Понятность алгоритма подразумевает что
Алгоритм и его свойства.
1. Конечность(результативность) алгоритма означает, что за конечное число шагов должен быть получен результат;
2. Дискретность алгоритма означает, что алгоритм должен быть разбит на последовательность выполняемых шагов;
3. Понятность алгоритма означает, что алгоритм должен содержать только те команды, которые входят в набор команд, который может выполнить конкретный исполнитель;
4. Точность алгоритма означает, что каждая команда должна пониматься однозначно;
5. Массовость алгоритма означает, что однажды составленный алгоритм должен подходить для решения подобных задач с разными исходными данными.
6. Детерминированность (определенность). Алгоритм обладает свойством детерминированности, если для одних и тех же наборов исходных данных он будет выдавать один и тот же результат, т.е. результат однозначно определяется исходными данными.
Таким образом, Алгоритм — это понятное и точное предписание исполнителю, выполнить конечную последовательность шагов, приводящей от исходных данных к искомому результату.
Другие статьи в литературном дневнике:
Портал Стихи.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и российского законодательства. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.
Ежедневная аудитория портала Стихи.ру – порядка 200 тысяч посетителей, которые в общей сумме просматривают более двух миллионов страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.
© Все права принадлежат авторам, 2000-2021 Портал работает под эгидой Российского союза писателей 18+
Кто же ты такой, алгоритм?
Сегодня довольно легко столкнуться с недобросовестными школьными учебниками, в частности с учебниками по информатике. В главах, посвященных алгоритмам, вы можете найти непосредственно определение алгоритма. Не пояснение, о чем идет речь, не рассказ о предмете, а именно определение. Причем выделенное жирным шрифтом, старательно обведенное в рамку и помеченное какой-нибудь заметной пиктограммой в виде восклицательного знака. Обычно приправлено всё это соусом из кучи обязательных и необязательных свойств, образуя в итоге феерический кавардак. Давайте попытаемся понять, что же такое алгоритм, почему мы не может дать ему конкретного определения и выясним, какие свойства являются обязательными, а какие нет.
Составителей учебников легко понять, ведь на самом деле строгого определения алгоритма не существует, и более того, такого определения быть не может. Но вместо попыток объяснить, что к чему, авторы подсовывают бедным ученикам еще одно задание по зубрежке бесполезных и неправильных терминов. Чтобы не быть голословным, приведу выдержку из одного весьма распространенного учебника:
В университетах дела обстоят получше, однако автору этих строк на курсе по математической логике и теории алгоритмов пришлось столкнуться все с тем же винегретом из определения алгоритма и его свойств. Разберемся, что тут не так.
Бесконечность не предел
Такой же трюк с нумерацией не пройдет для бесконечных непериодических дробей (иррациональных чисел). Допустим такое множество счетное, то есть элементы этого множества можно пронумеровать натуральными числами. Тогда рассмотрим бесконечную десятичную дробь с нулевой целой частью, у которой первая цифра после запятой не равняется цифре на той же позиции у дроби с номером 1, вторая цифра не равняется цифре на второй позиции у дроби с номером 2 и т.д. Тогда полученная дробь будет заведомо отличаться от всех дробей хотя бы одной цифрой. Получается для нее не нашлось номера в нашей бесконечной нумерации! Примененная схема доказательства называется канторовским диагональным методом в честь придумавшего ее математика Георга Кантора.
Про бесконечные дроби
Не стоит делать ошибку, записывая в иррациональные числа все бесконечные дроби. Иррациональными являются только те числа, которые нельзя представить в виде несократимой дроби вида m/n. В десятичной системе счисления дроби 1/3 и 2/7 тоже окажутся бесконечными, однако их «бесконечность« обусловлена выбранной системой счисления. В системе счисления по основанию 21 эти дроби будут иметь конечное представление, а вот, например, дробь 1/2 окажется бесконечной (периодической).
Говорят, что множество бесконечных десятичных дробей имеет мощность континуум, которая обозначается символом ℵ1 (алеф-один). В дальнейшем нам понадобится следующее множество. Рассмотрим некоторый алфавит (конечное множество символов). Теперь представим множество всех конечных цепочек символов алфавита A*. Коль скоро алфавит конечен, и каждая цепочка конечна, то множество таких цепочек счетно (их можно пронумеровать натуральными числами).
На сколько велика бесконечность?
Допустим в наш алфавит вошли все придуманные на земле символы: русский алфавит, японские иероглифы, шумерская клинопись и т.д. Тогда в наше множество войдут все написанные когда-либо книги, все книги, которые будут написаны и все книги, которые никто не стал бы писать (например, хаотичные последовательности символов). Кроме того, представим книгу, толщиной в Солнечную систему и диагональю листа равной диаметру Млечного Пути, набранную 12-м шрифтом. В наше придуманное множество войдут все такие книги, отличающиеся хотя бы одним символов, и не только они, ведь вселенная бесконечна! Кто мешает представить себе книгу, размером в миллиарды световых лет? А все такие книги? Уже на этом этапе воображение может давать сбои, а ведь наше множество всего лишь счетное. Чтобы дополнить множество до континуума, нужно рассмотреть бесконечную книгу, по сравнению с которой, предыдущие книги — детские игрушки. Но и одной бесконечной книги нам не хватит, нужно рассмотреть все бесконечные книги.
