Пояс койпера что это
Пояс Койпера
Рисунок астероида из пояса Койпера
Когда мы смотрим в чёрное небо, то понимаем, что светящиеся точки бесконечно малы по сравнению с тёмной пустотой. Чаще любуемся звёздами, реже наблюдаем планеты, но они не единственные жители космоса. В этой кажущейся пустоте находятся целые миры, скопления, огромные семьи небесных тел.
Что из себя представляет пояс
Пояс Койпера — ледяной мир на окраине Солнечной системы. Это пространство, состоящее из малых объектов. Многие из них меньше нашей подружки — Луны. Пояс расширяется за орбитой Нептуна и выглядит, как пончик: толстенький и круглый.
Учёные считают Пояс Койпера родным домом комет. Там рождаются короткопериодические кометы. Они проходят по орбите менее, чем за 200 лет.
Количество жителей ледяного семейства неизвестно. Предполагаются сотни тысяч объектов и триллион комет. На данный момент подтверждено существование 1300.
Объекты пояса Койпера
Карликовые планеты, принадлежащие Поясу Койпера, обладают тоненькими атмосферами, которые разрушаются, по мере отдаления планеты от Солнца. У некоторых из них есть крошечные спутницы — луны. Особенные из них, больше Плутона. Из-за этого факта Плутон лишили статуса планеты. Совершенно понятно, что в ледяном мире жизни быть не может.
Новые Горизонты на фоне Плутона и Харона
В 2015 году учёные надеются узнать много нового о поясе Койпера от космической миссии «Новые горизонты», которая приближается к Плутону.
Его открыли, потому что очень этого хотели
Строение Солнечной системы
Астрономы только предполагали наличие объектов за Плутоном. Споры велись весь двадцатый век. В 1943 г. Кеннет Эджворт выдвинул гипотезу, что кометы, посещающие Солнечную систему, это небесные тела, проживающие за её внешней границей. По неизвестным причинам они покидают привычные места и путешествуют ближе к Солнцу. Своё имя Пояс Койпера получил от Джерарда Койпера. Астроном говорил о возможности наличия диска из множества ледяных тел, но считал влияние Плутона достаточно сильным. Предполагал, что Плутон рассеял тела к далёкому облаку Оорта.
По мере того, как учёные обнаруживали на орбитах Урана, Сатурна, Нептуна ледяные планетоиды, гипотеза об огромном скоплении таких тел крепла и ждала своего подтверждения. Доказательство нашли Девид Джуит и Джейн Лу. Пять лет фотографировали и изучали кажущуюся пустоту. В августе 1992 года они увидели первый объект пояса Койпера, затем, через шесть месяцев, второй объект. Сейчас, в ходе исследования известных тел, продолжают открывать всё новые и новые объекты.
Жители Пояса Койпера
Хаумеа
Хаумеа со спутниками
Наиболее необычным ОПК является Хаумеа. Предполагают, что она образовалась от сильнейшего удара в результате столкновения. Сейчас Хаумеа и её две маленькие луны, Хииака и Намака, кружатся с поразительной скоростью — один оборот вокруг оси за четыре часа. За счёт такого стремительного вращения Хаумеа похожа на мяч для регби.
Седна
Планета Седна названа в честь ледяной эскимоской богини. Период её вращения 10500 лет. Она отдаляется от Солнца в самую холодную область системы. Седну не всегда причисляют к ОПК, потому что она путешествует значительно дальше, но открыта благодаря изучению Пояса Койпера.
Эрида
Карликовая планета Эрида меньше Плутона на 10%. Она совершает оборот вокруг Солнца за 560 лет. Имеет спутницу — луну Дисномию.
Плутон
Анимация вращения Плутона и Харона
Плутон самый известный ОПК. Долгое время его считали ледяным изгнанником на окраине системы. Сейчас, он член многочисленного семейства карликовых планет. Им дали название «плутинос», за наличие схожих характеристик.
Харон
Харон ближайший спутник Плутона. Они настолько влияют друг на друга, что учёные дали им определение «двойной планеты». Атмосферы планет связаны между собой. Однако, они отличаются по своему составу. Харон покрыт водяным льдом, а Плутон — азотным.
Квавар
Квавар один из крупнейших объектов. Его диаметр около 1300 км. Планета состоит из камня и водяного льда.
