отопления. Мощность и температуру легко регулировать, изменяя скорость вентилятора, которым воздух протягивается сквозь радиатор.

Энергетические характеристики, кроме всего прочего, меняются при изменении температуры окружающей среды. Когда температура окружающей среды снижается, мощность увеличивается. Когда температура окружающей среды увеличивается, мощность уменьшается.

Возможен контроль постоянной температуры, если позистор подключен к другому нагревателю последовательно. Этот же прибор можно использовать для обнаружения изменения температуры другого нагревателя, а также изменения температуры окружающей среды.

Позистор как датчик температуры и температурной компенсации

Ниже показана принципиальная схема температурной компенсации. При смещении транзистора используется сопротивление позистора. Если транзистор перегреется, соответственно позистор также нагревается. Когда нагрев превысит точку Кюри, прибор перейдёт в режим высокого сопротивления, смещая цепь и отключая транзистор.

Позистор для чего нуженСхемные решения, где используется позистор (оранжевый на картинке), направленные на достижение температурной компенсации и защиты транзистора. 1 – базовая схема температурной компенсации; 2, 3 – схематичные варианты датчиков перегрева

При использовании позистора в качестве датчика перегрева, когда требуется температурная компенсация, прибор не изменяет входное сопротивление подобно термистору с отрицательным температурным коэффициентом, учитывая последовательное подключение к входной цепи. Это подходящий вариант для цепей, не требующих изменения входного сопротивления, например в качестве:

Более чем два расположенных позистора способны покрывать несколько активных участков работы с компаратором.

Ниже показана принципиальная схема подключения нескольких позисторов последовательно. Когда один обнаруживает, по крайней мере, перегрев, микросхема компаратор демонстрирует резкую характеристику температурного сопротивления. Это позволяет легко изменять количество позисторов или измерять температуру в составе одной базовой схемы.

Позистор для чего нуженПример схемы температурной компенсации с применением канала регулятора на микросхеме и включением в качестве температурных датчиков сразу нескольких электронных элементов типа позистор

Рассматриваемый электронный элемент также удачно может использоваться для определения перегрева:

На картинке ниже демонстрируется пример определения перегрева двигателя и последующего за этим событием отключения мотора с помощью реле.

Позистор для чего нуженСхемные решения под организацию защитных функций с помощью позистора: A – для защиты мотора; B – для защиты мощного ключевого транзистора; C – для защиты обмотки трансформатора; Голубой – источник питания; Жёлтый – мощный транзистор; Оранжевый — позистор

Для вариантов с небольшими регулярными рабочими токами блокировка цепи может осуществляться непосредственно позистором. Для вариантов больших постоянных рабочих токов цепь дополнительно оснащается блокировочным реле или тиристором.

Позистор как электронный компонент текущего контроля

Ниже показана реализация простейшего решения температурного индикатора. Температура измеряется позистором. Если заданная температура превышена, загорается неоновая лампа. Если превышено предельное значение тока цепи, прибор способен реагировать на более высокий ток и быстро защищать цепь.

Позистор для чего нуженПростейшая схема индикации: A – вариант включения параллельно с неоновой лампой; B – вариант включения последовательно с неоновой лампой; Голубой – источник питания; Синий – неоновая лампа; Оранжевый — позистор

Функцию задержки вполне допустимо реализовать использованием динамических характеристик описываемого электронного компонента — позистора. Есть два метода:

Допустимо также организовать контроль пускового тока с помощью позистора. Импульсный источник питания, как правило, имеет большой пусковой ток при первом включении.

Позистор для чего нуженВозможные схемные решения, направленные на управление реле, при помощи которого, в свою очередь, осуществляются необходимые функции, такие как задержка или блокировка по перегреву

Если использовать позистор вместо резистора или термистора NTC, достигается функция ограничителя пускового тока. Элемент нагревается по причине перегрузки по току в случае отказа реле или тиристора и срабатывает при высоком сопротивлении, быстро блокируя течение тока.