Конструктивно оперировать континуальными бесконечностями невозможно. Даже работая со счетными множествами, мы не рассматриваем сами множества, а только говорим, что какой бы не был элемент N, всегда найдется элемент N+1. Если мы ставим себе прикладную задачу, появление в наших рассуждениях континуальной бесконечности должно служить нам «тревожной лампочкой»: осторожно, выход за пределы конструктивного.
Алгоритмы и вычислимость
Компьютер проводит свои вычисления, подчиняясь некоторой программе, которая воплощает собой конструктивную процедуру, или алгоритм. Не сложно догадаться, что алгоритм как раз и есть то правило, по которому вычисляется функция. Можно сказать, функция считается вычислимой, если для нее существует некоторый алгоритм.
Понятия алгоритм и вычислимая функция оказываются настолько заковыристыми, что некоторые составители учебной литературы не утруждают себя попытками разъяснить их суть. Дело в том, что определения алгоритма не существует, и кроме того, существовать не может, иначе пришлось бы выбросить на свалку целый раздел математики — теорию вычислимости. Попробуем разобраться более подробнее.
Частично-рекурсивные функции и тезис Черча
Все началось с того, что математик Давид Гильберт в 1900 году предложил список нерешенных на тот момент математических проблем. Позже выяснилось, что десятая проблема (проблема решения произвольного диофантового уравнения) оказалось неразрешимой, но для доказательства этого факта пришлось составить целую новую математическую теорию. Вопросами того, какие задачи можно конструктивно решить, и что такое конструктивное решение, занялись математики Курт Гедель, Стивен Клини, Алонсо Черч и Алан Тьюринг.
Курт Гедель наиболее известен тем, что сформулировал и доказал 2 теоремы о неполноте. Между прочим, сделал он это в возрасте всего лишь 24 лет.
Как выяснилось выше, континуальные бесконечности не всегда подходят под конструктивные рассуждения, поэтому Гедель и Клини предложили рассматривать только функции натурального аргумента (при необходимости любые функции над счетными множествами можно привести к «натуральным функция» путем замены элементов множеств их номерами). Изучая вычислимость таких функций, Гедель, Клини, Аккерман и другие математики пришли к так называемому классу частично-рекурсивных функций. В качестве определения этого класса рассматривается набор базовых, очень простых функций (константа, увеличение на единицу и проекция, которая сопоставляет функции многих аргументов один из ее аргументов) и операторов, позволяющих из функций строить новые функции (операторы композиции, примитивной рекурсии и минимизации). Слово «частичные» показывает, что эти функции определены лишь на некоторых числах. На остальных они не могут быть вычислены. Попытки расширить класс частично-рекурсивных функций ни к чему не привели, так как введение новых операций приводило к тому, что получалось множество функций, совпадающее с классом частично-рекурсивных. В дальнейшем Алонсо Черч отказался от попыток расширения этого класса, заявив, что, видимо:
Частично-рекурсивные функции соответствуют вычислимым функциям в любом разумном понимании вычислимости.
Это утверждение называют тезисом Черча. Стоит отметить, что тезис Черча не является теоремой или доказанным утверждением. Во-первых, не понятно, что такое «разумное понимание», во-вторых, превратив тезис Черча в доказанный факт, мы лишаем себя перспектив дальнейшего исследования вычислимости и механизмов вычислений. Никто, впрочем, не мешает попробовать определить такой набор операций, который был бы мощнее базиса для частично-рекурсивных функций. Только вот, до сих пор это никому не удавалось сделать.
Ученые долго не могли привести пример частично-рекурсивной функции, не являющейся примитивно-рекурсивной (без оператора минимизации). Наконец это удалось Вильгельму Аккерману. Предложенная функция Аккермана растет так быстро, что количество цифр в десятичной записи числа A(4,4) превосходит количество атомов во Вселенной.
Формальная теория алгоритмов во многом построена аналогично теории вычислимости. Считается, что алгоритм есть некое конструктивное преобразование входного слова (цепочки символов некоторого алфавита) в некоторое выходное слово. Опять же, здесь мы имеем с функциями вида A*->A*. Конечно, предложенное описание не подходит под определение алгоритма, так как неясно, что же такое «конструктивное преобразование». Хоть понятия алгоритма и вычислимой функции близки, не стоит их смешивать. Для одного и того же алгоритма может быть предъявлено сколько угодно его записей на каком-нибудь формальном языке, но соответствующая вычислимая функция всегда одна. Один из основателей формальной теории алгоритмов, Алан Тьюринг, предложил формальную модель автомата, известного как машина Тьюринга. Тезис Тьюринга гласит:
Каково бы не было разумное понимание алгоритма, любой алгоритм, соответствующий такому пониманию, может быть реализован на машине Тьюринга.
