Построчная развертка что это
Построчная развертка
Ви́део (от лат. video — смотрю, вижу) — под этим термином понимают широкий спектр технологий записи, обработки, передачи, хранения и воспроизведения визуального и аудиовизуального материала на мониторах. Когда в быту говорят «видео» — то обычно имеют в виду видеоматериал, телесигнал или кинофильм, записанный на физическом носителе (видеокассете, видеодиске и т. п.).
Содержание
Характеристики видеосигнала
Количество кадров в секунду
Количество (частота) кадров в секунду — это число неподвижных изображений, сменяющих друг друга при показе 1 секунды видеоматериала и создающих эффект движения объектов на экране. Чем больше частота кадров в секунду, тем более плавным и естественным будет казаться движение. Минимальный показатель, при котором движение будет восприниматься однородным — примерно 10 кадров в секунду (это значение индивидуально для каждого человека). В традиционном плёночном кинематографе используется частота 24 кадра в секунду. Системы телевидения SÉCAM используют 25 кадров в секунду (англ. 25 fps или 25 Герц), а система человеческим мозгом, в среднем составляет 39—42 Герца [1] и индивидуальна для каждого человека. Некоторые современные профессиональные камеры могут снимать с частотой до 120 кадров в секунду. А специальные камеры для сверхбыстрой съёмки снимают с частотой до 1000 кадров в секунду и выше, что необходимо, например, для детального изучения траектории полёта пули или структуры взрыва.
Чересстрочная развёртка
Развёртка видеоматериала может быть прогресси́вной (построчной) или чересстро́чной. При прогрессивной развёртке все горизонтальные линии (строки) изображения отображаются поочередно одна за другой. А вот при чересстрочной развёртке показываются попеременено то все чётные, то все нечётные строки (называемые также полями кадра). Чересстрочную развёртку часто называют на английский манер интерле́йс (англ. interlace ) или интерле́йсинг. Чересстрочная развёртка была изобретена для показа изображения на кинескопах и используется сейчас для передачи видео по «узким» каналам, не позволяющим передавать изображение во всём качестве. Системы SÉCAM и HDTV предусматривают прогрессивную развёртку. Хотя появились технологии, позволяющие имитировать прогрессивную развёртку при показе материала с интерлейсом. Чересстрочную развёртку обычно обозначают символом «i» после указания вертикального разрешения, например 720×576i×50.
Для подавления неприятных эффектов, возникающих при просмотре чересстрочного видео на построчном экране, применяются специальные математические методы, именуемые деинтерлейсингом.
Разрешение
По аналогии с разрешением компьютерных мониторов, любой видеосигнал также имеет разрешение (англ. resolution ), горизонтальное и вертикальное, измеряемое в пикселях. Обычное аналоговое телевизионное разрешение составляет 720×576 пикселей для стандартов SÉCAM, при частоте кадров 50 Герц (одно поле, 2×25); и 720×480 пикселей для англ. high-definition ) цифрового телевидения HDTV предполагает разрешения до 1920×1080 при частоте мелькания 60 Герц с прогрессивной развёрткой. То есть 1920 пикселей на линию, 1080 линий.
Разрешение в случае трёхмерного видео измеряется в вокселях — элементах изображения, представляющих точки (кубики) в трёхмерном пространстве. Например, для простого трёхмерного видео сейчас используется в основном разрешение 512×512×512, демонстрационные примеры такого видео доступны сегодня даже на PDA.