На её поверхности 220 гр. мороза. Имеет спутник — Вейвот, 100 км в диаметре.
Макемаке
Макемаке совершает свой круг вокруг Солнца за 306 лет. Поверхность покрыта метановым снегом и льдом. Имеет временную атмосферу из азота, которую уносит планетарный ветер при удалении от Солнца.
Для учёных-астрономов Пояс Койпера — это неисчерпаемый источник сюрпризов. Они открывают, сравнивают, спорят и определяют всё новые планеты и астероиды. Для изучения используется самая современная техника. Эта область Солнечной системы ещё не раз удивит впечатляющими открытиями.
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Пояс Койпера и Облако Оорта
Солнечная система > Пояс Койпера и Облако Оорта
Пояс Койпера и Облако Оорта – области Солнечной системы: где находится, описание и характеристика с фото, интересные факты, исследование, открытие, объекты.
После обнаружения Плутона в 1930 году ученые стали предполагать, что это не самый отдаленный объект в системы. Со временем они отмечали движения других объектов и в 1992 году нашли новый участок. Давайте рассмотрим интересные факты о Поясе Койпера.
Интересные факты о Поясе Койпера
Определение Пояса Койпера
Начать объяснение нужно с того, где находится Пояс Койпера. Его можно найти за чертой орбиты планеты Нептун. Напоминает Пояс астероидов между Марсом и Юпитером, потому что располагает остатками от формирования Солнечной системы. Но по размерам в 20-200 раз крупнее него. Если бы не влияние Нептуна, то осколки слились и смогли сформировать планеты.
Обнаружение и имя Пояса Койпера
Впервые о присутствии других объектов заявил Фрекрик Леонард, назвавший их ультра-нептуновыми небесными телами за чертой Плутона. Тогда Армин Лейшнер посчитал, что Плутон может выступать всего лишь одним из многих долгопериодических планетных объектов, которые еще предстоит отыскать. Ниже представлены крупнейшие объекты Пояса Койпера.
Крупнейшие объекты пояса Койпера
Название | Экваториальный диаметр | Большая полуось, а. е. | Перигелий, а. е. | Афелий, а. е. | Период обращения вокруг Солнца (лет) | Открыт |
---|---|---|---|---|---|---|
Эрида | 2330 +10 /−10. | 67,84 | 38,16 | 97,52 | 559 | 2003 i |
Плутон | 2390 | 39,45 | 29,57 | 49,32 | 248 | 1930 i |
Макемаке | 1500 +400 /−200 | 45,48 | 38,22 | 52,75 | 307 | 2005 i |
Хаумеа | 43,19 | 34,83 | 51,55 | 284 | 2005 i | |
Харон | 1207 ± 3 | 39,45 | 29,57 | 49,32 | 248 | 1978 |
2007 OR10 | 875-1400 | 67,3 | 33,6 | 101,0 | 553 | 2007 i |
Квавар | 43,61 | 41,93 | 45,29 | 288 | 2002 i | |
Орк | 946,3 +74,1 /−72,3 | 39,22 | 30,39 | 48,05 | 246 | 2004 i |
2002 AW197 | 940 | 47,1 | 41,0 | 53,3 | 323 | 2002 i |
Варуна | 874 | 42,80 | 40,48 | 45,13 | 280 | 2000 i |
Иксион | i | |||||
2002 UX25 | 681 +116 /−114 | 42,6 | 36,7 | 48,6 | 278 | 2002 i |
В 1943 году Кеннет Эджворт опубликовал статью. Он писал, что материал за Нептуном слишком рассредоточен, поэтому не может слиться в более крупное тело. В 1951 году в обсуждение вступает Джерард Койпер. Он пишет о диске, появившемся в начале эволюции Солнечной системы. Идея с поясом всем понравилась, потому что она объясняла откуда прибывают кометы.
В 1980 году Хулио Фернандес определил, что Пояс Койпера находится на удаленности в 35-50 а.е. В 1988 году появляются компьютерные модели на основе его расчетов, которые показали, что Облако Оорта не может отвечать за все кометы, поэтому идея с поясом Койпера обретала больше смысла.
В 1987 году Дэвид Джуитт и Джейн Лу занялись активными поисками объектов, используя телескопы в Национальной обсерватории Кит-Пика и Обсерваторию Серро-Тололо. В 1992 году они объявили об открытии 1992 QB1, а через 6 месяцев – 1993 FW.
Во многих статьях авторы начали называть гипотетический участок поясом Койпера, которое и закрепилось как официальное наименование.
Но многие не согласны с этим названием, потому что Джерард Койпер имел в виду нечто иное и все почести следует отдать Фернандесу. Из-за возникших споров в научных кругах предпочитают использовать термин «транс-нептунианские объекты».
Состав Пояса Койпера
Как выглядит состав Пояса Койпера? На территории пояса проживают тысячи объектов, а в теории насчитывают 100000 с диаметром, превышающим 100 км. Полагают, что все они состоят из льда – смесь легких углеводородов, аммиака и водяного льда.
Изображение крупнейших объектов Пояса Койпера
На некоторых объектах нашли водяной лед, а в 2005 году Майкл Браун определил, что на 50000 Кваваре есть водяной лед и гидрат аммиака. Оба этих вещества исчезли в процессе развития Солнечной системы, а значит на объекте есть тектоническая активность или же произошло метеоритное падение.
В поясе зафиксировали крупные небесные тела: Квавар, Макемаке, Хаумеа, Орк и Эриду. Они и стали причиной того, что Плутон сместили в категорию карликовых планет.
Изучение Пояса Койпера
В 2006 году НАСА отправили к Плутону зонд Новые Горизонты. Он прибыл в 2015 году, впервые продемонстрировав «сердце» карлика и бывшей 9-й планеты. Теперь он отправляется в сторону пояса, чтобы рассмотреть его объекты.
О поясе Койпера мало информации, поэтому он скрывает огромное количество комет. Наиболее известная – комета Галлея с периодичностью в 16000-200000 лет.
Будущее Пояса Койпера
Джерард Койпер полагал, что ТНО не будут существовать вечно. Пояс охватывает в небе примерно 45 градусов. Объектов много, и они постоянно сталкиваются, превращаясь в пыль. Многие считают, что пройдут сотни миллионов лет и от пояса ничего не останется. Будем надеяться, что миссия Новые Горизонты доберется раньше!
Тысячелетиями человечество наблюдало за прибытием комет и пыталось понять, откуда они берутся. Если при сближении со звездой ледяной покров испаряется, то они должны располагаться на большой отдаленности.
Со временем ученые пришли к выводу, что за чертой планетарных орбит находится масштабное облако с ледяными и каменными телами. Его назвали Облаком Оорта, но оно все еще существует в теории, потому что мы не можем его увидеть.
Определение Облака Оорта
В 1950-м году Ян Оорт оживил концепцию и сумел даже объяснить принципы поведения долгосрочных комет. Существование облака не доказано, но его признали в научных кругах.
Структура и состав облака Оорта
Полагают, что облако способно располагаться в 100000-200000 а.е. от Солнца. Состав Облака Оорта включает две части: сферическое внешнее облако (20000-50000 а.е.) и дисковое внутреннее (2000-20000 а.е.). Во внешнем проживают триллионы тел с диаметром в 1 км и миллиарды 20-километровых. Сведений об общей массе нет. Но если комета Галлея выступает типичным телом, то подсчеты выводят на цифру в 3 х 10 25 кг (5 земель). Ниже представлен рисунок строения Облака Оорта.
Строение облака Оорта
Большая часть комет наполнена водой, этаном, аммиаком, метаном, цианидом водорода и монооксидом углерода. На 1-2% может состоять из астероидных объектов.
Происхождение облака Оорта
Исследование от ученых НАСА показало, что огромный объем облачных объектов выступает результатом обмена между Солнцем и соседними звездами. Компьютерные модели показывают, что галактические и звездные приливы меняют кометные орбиты, делая их более круглыми. Возможно, именно поэтому Облако Оорта принимает форму сферы.
Симуляции также подтверждают, что создание внешнего облака согласуется с идеей того, будто Солнце появилось в скоплении из 200-400 звезд. Древние объекты могли повлиять на формирование, потому что их было больше и чаще сталкивались.
Кометы из Облака Оорта
Полагают, что эти объекты спокойно дрейфуют в Облаке Оорта, пока не выйдут из привычного маршрута из-за гравитационного толчка. Так они становятся долгопериодическими кометами и наведываются во внешнюю систему.
Сравнение размеров облака Оорта и Пояса Койпера
Орбита короткопериодических комет охватывает пару сотен лет, а вот у долгопериодических растягивается на десятки тысяч лет. Первые прибывают из пояса Койпера, а вторые – гости из облака. Но есть исключения.