Также видится практичным применение позистора в схеме запуска мотора, будучи использованным в качестве бесконтактного стартера, например, компрессоров:

позистор способствует получению сильного пускового момента.

Определения типичных терминов позисторов

Ниже даны определения терминологии, с которой приходится сталкиваться на случай использования в работе позисторов:

Недопустимое применение позисторов на практике

Учитывая слабую герметичность структуры описываемого электронного элемента, не допускается применять позисторы в определённых условиях. Использование в таких условиях сопровождается снижением характеристик, что приводит к отказу прибора в виде короткого замыкания.

Видео по теме: как читать электронные схемы начинающим

Видеоролик ниже показывает своего рода практический пример чтения электронных схем, что является актуальным для начинающих электронщиков. Возможно, этот пример несколько обогатит знания и поможет разобраться в любой схеме в будущем:

При помощи информации: muRATA

КРАТКИЙ БРИФИНГ

Источник

Все про терморезисторы, назначение, виды, устройство, принцип действия

Позистор для чего нужен

Люди, далекие от радиоэлектроники, смутно представляют назначение и принцип действия терморезистора. Какие функции выполняет этот элемент? Для его он предусмотрен? Как маркируется? О каких тонкостях проверки и подключения необходимо знать? Какие бывают виды, и в чем их особенности? Эти и другие вопросы рассмотрим ниже.

Что такое терморезистор, общие положения

Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.

С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.

В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Позистор для чего нужен

Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.

Позистор для чего нужен

Где используется (сфера применения)

Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.

Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.

При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Позистор для чего нужен

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Устройство и виды

Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий:

В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.

Типы по принципу действия

Терморезисторы различаются по принципу действия. Выделяется два типа:

Классификация по температурному срабатыванию

Терморезисторы отличаются по температуре, на которую они реагируют при срабатывании. С этой позиции выделяются следующие типы деталей:

Позистор для чего нужен

Вне зависимости от вида (позисторы, термисторы) терморезисторы могут работать в разных температурных режимах и внешних условиях. При эксплуатации в условиях частых изменений температур первоначальные параметры детали могут меняться.

Речь идет о двух параметрах — сопротивлении детали в условиях комнатной температуры и коэффициенте сопротивления.

По виду нагрева

По способу нагревания терморезисторы делятся на два типа:

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей.

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Позистор для чего нужен

Базовые характеристики терморезисторов

При оценке терморезисторов нужно учесть и проанализировать их характеристики:

Позистор для чего нужен

Общий принцип действия

Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.

В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.

Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.

Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.

Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.

При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.

После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.

В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Позистор для чего нужен

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Позистор для чего нужен

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

Позистор для чего нужен

Позистор для чего нужен

Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.

Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.

Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.

Позистор для чего нужен

Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.

В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

Позистор для чего нужен

Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

Позистор для чего нужен

Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

Главные направления применения:

Как проверить с помощью мультиметра

Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.

С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.

Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.

Позистор для чего нужен

После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.

Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.

Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.

Как подключить

Принцип подключения термисторов прост (на примере Arduino). Для этого потребуется монтажная плата, деталь и резистор на 10 кОм. Так как изделие имеет высокое сопротивление, этот параметр для проводников не влияет на конечный результат.

Один контакт сопротивления подключается к контакту 5В, а второй — к контакту термистора.

Вторую отпайку терморезистора необходимо посадить на «землю». Центр двух резисторов подключается к контакту «Аналог 0).

Отображение терморезистора на схеме может различаться. Изделие легко найти по обозначениям t и t0. Внешне оно отражается как сопротивление, через которое проходит полоска по диагонали с «подставкой» под t0 снизу. Главные обозначения — R1, TH1 или RK1.

Позистор для чего нуженПозистор для чего нужен

Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.

Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.

Позистор для чего нужен

SMD и встроенные терморезисторы

Существует также еще два вида терморезисторов, которым стоит уделить внимание:

Позистор для чего нужен

Позистор для чего нужен

В дополнение стоит сказать, что в электронике вместе с терморезисторами используются термореле и термические предохранители, которые работают на похожем принципе и также устанавливаются в электронных приборах.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *