Последовательное соединение стабилитронов что дает
Стабилитрон. Особенности практического применения.
Рассказано о назначении и применении стабилитронов, как проверить их исправность и основные параметры, чем и как можно заменить.
Сердцем практически любого стабилизатора напряжения является стабилитрон. Его основная функция поддерживать постоянное напряжение на выходе при изменении напряжения на входе. Информации на эту тему очень много. Я постараюсь ее систематизировать и подать максимально коротко, только то, что нужно для практики.
На схемах обозначаются так:
Выглядят, в основном, вот так:
Стабилитрон — специально изготовленный диод с особой воль-амперной характеристикой. Показать ее и пояснить нужно обязательно, для понимания принципа работы. Вот как она выглядит для обычного стабилитрона, например, Д814:
Когда на анод подают плюс, а на катод минус, то стабилитрон ведет себя как обычный диод. На рисунке прямая ветвь. При возрастании напряжения ток растет. Когда плюс подают на катод, а минус на анод, т.е. включают в обратном направлении, то характеристика стабилитрона, зависимость тока через него от приложенного напряжения, тоже кардинально меняется. Это хорошо видно по форме обратной ветви характеристики. Когда напряжение на стабилитроне достигает напряжения пробоя, cтабилитрон пробивается, но не перегорает, так как ток через него ограничен резистором. Этот резистор называется балластным. Если не будет этого резистора, или его номинал подобран не правильно, то стабилитрон выйдет из строя. Величина сопротивления этого резистора подбирается таким образом, чтобы в диапазоне изменения входных напряжений ток через стабилитрон не выходил за допустимые для данного стабилитрона пределы Iст min Iст max. При этом напряжение на стабилитроне остается постоянным и равно напряжению стабилизации. Его величина для каждого типа стабилитрона своя. У двуханодных стабилитронов прямая ветвь такая же как и обратная только расположена справа вверху. В схемах двуханодный стабилитрон можно включать независимо от полярности входного напряжения. Это удобно для ограничения переменного напряжения по амплитуде.
Типовая схема включения стабилитрона на конкретном примере:
Параметры стабилитрона КС182 указаны в справочнике:
Напряжение стабилизации стабилитрона 8,2В. При этом ток стабилизации может изменяться от 3мА до 17мА.
Как правило, в расчетах рекомендуют брать минимальное напряжение на входе в 1,5 раза выше напряжения стабилизации. Получаем 12,3 В. Максимальное примем исходя из допустимого разброса напряжения сети 20%. Получаем 14,73 В. Номинал резистора по закону Ома можно посчитать вручную, но в интернете много онлайн калькуляторов для решения таких задач, например, вот этот:
При таких заданных параметрах получим ток в нагрузке от 0 до 12 мА, что соответствует максимальной мощности 0,1 Вт.
Сопротивление балластного резистора 340 Ом, его мощность 0,125 Вт.
Мощность стабилитрона 0,156 Вт.
Мощность, рассеиваемая на резисторе и стабилитроне, составляет в сумме 0,28 Вт. При этом мощность в нагрузке 0,1 Вт. КПД получается 36%. При больших мощностях это не рационально.
Теперь основные моменты из практики.
Есть еще одна особенность. Чем выше напряжение стабилизации стабилитрона, тем меньше ток стабилизации, так как определяющей в этом случае является рассеиваемая стабилитроном мощность. Так что для стабилитронов малой и средней мощности при проверке достаточно тока 10 мА, для большой мощности 20-30мА. Поэтому для большинства проверок стабилитронов с напряжением стабилизации до 30В берем резистор 1-2 кОм и через него подключаем катод стабилитрона к плюсу регулируемого блока питания, анод соответственно к минусу.