Есть кометы Юпитера и Галлея. Вторые короткопериодические, но пребывают из Облака Оорта. Ранее они обладали длительным периодом, но попали под воздействие газового гиганта.
Изучение облака Оорта
Нам все еще не удалось добраться к поясу Койпера, а Облако Оорта расположено еще дальше. Дальше всех вылетел Вояджер-1, но ему все еще далеко. Если учитывать теперешнее ускорение, то у аппарата (сейчас в межзвездном пространстве) уйдет еще 300 лет, чтобы прибыть к началу, и 30000 лет, чтобы полностью миновать облако.
За ним следуют Пионер-10 и 11, Вояджер-2, а также Новые Горизонты. Но они выйдут из строя и не смогут передать нам сигнал.
Итак, главная трудность в исследовании – огромная удаленность. Пока зонд доберется, у нас минуют века. Сейчас мы можем лишь рассматривать прибывающие кометы. Теперь вы узнали, где находятся Пояс Койпера и Облако Оорта, а также получили представление об объектах и их движении по Солнечной системе.
Пояс Койпера
Известные объекты пояса Койпера, по данным Центра малых планет. Объекты основного пояса показаны зелёным, рассеянного диска — оранжевым. Четыре внешних планеты имеют голубой цвет. Троянские астероиды Нептуна показаны жёлтым, Юпитера — розовым. Рассеянные объекты между Солнцем и поясом Койпера известны как кентавры. Масштаб показан в астрономических единицах. Пробел в нижней части рисунка вызван нахождением в этой области полосы Млечного пути, скрывающей тусклые объекты
Большинство известных объектов пояса Койпера имеют большую полуось в диапазоне примерно между 35 и 48 а.е. (красные и синие объекты на диаграмме). Считается, что кентавры (показаны жёлтым) и объекты рассеянного диска (серые) ранее тоже располагались в поясе Койпера, но были рассеяны Нептуном внутрь и наружу
Плутон — крупнейший известный объект пояса Койпера. Первоначально он считался планетой, но был переклассифицирован как карликовая планета. По составу Плутон напоминает прочие объекты пояса Койпера, а его период обращения позволяет отнести его к подгруппе ОПК под названием «плутино». В честь Плутона подгруппу из четырёх известных на данный момент карликовых планет, обращающихся за орбитой Нептуна, называют «плутоидами».
Содержание
История
После открытия Плутона многие учёные полагали, что он не единственный в своём роде объект. Различные предположения по поводу области космоса, ныне известной как пояс Койпера, выдвигались в течение нескольких десятков лет, однако первое прямое доказательство его существования было получено только в 1992 году. Так как гипотезы о природе пояса Койпера, предшествовавшие его открытию, были весьма многочисленны и разнообразны, то трудно сказать, кто именно первым выдвинул подобную гипотезу.
Гипотезы
Открытие
Телескопы на вулкане Мауна-Кеа, при помощи которых был обнаружен пояс Койпера
Категории объектов пояса
На 26 мая 2008 года известно 1077 объектов транснептунового пояса, которые делятся на следующие категории:
Крупнейшие объекты пояса Койпера
Сравнительные размеры крупнейших ТНО и Земли.
На каких планетах человечество найдет убежище после уничтожения Земли? Главное
Ученые полагают, что когда Солнце начнет резко расти, его внешние слои будут расширяться до тех пор, пока звезда не поглотит планеты, включая Землю. Но главный исследователь миссии НАСА «Новые горизонты», доктор наук Алан Стерн, рассказал, куда могут сбежать земляне. Спойлер — речь не о Марсе. Рассказываем, какие миры станут пригодными для жизни и как вырастет Солнце.
Читайте «Хайтек» в
С чего все началось?
Солнце — звезда в центре Солнечной системы — сфера горячей плазмы, которая является важнейшим источником энергии для жизни на Земле. Хотя Солнце кардинально не менялось более 4 млрд лет, ученые считают, что оно прошло примерно половину своего жизненного цикла. В настоящее время оно превращает около 600 млн тонн водорода в гелий каждую секунду, превращая в результате четыре миллиона тонн вещества в энергию.
Но эксперты говорят, что примерно через пять миллиардов лет звезда исчерпает запасы энергии и радикально изменит Солнечную систему.
Исследователи полагают, что когда Солнце начнет резко расти, его внешние слои будут расширяться до тех пор, пока звезда не поглотит планеты, включая Землю.
Как погибнет Солнце и Земля?
Но со временем в ядре накапливается гелий. Для его реакций требуется большее давление и более высокая температура, поэтому сейчас гелий инертен. Он просто находится в ядре, медленно нагреваясь. Примерно через 6 млрд лет у Солнца закончится водород в ядре, оно сожмется и нагреется до предельных температур. В конце концов, спустя несколько сотен миллионов лет условия в ядре Солнца станут настолько ужасными, что гелий начнет плавится, превращаясь в углерод и кислород. Они будут накапливаются в ядре, генерируя огромное количество энергии.
Все это происходит глубоко в ядре Солнца. Внешние слои реагируют на это медленно, но реагируют. Когда начинается синтез водородной оболочки, внешние слои раздуваются, превращая Солнце в красного гиганта.
Когда Солнце станет красным гигантом, оно станет достаточно большим, чтобы поглотить Меркурий и Венеру. Они буквально какое-то время будут существовать внутри Солнца. В конечном итоге эти планеты полностью испарятся.
Судьба Земли не так ясна. Ветер из субатомных частиц, как сейчас солнечный ветер, станет намного плотнее. Солнце потеряет достаточно массы, чтобы его гравитация ослабла, а это означает, что орбиты планет расширятся. Проблема в том, что Земля в значительной степени находится на границе, разделяющей ее поглощение красным гигантом Солнцем и достаточно далеко, чтобы избежать этой участи. Это зависит от детальной физики, например, сколько массы потеряет Солнце. В любом случае условия на планете станут невыносимыми.
Куда сбежать землянам?
В начале 2020 года доктор наук Алан Стерн, ученый из НАСА, наиболее известный как главный исследователь миссии New Horizons по изучению Плутона и пояса Койпера, подробно описал судьбу Земли после того, как Солнце станет красным гигантом.
«В конце жизни Солнца — в фазе красных гигантов — территория пояса Койпера станет метафорическим Майами-Бич».
Доктор Стерн считает, что любые оставшиеся люди могут найти убежище на Плутоне и других далеких карликовых планетах в поясе Койпера — регионе за Нептуном, заполненном ледяными космическими камнями. По мере расширения Солнца условия в этих мирах резко изменятся и станут более пригодными.
Сегодня карликовые планеты, такие как Плутон, содержат много водяного льда и сложных органических материалов, а под поверхностью некоторых из них есть океаны. Но температура поверхности этих внеземных тел на сотни градусов ниже нуля.
Однако когда Солнце станет красным гигантом, температура на поверхности Плутона будет примерно такой же, как средние температуры на поверхности Земли сейчас.
Еще в исследовании, опубликованном в журнале Astrobiology в 2003 году, Стерн оценивал перспективы жизни во внешней Солнечной системе после того, как звезда войдет в свою финальную стадию жизни. А уже три года спустя он возглавил командование межпланетной космической миссией. Зонд, отправленный к Плутону в рамках программы New Frontiers («Новые горизонты»), направлен с целью углубления понимания Солнечной системы.
Что находится на границе Солнечной системы?
За газовым гигантом Нептуном находится область космоса, заполненная ледяными телами. Это холодное пространство, известное как пояс Койпера, содержит триллионы объектов — остатков ранней Солнечной системы.
В 1943 году астроном Кеннет Эджворт предположил, что за пределами Нептуна могут существовать кометы и более крупные тела. А в 1951 году астроном Джерард Койпер предсказал существование пояса ледяных объектов на дальнем краю Солнечной системы. Сегодня кольца, предсказанные этой парой, известны как пояс Койпера или пояс Эджворта-Койпера.
С тех пор астрономы обнаружили несколько интригующих объектов пояса Койпера и потенциальных планет в этом регионе. Миссия НАСА «Новые горизонты» продолжает обнаружение ранее скрытых планет и объектов, помогая ученым больше узнать об этой уникальной реликвии Солнечной системы.
Что такое пояс Койпера?
Подобно поясу астероидов, пояс Койпера — это регион, оставшийся от ранней истории Солнечной системы. Как и пояс астероидов, он также был сформирован планетой-гигантом, хотя это скорее толстый диск (похожий на пончик), чем тонкий пояс.