Соотношение сторон экрана
Соотношение ширины и высоты кадра (англ. aspect ratio ) — важнейший параметр в любом видеоматериале. Ещё с 1910 года кинофильмы имели соотношение сторон экрана 4:3 (4 единицы в ширину к 3 единицам в высоту; иногда ещё записывается как 1,33:1 или просто 1,33). Считалось что, с учетом наличия у человека двух глаз, зрителю удобнее смотреть фильм на экране такой формы. Когда появилось телевидение, то оно переняло это соотношение и почти все аналоговые телесистемы (и, следовательно, телевизоры) имели соотношение сторон экрана 4:3. Компьютерные мониторы также унаследовали телевизионный стандарт сторон. Хотя ещё в 1950-х годах это представление о 4:3 в корне изменилось. Дело в том, что поле зрения человека имеет соотношение отнюдь не 4:3. Ведь у человека 2 глаза, расположенных на одной горизонтальной линии — следовательно, поле зрения человека приближается к соотношению 2:1. Чтобы приблизить форму кадра к естественному полю зрения человека (и, следовательно, усилить восприятие фильма), был введён стандарт 16:9 (1,78), почти соответствующий так называемому «Золотому сечению». Цифровое телевидение в основном тоже ориентируется на соотношение 16:9. К концу XX века, после ряда дополнительных исследований в этой области, стали появляться даже и более радикальные соотношения сторон кадра: 1,85, 2,20 и вплоть до 2,35 (почти 21:9). Всё это, по словам создателей, призвано глубже погрузить зрителя в атмосферу просматриваемого видеоматериала. Есть и альтернативные объяснения переходу на широкий формат: возможность проката в залах, изначально не приспособленных для кино, стремление к ухудшению качества пиратских видеокопий и телевизионных копий.
Количество цветов и цветовое разрешение
Количество цветов и цветовое разрешение видеосигнала описывается цветовыми моделями. Для стандарта YUV, для SÉCAM модель YDbDr, для YIQ, в компьютерной технике применяется в основном HSV, а в печатной технике глаз может воспринять, по разным подсчётам, от 5 до 10 миллионов оттенков цветов. Количество цветов в видеоматериале определяется числом бит, отведённым для кодирования цвета каждого пикселя (англ. bits per pixel, bpp ). 1 бит позволяет закодировать 2 цвета (обычно чёрный и белый), 2 бита — 4 цвета, 3 бита — 8 цветов, …, 8 бит — 256 цветов (2 8 = 256), 16 бит — 65 536 цветов (2 16 ), 24 бита — 16 777 216 цветов (2 24 ). В компьютерной технике имеется стандарт и 32 бита на пиксель (αRGB), но этот дополнительный α-байт (8 бит) используется для кодирования коэффициента прозрачности пикселя (α), а не для передачи цвета (RGB). При обработке пикселя видеоадаптером, RGB-значение будет изменено в зависимости от значения α-байта и цвета подлежащего пикселя (который станет «виден» через «прозрачный» пиксель), а затем α-байт будет отброшен, и на монитор пойдёт только цветовой сигнал RGB.
Битрейт или ширина видеопотока (для цифрового видео)
Ширина (иначе говорят скорость) видеопотока или битре́йт (англ. bit rate ) — это количество обрабатываемых бит видеоинформации за секунду времени (обозначается «бит/с» — бит в секунду, или чаще «Мбит/с» — мегабит в секунду; в английском обозначении «bit/s» и «Mbit/s» соответственно). Чем выше ширина видеопотока, тем в общем лучше качество видео. Например, для формата VideoCD ширина видеопотока составляет всего примерно 1 Мбит/с, а для цифрового телевидения HDTV использует ширину видеопотока около 10 Мбит/с. При помощи скорости видеопотока также очень удобно оценивать качество видео при его передаче через Интернет.
Различают два вида управления шириной потока в видеокодеке — постоянный битрейт (англ. constant bit rate, CBR ) и переменный битрейт (англ. variable bit rate, VBR ). Концепция VBR, ныне очень популярная, призвана максимально сохранить качество видео, уменьшая при этом суммарный объём передаваемого видеопотока. При этом на быстрых сценах движения, ширина видеопотока возрастает, а на медленных сценах, где картинка меняется медленно, ширина потока падает. Это очень удобно для буферизованных видеотрансляций и передачи сохранённого видеоматериала по компьютерным сетям. Но для безбуферных систем реального времени и для прямого эфира (например, для телеконференций) это не подходит — в этих случаях необходимо использовать постоянную скорость видеопотока.
Качество видео
Качество видео измеряется с помощью формальных метрик, таких, как PSNR или SSIM, или с использованием субьективного сравнения с привлечением экспертов.
Субьективное качество видео измеряется по следующей методике:
Несколько методов субьективной оценки описаны в рекомендациях ITU-T BT.500. Один из широко используемых методов оценки — это DSIS (англ. Double Stimulus Impairment Scale ), при котором экспертам сначала показывают исходный видеоматериал, а затем обработанный. Затем эксперты оценивают качество обработки, варьируя свои оценки от «обработка незаметна» и «обработка улучшает видеоизображение» до «обработанный видеоматериал сильно раздражает».
Стереоскопическое видео
Стереоскопическое видео или просто стереовидео (англ. stereoscopic video или 3D video) было очень популярно в конце XX века, и сейчас регулярно возникают волны интереса к нему. По всему миру есть кинотеатры, которые при помощи той или иной технологии воспроизводят стереоскопическое видео. Для стереовидео нужно два видеоканала, часто называемых слоями: один для левого глаза, другой для правого. Таким образом у зрителя возникает чувство объёмности, трёхмерности видеоматериала, повышается реалистичность ощущения просмотра. Примерно такой же по качеству, но более слабый эффект даёт просмотр видео в пластиковых очках, где одна линза красная, а другая голубая или зелёная. Новые технологии, представленные в 2006 году, в частности HD DVD и диски Blu-Ray, позволяют переносить больше стереовидеоматериала и призваны сделать и домашнее стереоскопическое видео более доступным.
Также в гостинице «Москва» уже после ВОВ существовал небольшой стерео-кинотеатр, в котором для достижения объема использовался стеклянный экран с очень большим количеством слоёв. Смотреть можно было без дополнительный оптических приборов своими глазами. После перестройки уникальный экран был вывезен в Одессу и пропал.
Форматы видео
Видеоматериалы могут быть аналоговыми или цифровыми.
Примечания
См. также
Методы сжатия
Информация | Собственная · Взаимная · Энтропия · Условная энтропия · Сложность · Избыточность |
---|---|
Единицы измерения | Бит · Нат · Ниббл · Хартли · Формула Хартли |
Энтропийное сжатие | Алгоритм Хаффмана · Адаптивный алгоритм Хаффмана · Арифметическое кодирование (Алгоритм Шеннона — Фано · Интервальное) · Коды Голомба · Дельта · Универсальный код (Элиаса · Фибоначчи) |
---|---|
Словарные методы | RLE · · LZ ( · LZSS · LZW · LZWL · · · LZX · LZRW · LZJB · LZT) |
Прочее | RLE · CTW · BWT · PPM · DMC |
Теория | Свёртка · PCM · Алиасинг · Дискретизация · Теорема Котельникова |
---|---|
Методы | LPC (LAR · LSP) · WLPC · CELP · ACELP · A-закон · μ-закон · MDCT · Преобразование Фурье · Психоакустическая модель |
Прочее | Dynamic range compression · Сжатие речи · Полосное кодирование |
Термины | Цветовое пространство · Пиксел · Chroma subsampling · Артефакты сжатия |
---|---|
Методы | RLE · DPCM · Фрактальный · Wavelet · EZW · SPIHT · LP · ДКП · ПКЛ |
Прочее | Битрейт · Test images · PSNR · Квантование |
Термины | Характеристики видео · Кадр · Типы кадров · Качество видео |
---|---|
Методы | Компенсация движения · ДКП · Квантование |
Прочее | Видеокодек · Rate distortion theory (CBR · ABR · VBR) |
Полезное
Смотреть что такое «Построчная развертка» в других словарях:
построчная развертка — Развертка, при которой все строки телевизионного растра образуются последовательно за один период кадровой развертки. [ГОСТ 21879 88] построчная развертка Термин, означающий построчную развертку у мониторов, при которой рисующий изображение… … Справочник технического переводчика
Построчная развертка — 16. Построчная развертка Развертка, при которой все строки телевизионного растра образуются последовательно за один период кадровой развертки Источник: ГОСТ 21879 88: Телевидение вещательное. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации
Построчная развертка — 1. Развертка, при которой все строки телевизионного растра образуются последовательно за один период кадровой развертки Употребляется в документе: Приложение № 1 ГОСТ 21879 88 Телевидение вещательное. Термины и определения … Телекоммуникационный словарь
последовательная развертка — построчная развертка — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы построчная развертка EN progressive scanning … Справочник технического переводчика
ГОСТ 21879-88: Телевидение вещательное. Термины и определения — Терминология ГОСТ 21879 88: Телевидение вещательное. Термины и определения оригинал документа: 150. 2 T импульс Телевизионный измерительный сигнал, имеющий форму синусквадратичной функции за один ее период между нулевыми значениями и длительность … Словарь-справочник терминов нормативно-технической документации
Электронно-лучевая трубка — Принципиальная схема одного из видов ЭЛТ Электронно лучевая трубка[1] (ЭЛТ), кинескоп электровакуумный прибор, преобразующий электрические сигналы в световые. В строгом смысле, электронно лучевыми трубкам … Википедия
Кинескоп — О телепрограмме см. Кинескоп (телепередача). П … Википедия
ЭЛТ — Принципиальная схема одного из видов ЭЛТ Электронно лучевая трубка[1] (ЭЛТ), кинескоп электровакуумный прибор, преобразующий электрические сигналы в световые. В строгом смысле, электронно лучевыми трубками называют[2] ряд электронно лучевых… … Википедия
ЭЛТ монитор — Принципиальная схема одного из видов ЭЛТ Электронно лучевая трубка[1] (ЭЛТ), кинескоп электровакуумный прибор, преобразующий электрические сигналы в световые. В строгом смысле, электронно лучевыми трубками называют[2] ряд электронно лучевых… … Википедия
ЭЛТ-монитор — Принципиальная схема одного из видов ЭЛТ Электронно лучевая трубка[1] (ЭЛТ), кинескоп электровакуумный прибор, преобразующий электрические сигналы в световые. В строгом смысле, электронно лучевыми трубками называют[2] ряд электронно лучевых… … Википедия
svoemesto
svoemesto
Как показала практика, в умах контингента есть сильное брожение по поводу понимания различных понятий, связанных с форматами видео. Всякие «Full HD», «HD Ready», «1080i» и прочие «матроски» вносят сумятицу в умы. Поэтому настало время расставить точки над «i», двоеточия над «ё» и чорточки над «й».
Когда мы говорим о цифровом видео, надо иметь в виду следующие параметры:
Видео:
— разрешение картинки
— «аспект» картинки
— кодек, которым эта картинка закодирована
— параметр видео потока (количество кадров в секунду, битрейт)
Аудио:
— количество звуковых дорожек и что каждая дорожка из себя представляет (оригинальный звук, перевод, комментарии режиссера и т.п.)
— количество каналов звука каждой дорожке
— кодек, которым закодирована каждая дорожка
— параметры потока каждой дорожки (битрейт)
И для каждого из вышеперечисленных пунктов существеут масса терминов и понятий, с совокупности которых и наступает полная путанница.
Попробуем разобраться во всем это по-порядку.
Разрешение картинки.
Про прогрессивную и чересстрочную развертку.
Откуда взялась черезстрочная развертка и зачем она вообще нужна.
К картинкам стандартного разрешения относятся все остальные картинки с меньшим разрешением. Среди них можно выделить следующие: 720х576 (PAL), 720х480 (NTSC), 640х480 (VGA), 320х240 (QVGA). А вообще картинка может быть любой, главное чтобы её линейные размеры в пикселях по вертикали и горизонтали были кратны 32.
Количество кадров в секунду (frames per second, или сокращенно fps) в видеофайле в основном бывает или 30 (NTSC), или 25 (PAL). Но, в принципе, может быть любым.
Что такое HD DVD?
Аббревиатура HD DVD расшифровывается как High Density Digital Versatile Disc – универсальный диск высокой плотности. Данный стандарт является прямым потомком DVD-Video и продвигается на рынок компаниями Toshiba, NEC и Sanyo. Несмотря на аналогичный DVD диаметр носителя HD DVD, этот диск способен вместить до 15 Гбайт на каждый информационный слой. Слоев же может быть несколько: на данный момент уже разработаны экспериментальные 3-слойные диски ёмкостью 45 Гбайт. Впрочем, даже штатных двухслойных дисков более чем достаточно для большинства фильмов. Увеличения плотности записи удалось добиться благодаря применению сине-фиолетового лазера с длиной волны 405 нанометров. Сам по себе формат HD DVD предполагает работу с видеопотоком разрешения до 1080p, звуком вплоть до 7.1 и поддержкой протокола защиты информации HDCP. Скорость считывания данных составляет 32,4 Мбит/с. Поддерживаются алгоритмы кодирования видео – MPEG-2 HD, VC1 (Video Codec 1, базируется на Windows Media Video 9) и H.264/MPEG-4 AVC.
Что такое Blu-ray Disc?
Данный формат продвигает Blu-ray Disc Association во главе с Sony. Blu-ray переводится примерно как «голубой луч». Исковеркать написание слова Blue (голубой) пришлось ради возможности зарегистрировать торговую марку. Как и в случае HD DVD, в основе Blu-ray лежит технология «синего» лазера с длиной волны 405 нанометров, да и диски имеют аналогичный диаметр – 12 см. Между тем разработчикам удалось «втиснуть» на каждый слой до 27 Гбайт данных, а количество слоев уже сейчас может доходить до 4. Очевидное преимущество перед HD DVD с точки зрения информационной ёмкости обернулось удорожанием технологии, что отразилось на цене аппаратуры и на стоимости самих носителей BD-Disc. Первые опытные образцы дисков Blu-ray были заключены в защитные картриджи, оберегающие информационный слой. От картриджей удалось отказаться после того, как поверхность Blu-ray-дисков стали покрывать сверхпрочным оптическим покрытием. По части заложенной поддержки форматов изображения и звука Blu-ray в целом идентичен HD DVD, так что повторять перечисление нет смысла.
Все ли телевизоры c логотипами, содержащими аббревиатуру HD, воспроизводят этот формат с максимальным качеством?
Нет. К примеру, один из самых распространённых логотипов – HD Ready – означает лишь возможность воспроизведения видео высокой чёткости с интерполяцией до физического разрешения матрицы телевизора или проектора. При этом оно может быть любым, даже SDTV. К примеру, такой логотип имеют многие плазменные панели с матрицами 848х480 точек. Отобразить видео высокой чёткости с максимальным качеством могут лишь телевизоры и проекторы с физическим разрешением 1920х1080 точек и поддержкой прогрессивной развёртки. Чаще всего их оснащают логотипом FullHD. Но лучше всего обращать внимание именно на разрешение, а не на рекламные надписи.
Какие интерфейсы используются для передачи HD-сигнала?
Видео высокой чёткости можно передавать посредством как аналогового, так и цифрового трактов. Но в связи с распространением полностью цифровых устройств отображения видеосигнала (проекторы, плазменные и ЖК-телевизоры) необходимость в использовании аналогового тракта отпала. Тем более обеспечить достойную защиту от копирования в этом случае невозможно. На сегодняшний день существует два основных цифровых интерфейса для передачи HD-сигнала – DVI и HDMI. DVI расшифровывается как Digital Visual Interface, а литера после аббревиатуры означает тип: I – Integrated, D – Digital, A – Analog. В первом случае по одному кабелю может передаваться как аналоговый сигнал RGB, так и цифровой, во втором – только цифровой, в третьем – аналоговый. Максимальная пропускная способность интерфейса составляет 3,7 Гбит/с по одноканальной шине (single link) и 7,4 Гбит/с при двухканальном интерфейсе (dual link). Этого более чем достаточно для передачи любого видеопотока HD.
HDMI является модифицированной версией DVI и переводится как High Definition Multimedia Interface. Разъёмы и коннекторы этого интерфейса намного компактнее и удобнее в подключении, нежели DVI. Для передачи сигнала HDMI использует те же принципы, что и DVI-D (и обратно совместим с ним), однако по HDMI может передаваться как цифровой RGB-сигнал, так и цифровой компонентный. Это надо учитывать при выборе аппаратуры. В отличие от DVI, HDMI разрабатывался для бытовой AV-электроники, ввиду чего разработчики исключили свойственные только ПК разрешения, оставив «кинотеатральные» 480(576)i/p, 720i/p и 1080i/p. Помимо удобства подключения HDMI имеет ещё одно преимущество перед DVI: возможность передачи цифрового аудиопотока по одному кабелю параллельно с видео. В частности, в версии цифрового протокола HDMI 1.1 была добавлена совместимость с цифровым сигналом DVD-Audio, а в версии 1.2 появилась поддержка многоканального звука (вплоть до 7.1), что позволяет подключить к плееру последовательно AV-ресивер и устройство отображения. При такой схеме ресивер «заберёт себе» цифровой аудиопоток, а видеосигнал направит дальше. Недавно появилась новая версия HDMI – 1.3. Главная её особенность заключается в повышении пропускной способности до 10,2 Гб в секунду. Это дало возможность увеличить цветовой охват видеоряда до 1 миллиарда оттенков и параллельно с этим обеспечить поддержку форматов звука Dolby TrueHD, DTS HD и других.
Какие форматы используются для кодирования видеосигнала для HDTV?
Одним из наиболее распространённых форматов является MPEG-2 HD. Он создан группой Moving Picture Expert Group и является развитием «обычного» MPEG-2, используемого в DVD-Video. MPEG-2 HD обеспечивает высокое качество видеоряда, однако сам алгоритм компрессии не слишком эффективен, из-за чего один полнометражный фильм может занимать 50 гигабайт и более. Тем не менее данный формат был выбран в качестве основного для бытовых видеосистем высокого разрешения. И неслучайно: он хорошо известен и освоен, для реализации тракта не нужны сложные декодеры. А что касается ёмкости – «синие» диски в большинстве случаев позволяют подобные «излишества». Второй перспективный формат – H.264 AVC (MPEG-4 v.10). Его разработка была завершена в мае 2003 года усилиями групп MPEG и VCEG (Video Coding Experts Group). Аббревиатура AVC расшифровывается как Advanced Video Coding (прогрессивное кодирование видео). В настоящее время алгоритм H.264 AVC является одним из самых эффективных, демонстрируя феноменальное соотношение «качество изображения на объем данных». Однако для декодирования видеопотока требуются серьёзные вычислительные мощности процессора. Помимо описанных выше индустриальных форматов кодирование HD возможно и такими популярными кодеками, как DiVX HD и WMV-HD. В обоих случаях используются незначительно модернизированные алгоритмы MPEG-4. Как известно, одним из форматов, принятых для кодирования HD-потока для HD DVD, является VC-1, разработанный компанией Microsoft и тоже основанный на алгоритме компрессии MPEG-4. Этот кодек активно используется в дисках HD DVD, однако на сегодняшний день нет никаких достоверных данных о его практическом применении в качестве кодека для передачи потокового HDTV.
Продолжение следует.