Параллельно стабилитрону подключаем вольтметр. От нуля плавно повышаем напряжение и следим за показаниями вольтметра. Как только они перестали расти при увеличении напряжения блока питания снимаем показания вольтметра. Если напряжение перестало расти при значениях около 1В, значит перепутан анод и катод стабилитрона. Нужно их поменять местами и повторить процедуру. Значение напряжения, при котором прекратились увеличиваться показания вольтметра, и есть напряжение стабилизации. У двуханодных оно будет одинаковым при смене полярности подключения. У стабилитрона с диодом напряжение стабилизации при неправильном включении будет достаточно высоким, на практике выше напряжения блока питания. Теоретически оно будет равно обратному напряжению диода. Можно применять для проверки и нерегулируемый блок питания напряжением выше предполагаемого напряжения стабилизации стабилитрона. При подключении, как на схеме, измеренное напряжение на стабилитроне будет равно напряжению стабилизации стабилитрона. Если показания вольтметра равны напряжению блока питания, значит стабилитрон включен наоборот или имеет напряжение стабилизации выше напряжения блока питания.
Пока проверяемый стабилитрон подключен для проверки напряжения стабилизации по схеме п.2 этой статьи, можно его выводы подогреть паяльником, немного, градусов до 60-70 и понаблюдать за изменением напряжения на вольтметре. Разница между термостабильным стабилитроном и обычным будет очень заметна.
Если ток стабилитрона 10мА, а коэффициент усиления транзистора по току 100 раз, то ток в нагрузке будет 10х100=1000мА. Установив параллельно стабилитрону переменный резистор можно напряжение стабилизации в нагрузке изменять от нуля почти до максимального значения напряжения стабилизации стабилитрона.
Обычный кремниевый диод включенный в прямом направлении может выполнять функции стабилитрона напряжением около 0,7 В. Для увеличения напряжения диоды можно включать последовательно с такими же диодами или стабилитроном, напряжение которого нужно немного увеличить. Германиевый диод, при прямом включении, стабилизирует напряжение около 0,5 В, светодиод, в зависимости от типа 2…3,2 В.
Примеры показаны ниже на фото:
Кремниевые транзисторы в диодном включении также могут выполнять функции стабилитрона напряжением 5…6 В. Причем можно использовать последовательное подключение транзистора с диодами, нескольких транзисторов, как показано ниже:
Если есть маломощный стабилитрон на нужное напряжение, а нужен более мощный, то можно использовать такую аналогию ( где VD1 маломощный стабилитрон):
R2 – балластный резистор. Напряжение стабилизации схемы равно напряжению стабилизации стабилитрона плюс напряжение б-э транзистора (0,7В у кремниевых и 0,5В у германиевых). Максимальный ток стабилизации схемы равен току стабилитрона, умноженному на коэффициент усиления транзистора по току (h21). Используя такие схемы нельзя допускать превышения значений параметров применяемых элементов.
Если нужны высоковольтные стабилитроны на напряжения 120…180В (КС620А, КС630А, КС650А, КС680А), то можно использовать такие схемы:
Как источник стабильного тока используют германиевые диоды Д220, Д220А, Д219А которые имеют низкое дифференциальное сопротивление при обратном включении и обратном токе 0,1…10 мА. Понятно, что напряжение применяемого транзистора должно быть выше 180 В.
Материал статьи продублирован на видео:
Последовательное соединение стабилитронов.
При выпрямлении более высоких напряжений приходится соединять стабилитроны последовательно с тем, чтобы обратное напряжение на каждом стабилитроне не превышало предельного. Но вследствие разброса обратных сопротивлений у различных экземпляров стабилитронов одного и того же типа на отдельных диодах обратное напряжение может оказаться выше предельного, что повлечет пробой диодов.
Для того чтобы обратное напряжение распределялось равномерно между стабилитронами независимо от их обратных сопротивлений, применяют шунтирование стабилитронов резисторами (рисунок 3). Сопротивления Rш резисторов должны быть одинаковы и значительно меньше наименьшего из обратных сопротивлений стабилитронов. Однако Rш не должно быть слишком малым, чтобы чрезмерно не возрос ток при обратном напряжении, т. е. чтобы не ухудшилось выпрямление.
Параллельное соединение стабилитронов применяют в том случае, когда нужно получить прямой ток, больший предельного тока одного стабилитрона. Но если стабилитроны одного типа просто соединить параллельно, то вследствие неодинаковости вольт-амперных характеристик они окажутся различно нагруженными и в некоторых ток будет больше предельного. Различие в прямом токе у однотипных стабилитронов может составлять десятки процентов.(дорисовать палочку в диоде чтобы получился стабилитрон)
Однополупериодный выпрямитель
Когда на диод со вторичной обмотки трансформатора поступает напряжение положительной полярности («+» приложен к аноду диода), диод открывается, и через нагрузку протекает ток, определяемый напряжением на обмотке и сопротивлением нагрузки. Падение напряжения на кремниевом диоде (около 1 В) обычно мало по сравнению с питающим. Напряжение на выходе выпрямителя имеет вид однополярных импульсов, форма которых практически повторяет форму положительной полуволны переменного напряжения.
Среднее значение выпрямленного напряжения равно:
Среднее значение выпрямленного тока:
Действующее значение тока нагрузки:
Коэффициент пульсаций р (отношение амплитуды первой гармоники к выпрямленному напряжению):
Недостатки однополупериодного выпрямителя:
-большой коэффициент пульсаций;
-малые значения выпрямленного тока и напряжения;
-низкий КПД, т.к. ток нагрузки имеет постоянную составляющую, которая вызывает подмагничивание сердечника трансформатора и уменьшение его магнитной проницаемости.
Рабочий режим ПД
Режим диода с нагрузкой называется рабочим режимом. Если бы диод обладал линейным сопротивлением, то расчет тока в подобной схеме не представлял бы затруднений, так как общее сопротивление цепи равно сумме сопротивления диода постоянному току Ro и сопротивления нагрузочного резистора Rн. Но диод обладает нелинейным сопротивлением, и значение Ro у него изменяется при изменении тока. Поэтому расчет тока делают графически. Задача состоит в следующем: известны значения Е, Rн и характеристика диода, требуется определить ток в цепи и напряжение на диоде.
Характеристику диода следует рассматривать как график некоторого уравнения, связывающего величины i и и. А для сопротивления RH подобным
ВАХПД.
Вольт-амперная характеристика (ВАХ) – это зависимость тока, протекающего через электронный прибор, от приложенного напряжения. Вольт-амперной характеристикой называют также и график этой зависимости.
Приборы, принцип действия которых подчиняется закону Ома, а ВАХ имеет вид прямой линии, проходящей через начало координат, называют линейными. Приборы, для которых ВАХ не является прямой линий, проходящей через начало координат называются нелинейными. Диод представляет собой пассивный нелинейный электронный прибор.
Вольт-амперная характеристика диода описывается выражением I=I0[exp(UД/jT)-1], где I0 – тепловой ток (обратный ток, образованный за счет неосновных носителей; UД – напряжение на p-n-переходе; jT – тепловой потенциал, равный контактной разности потенциалов на границе на p-n-перехода при отсутствии внешнего напряжения (при T=300 K, jT=0.025 В).
При отрицательных значениях напряжения менее 0,1 В в выражении (1) пренебрегают единицей, и обратный ток диода определяется значением теплового тока. По мере возрастания положительного напряжения на p-n-переходе прямой ток резко возрастает по экспоненте. Поэтому ВАХ, имеет вид, приведенный на рисунке 3
Рассмотренная характеристика является теоретической ВАХ диода. Она не учитывает рекомбинационно-генерационных процессов, происходящий в объеме и на поверхности p-n-перехода, считая его бесконечно тонким и длинным. ВАХ реального диода, имеет вид, приведенный на рисунке 3 (сплошная линия).
Характеристика для прямого тока вначале имеет значительную нелинейность, т. к. при увеличении напряжения сопротивление запирающего слоя уменьшается. Поэтому кривая идет вверх со все большой крутизной. Но при некотором значении напряжения запирающий слой практически исчезает и остается только сопротивление n- и p-областей, которое приближенно можно считать постоянным. Поэтому далее характеристика становиться почти линейной.Обратный ток при увеличении обратного напряжения сначала быстро возрастает. Это вызвано тем, что уже при небольшом обратном напряжении за счет повышения потенциального барьера в переходе резко снижается диффузионный ток, который направлен навстречу току проводимости. Следовательно, полный ток резко увеличивается. Однако при дальнейшем повышении обратного напряжения ток растет незначительно.
Переход метал-ПП.
В современных полупроводниковых приборах помимо контактов с электронно-дырочным переходом применяются также контакты между металлом и полупроводником. Процессы в таких переходах зависят от так называемой заботы выхода электронов, т. е. от той энергии, которую должен затратить электрон, чтобы выйти из металла или полупроводника. Чем меньше работа выхода, тем больше электронов может выйти из данного тела.
Если в контакте металла с полупроводником п-типа (рис. 2.5, а) работа выхода электронов из металла Ам меньше, чем работа выхода из полупроводника Ат то будет преобладать выход электронов из металла в полупроводник. Поэтому в слое полупроводника около границы накапливаются основные носители (электроны), и этот слой становится обогащенным, т. е. в нем увеличивается концентрация электронов. Сопротивление этого слоя будет малым при любой полярности приложенного напряжения, и, следовательно, такой переход
не обладает выпрямляющими свойствами. Его называют невыпрямляющим (омическим) контактом. Подобный же невыпрямляющий переход получается в контакте металла с полупроводником р-типа (рис. 2.5,6), если работа выхода электронов из полупроводника меньше, чем из металла (Ап
ElectronicsBlog
Обучающие статьи по электронике
Выпрямители. Часть 1. Силовые элементы.
Сегодняшний мой пост о выпрямителях. Что это такое и с чем их едят? Ну во-первых начнём с того что большинство электронных устройств потребляет для своей работы электрическую энергию постоянного тока. Источниками постоянного тока могут быть различные гальванические элементы (батарейки), аккумуляторы, термоэлектрогенераторы, электромашины постоянного тока и выпрямители. Наиболее распространённым источником постоянного тока является выпрямитель – устройство, преобразующее переменный ток в постоянный ток.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Как правило, выпрямители состоят из силовых элементов (чаще всего диодов), трансформатора (для преобразования переменного напряжения и электрической изоляции между входными и выходными цепями выпрямителя) и сглаживающего фильтра (уменьшает пульсации напряжения на нагрузке). В зависимости от числа фаз системы электроснабжения различают однофазные и трёхфазные выпрямители.
В качестве силовых элементов выпрямителей используются германиевые и кремневые диоды. Кремниевые диоды практически полностью вытеснили германиевые. Единственный недостаток кремниевых диодов по сравнению с германиевыми – высокое прямое падение напряжение порядка 0,6…0,8 В вместо 0,1…0,3 В.
Общие недостатки большинства мощных выпрямительных диодов – длительный процесс рассасывания неосновных носителей заряда и большое время восстановления обратного сопротивления. Это становится особенно заметным при выпрямлении напряжения прямоугольной формы с частотой переменного тока выше 1 кГц и проявляется в уменьшении среднего значения выпрямленного напряжения, увеличении пульсаций, снижении КПД выпрямителя.
В настоящее время всё более широкое распространение получают диоды Шотки (диоды на основе контакта между металлом и полупроводником). У этих диодов отсутствуют явления накопления и рассасывания неосновных носителей заряда, что позволяет им работать на частотах в сотни килогерц. Кроме того, прямое падение напряжения у них примерно в два раза меньше, чем у обычных кремниевых диодов.
Последовательное и параллельное соединения диодов.
Если для выпрямительной схемы нельзя выбрать нужный тип диода в соответствии с заданным значением обратного напряжения или прямого тока, то используют два или более однотипных диодов с меньшими значениями параметров, включая эти диоды последовательно или параллельно.
Параллельное соединение диодов
Параллельное соединение диодов
При параллельном соединении диодов из-за возможного разброса параметров их токи будут неодинаковыми. Один из этих токов может превысить максимально допустимое значение, что приведёт к выходу из строя сначала одного, а затем и другого диода. Более равномерное распределения тока между параллельно соединёнными диодами достигается включением последовательно с каждым из них одинаковых по номиналу резисторов Rд. Сопротивление резисторов Rд должно быть в 5…10 раз больше, чем сопротивление диода в прямом направлении. В мощных выпрямительных устройствах для этой же цели используются индуктивные выравниватели токов.
Расчёт параллельного соединения диодов
Для начала расчёта необходимо определить требуемое количество параллельно соединённых диодов, исходя из того, что ток, проходящий через один диод не должен превышать значения максимально допустимого значения тока для данного типа диода, тогда количество параллельно соединённых диодов будет равно
, где Im — максимальное значение тока проходящее через диоды,
kT – коэффициент нагрузки по току (может принимать значения от 0,5 до 0,8),
Inp — средний прямой ток для данного типа диода.
При дробных значениях расчётного количества диодов округление ведётся в большую сторону.
Значение сопротивления добавочных резисторов определяется по формуле
, где n — количество выпрямительных диодов,
Unp.cp — постоянное прямое напряжение для данного типа диодов
Расчитаное сопротивление добавочных резисторов округляют до ближайшего стандартного сопротивления.
Пример расчёта параллельного соединения диодов
Рассчитать выпрямительную цепь, позволяющую получить выпрямленный ток Iвыпр = 550 мА, если используются диоды Д226Б.
Так как средний прямой ток диода Д226Б Iпр. ср = 300 мА, то необходимо применить несколько параллельно соединённых диодов с добавочными резисторами. Рассчитаем количество параллельно соединённых диодов, примем kT = 0,8
Найдём значение сопротивлений добавочных резисторов
Выберем резистор из стандартного ряда сопротивлений Е24 (± 5%) Rдоб = 6,2 Ом
Последовательное соединение диодов
Последовательное соединение диодов
Для обеспечения возможности работы выбранного типа диода в схеме выпрямителя с обратным напряжением, превышающим его максимально допустимое значение, следует соединять однотипные диоды последовательно. Если параметры не совпадают, то один из диодов оказывается под значительно большим напряжением, чем другой. Это может привести к пробою одного, а затем и другого диода. Выравнивание обратного напряжения на последовательно соединенных диодах достигается шунтированием каждого из диодов резистором Rш. Ток, протекающий через эти резисторы, должен быть в 5…10 раз больше максимально возможного обратного тока диодов. В мощных высоковольтных выпрямительных устройствах для этой же цели диоды шунтируют конденсаторами Сш или RC-цепью.
Расчёт последовательного соединения диодов
Для начала расчёта необходимо определить количество последовательно соединенных диодов, исходя из того что падение напряжения на каждом отдельно взятом диоде не должно превышать амплитудного значения напряжения, тогда количество последовательно включённых диодов будет равно
, где
Um — амплитудное значение напряжения проходящее через диод,
kH – коэффициент нагрузки по напряжению (может принимать значения от 0,5 до 0,8),
Uobp max — максимально допустимое обратное напряжение диода.
При дробных значениях расчётного количества диодов округление ведётся в большую сторону.
Значение сопротивлений шунтирующих резисторов определяется по формуле
, где
Iобp max — максимально допустимый обратный ток диода при максимальной температуре.
Пример расчёта последовательного соединения диодов
Рассчитать выпрямительную цепь для напряжения с амплитудным значением 700В, используя диоды Д226Б.
Так как максимально допустимое обратное напряжение диода Uобр.max = 300В, то для выпрямления необходимо применить цепочку из последовательно соединённых диодов с шунтирующими резисторами. Рассчитаем количество последовательных диодов, примем kH = 0,7
Найдём значение сопротивлений шунтирующих резисторов
Выберем резистор из стандартного ряда сопротивлений Е24 (± 5%) Rш = 1 MОм
Включение дополнительных и шунтирующих резисторов неизбежно связано с увеличением потерь мощности и уменьшением КПД выпрямительной схемы.
Основные схемы выпрямления и их сравнительная характеристика.
Радиолюбительская и бытовая радиоэлектронная аппаратура питается только от однофазной сети переменного тока. Поэтому ниже рассматриваются однофазные схемы выпрямления.
Основные схемы выпрямления однофазного напряжения: однополупериодная, двухполупериодная со средней точкой, двухполупериодная мостовая, схема умножения напряжения. В практике применяются и сложные схемы выпрямления, образованные из двух или более простых схем путём их комбинирования. Комбинированные схемы выпрямления целесообразно применять только при постоянной нагрузке по всем выходным цепям; в противном случае будет наблюдаться взаимное влияние выходных каналов источника питания.
Однополупериодная схема выпрямления
Однофазная однополупериодная схема выпрямления может работать как без входного трансформатора, так и с трансформатором. Ток через диод VD протекает только тогда, когда полярность соответствующего полупериода напряжения сети будет способствовать открыванию диода. Ток диода в любой момент времени одновременно является током вторичной обмотки трансформатора и током нагрузки. При активной нагрузке он имеет форму однополярных импульсов с длительностью, равной половине периода сети. В течении другого полупериода питающего напряжения Uc диод VD находится в закрытом состоянии. При проектировании трансформатора для однополупериодных схем выпрямления следует учитывать подмагничивание магнитопровода, поэтому габаритную расчётную мощность трансформатора следует увеличить до значения Рг = (3,36…3,5) Ро.
Однофазная однополупериодная схема выпрямления
Достоинство схемы – простота, минимальное количество вентилей.
Недостатки однополупериодной схемы выпрямления – большое значение пульсаций выпрямленного напряжения и низкая частота пульсаций, равная частоте сети; плохое использование трансформатора; высокое обратное напряжение на диоде (3,14 раз больше выпрямленного напряжения); большой импульс тока через диод.
Однополупериодная схема выпрямления применяется при малой выходной мощности (1…3 Вт) и низких требованиях к пульсациям выпрямленного напряжения. Чаще всего подобная схема выпрямления используется в сочетании с однотактным преобразователем напряжения и емкостным фильтром для преобразования низковольтного напряжения питания постоянного тока в высоковольтное.
Двухполупериодная схема выпрямления со средней точкой
Однофазная двухполупериодная схема выпрямления со средней точкой представляет собой сочетание двух параллельно включённых однополупериодных схем, работающих поочерёдно на одно общее сопротивление нагрузки. Схема может работать от сети переменного тока только при наличии входного трансформатора, имеющего во вторичной обмотке отвод от средней точки. Подводимое к первичной обмотке напряжение Uc трансформируется во вторичные таким образом, что одно из них (например, U’в) является открывающим для диода VD1, а другое (U’’в) – закрывающим для диода VD2. Через диод VD1 и сопротивление нагрузки Rн в течении половины периода напряжения сети протекает импульс тока, аналогичный импульсу однополупериодной схемы выпрямления. В следующий полупериод полярность напряжения на полуобмотках меняется на обратную, диод VD1 закрывается, а VD2 открывается. В этом случае импульс тока будет протекать через диод VD2 и сопротивление нагрузки Rн, то есть ток через нагрузку протекает в течении каждого полупериода в одном направлении.
Однофазная двухполупериодная схема выпрямления со средней точкой
Поскольку токи во вторичных полуобмотках трансформатора протекают поочерёдно в противоположных направлениях, подмагничивание магнитопровода осутствует.
Частота пульсаций выпрямленного напряжения равна удвоенной частоте сети.
Двухполупериодная схема выпрямления со средней точкой имеет ряд преимуществ перед однополупериодной: при одинаковой выходной мощности меньше габариты и масса трансформатора (из-за отсутствия подмагничивания); вдвое меньше амплитуда тока через выпрямительные диоды; вдвое выше частота пульсаций выпрямленного напряжения. По сравнению с мостовой в двухполупериодной схеме выпрямления со средней точкой меньше число диодов в плече и соответственно больше КПД. Оба диода могут быть установлены на общем радиаторе без электроизоляции.
Недостатки схемы – наличие на входе трансформатора; худшее по сравнению с другими двухполупериодными схемами выпрямления использование обмоток трансформатора (ток через каждую полуобмотку протекает только в течении половины периода); высокое обратное напряжение на диодах; возможность появления на выходе схемы пульсаций с частотой сети из-за несимметрии плеч.
Схема универсальна в применении, однако из-за большого обратного напряжения на диодах для выпрямления высоковольтного напряжения применяется редко.
Мостовая схема выпрямителя
Однофазная мостовая двухполупериодная схема выпрямления представляет собой выпрямитель, выполненный на четырёх диодах, включённых по мостовой схеме. В одну диагональ моста включена вторичная обмотка трансформатора, а в другую диагональ – сопротивление нагрузки. Напряжение электросети может быть подключено к мостовому выпрямителю непосредственно.
мостовая двухполупериодная схема выпрямления
В течении одного из полупериодов напряжение сети ток нагрузки протекает через два последовательно соединённых диода, например VD1 и VD4, в течении следующего полупериода через два других диода (VD2 и VD3). При наличии трансформатора ток через вторичную обмотку протекает в течении каждого полупериода, но в противоположных направлениях, поэтому подмагничивание магнитопровода исключается.
Преимущества мостовой схемы выпрямления перед схемой со средней точкой – меньшая габаритная мощность трансформатора; вдвое меньшее обратное напряжение на закрытом диоде; схема может работать без входного трансформатора; при наличии отвода от части вторичной обмотки возможно получение двух выходных напряжений.
Недостатки схемы – большое число диодов, что снижает её КПД; невозможность установки всех четырёх диодов на общем радиаторе без электроизоляции.
Мостовая схема выпрямления универсальна в применении. Однако для выпрямления сравнительно низких напряжений она применяется редко, так как при выходных напряжениях, соизмеримых с падением напряжения на диодах, КПД выпрямителя резко снижается.
Сравнительная характеристика параметров выпрямительных схем
Сравнительная характеристика параметров выпрямительных схем представлена в таблице, которая содержит некоторые сведения о параметрах токов и напряжений в выпрямительных схемах. В таблице в качестве базового напряжения считается постоянное напряжение U0 на выходе выпрямителя
Определяемая величина и ее обозначение | Однополупериодная схема выпрямления | Двухполупериодная схема со средней точкой | Мостовая схема выпрямления |
Постоянная составляющая выпрямленного напряжения, U0 | 1 | 1 | 1 |
Действующее значение напряжения на фазе вторичной обмотки трансформатора, UB | 2,22 U0 | 1,11 U0 | 1,11 U0 |
Наибольшее (амплитудное) значение обратного напряжения, приложенное к одному диоду, Uобр | 3,14 U0 | 3,14 U0 | 1,57 U0 |
Амплитуда переменной составляющей выпрямленного напряжения, Uп max | 1,57 U0 | 0,67 U0 | 0,67 U0 |
Ток нагрузки, I0 | 1 | 1 | 1 |
Действующее значение тока через один диод, IВ | 1,57 I0 | 0,785 I0 | 0,785 I0 |
Наибольшее (амплитудное) значение тока через один диод, Imax | 3,14 I0 | 1,57 I0 | 1,57 I0 |
Пример расчёта параметров выпрямителя
Имеется силовой трансформатор, на вторичной обмотке которого действующее напряжений UB = 10 В. Требуется определить напряжение на выходе мостового выпрямителя и значение обратного напряжения, которое приложено к одному диоду схемы выпрямления.
Определим напряжение на выходе выпрямительного моста
Амплитудное значение обратного напряжения приложенное к одному диоду
Параметры токов и напряжений, которые обозначены в таблице соответствуют выпрямительным схемам без фильтров на выходе. Значение токов и напряжений с применением различных фильтров на выходе выпрямителя будут обозначены в статье про сглаживающие фильтры.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.