Когда образовалась Солнечная система, большая часть газа, пыли и горных пород собралась вместе, образуя Солнце и планеты. Затем планеты унесли большую часть оставшегося мусора на Солнце или за пределы Солнечной системы. Но объекты на краю Солнечной системы были достаточно далеко, чтобы избежать гравитационного притяжения гораздо более крупных планет, таких как Юпитер, и поэтому им удавалось оставаться на своем месте, когда они медленно вращались вокруг Солнца. Пояс Койпера и его соотечественник, более далекое и сферическое Облако Оорта, содержат остатки, оставшиеся от начала создания Солнечной системы, могут дать ценную информацию о ее рождении.
Согласно модели Ниццы — одной из предложенных моделей формирования солнечной системы — пояс Койпера мог образоваться ближе к Солнцу, рядом с тем местом, где сейчас вращается Нептун. В этой модели планеты участвовали в сложном танце, в котором Нептун и Уран менялись местами и двигались наружу, прочь от Солнца. По мере того как планеты удалялись от Солнца, их гравитация могла унести с собой многие объекты пояса Койпера, уводя крошечные объекты впереди, когда мигрировали ледяные гиганты. В результате многие объекты пояса Койпера были перемещены из региона, в котором они были созданы, в более холодную часть Солнечной системы.
Самая густонаселенная часть пояса Койпера находится в 42–48 раз больше Земли от Солнца. Орбита объектов в этой области остается по большей части стабильной, хотя иногда курс некоторых объектов немного меняется, когда они дрейфуют слишком близко к Нептуну.
Ученые подсчитали, что тысячи тел диаметром более 100 км (62 миль) перемещаются вокруг Солнца в пределах этого пояса, вместе с триллионами более мелких объектов, многие из которых являются короткопериодическими кометами. В регионе также есть несколько карликовых планет — круглые миры, слишком большие, чтобы считаться астероидами, но слишком маленькие, чтобы считаться планетами.
Объекты пояса Койпера
Плутон — самая большая из известных ледяных карликовых планет. Плутон был первым наблюдаемым настоящим объектом пояса Койпера (Kuiper belt objects, KBO), хотя ученые в то время не признавали его таковым до тех пор, пока не были обнаружены другие объекты KBO. Когда Джуитт и Луу открыли пояс Койпера, астрономы вскоре увидели, что область за Нептуном полна ледяных скал и крошечных миров.
Седна — самая массивная и вторая по величине известная карликовая планета в нашей Солнечной системе, KBO размером примерно три четверти размера Плутона, была открыта в 2004 году. Она так далеко от Солнца, что требуется около 10 500 лет, чтобы совершить один оборот. Седна имеет ширину около 1 770 км и вращается вокруг Солнца по эксцентрической орбите в диапазоне от 12,9 до 135 млрд км.
В июле 2005 года астрономы обнаружили Эриду, КБО, которая немного меньше Плутона. Эрида обращается вокруг Солнца примерно раз в 580 лет, путешествуя почти в 100 раз дальше от Солнца, чем Земля. Его открытие показало некоторым астрономам проблему классификации Плутона как полномасштабной планеты. Согласно определению Международного астрономического союза (МАС) от 2006 года, планета должна быть достаточно большой, чтобы очистить окрестности от мусора. Плутон и Эрида, окруженные поясом Койпера, явно не смогли этого сделать. В результате в 2006 году Плутон, Эрида и самый большой астероид Церера были реклассифицированы МАС как карликовые планеты. Еще две карликовые планеты, Хаумеа и Макемаке, были обнаружены в поясе Койпера в 2008 году.
Хаумеа (780 км) — самая быстро вращающаяся карликовая планета с кольцом вокруг нее. Макемаке (715 км) — вероятно, карликовая планета со своим спутником.
Астрономы сейчас пересматривают статус Хаумеа как карликовой планеты. В 2017 году, когда объект прошел между Землей и яркой звездой, ученые поняли, что он больше удлинен, чем круглый. Согласно определению МАС, окружность — один из критериев карликовой планеты. Удлиненная форма Хаумеа могла быть результатом его быстрого вращения; день на объекте длится всего около четырех часов.
Пояс Койпера действительно является границей в космосе — это место, которое ученые только начинают исследовать. Возможно, через миллиарды лет он станет новым домом для землян.