Любые попытки построить более мощные автомат заканчивались неудачей: для каждого такого автомата (машина Поста, нормальные алгоритмы Маркова, автоматы с регистрами и несколькими лентами) удавалось построить аналогичную машину Тьюринга. Некоторые ученые объединяют тезис Черча и тезис Тьюринга в тезис Черча-Тьюринга, так как они весьма близки по духу.
С помощью такого незамысловатого автомата можно формализовать любой алгоритм.
Таким образом, определив понятие алгоритма, мы будем вынуждены забыть о тезисе Черча-Тьюринга, и отказаться от целой математической теории, богатой содержанием и подарившую нам множество практических результатов.
Свойства алгоритмов
Мы выяснили, почему у алгоритма не может быть конкретного определения. Однако можно определить свойства, которыми должен обладать каждый алгоритм. К сожалению, в литературе часто смешивают обязательные и необязательный свойств. Разберемся подробнее.
Обязательные свойства
Начнем с обязательных свойств. Алгоритм можно записать в виде конечного текста из символов конечного алфавита. Действительно, бесконечный текст мы не можем записать чисто технически, а раз алгоритмы имеют отношение к конструктивной деятельности, бесконечными они быть не могут. Возможность представить алгоритм в виде конечного текста можно назвать свойством объективности и конечности.
Еще одно достаточно очевидное свойство любого алгоритма — его дискретность. Независимо от исполнителя, исполнение алгоритма представляет собой дискретный процесс, при рассмотрение распадающийся на элементарные действия. Понимать дискретность можно и в том смысле, что любая информация, над которой работает алгоритм может быть представлена в виде текста.
Третье фундаментальное свойство алгоритмов называется детерминированностью. Оно заключается в том, что следовать предписанной процедуре можно только одним способом. Единственное, что может повлиять на ход выполнения — это исходные данные, однако при одних и тех же исходных данных, алгоритм всегда выдает один и тот же результат.
Эти три свойства присущи всем алгоритмам. Если нарушено хотя бы одно из них, перед нами уже не алгоритм. С натяжкой к обязательным свойствам можно добавить понятность для исполнителя, хотя это уже на грани фола. По большей части. это относится не к самому алгоритму, а к его записи.
«Винегрет» из свойств из того же учебника по информатике.
Необязательные свойства
Наряду с обязательными свойствами, алгоритм может обладать некоторыми частными свойствами, которые вовсе не обязательны. Начнем с массовости. Конечно, хочется, чтобы алгоритмы решали классы задач в зависимости от входных данных. Однако существуют алгоритмы, которые вообще не зависят от входных данных, например всем известный вывод на экран «Hello world». Как среди вычислимых функций существуют константные, так и среди алгоритмов существуют генераторы единственного результата.
Теперь рассмотрим широко распространенное убеждение, что алгоритмы должны обладать свойством правильности и завершаемости. Начнем с правильности. Такое свойство попросту невозможно формализовать, так как отсутствуют критерии этой правильности. Наверняка, многие из вас сталкивались с ситуацией, когда программист считает программу правильной, а заказчик нет. С завершаемостью дела обстоят интереснее. Рассмотрим термин «применимость« — алгоритм называется применимым к слову, если, получив на вход это слово, он завершается за конечное число шагов. Самое интересное то, что проблема применимости является алгоритмически неразрешимой, то есть невозможно составить алгоритм, которые определял бы по записи алгоритма и входному слову, завершится ли он за конечное число шагов. Никто не мешает вам составить программу, состоящую только из одного бесконечного цикла. И эта программа все еще будет алгоритмом.
Про зависающие программы
Программы, которые не могут зациклиться, на самом деле входят в класс примитивно-рекурсивных — подмножество частично-рекурсивного класса. Отличает их отсутствия оператора минимизации. Он то и вносит пикантности. Если вы используете «неарифметический цикл» while или рекурсию, для которых нельзя заранее определить, сколько раз они выполняться, то ваша программа сразу переходит из класса примитивно-рекурсивных в класс частично-рекурсивных.
Теперь перейдем к пресловутой последовательности шагов. Дело в том, что алгоритм может быть представлен в любой из имеющихся формальных систем (частично-рекурсивные функции, машина Тьюринга, лямбда-исчисление и т.д.). Воплощение алгоритма в виде компьютерной программы далеко не всегда будет описанием последовательности шагов. Здесь все зависит от парадигмы программирования. В императивной парадигме программисты действительно оперируют последовательностью действий. Однако существуют и другие парадигмы, такие как функциональная (привет Haskell программистам), где нету никаких действий, а лишь функции в сугубо математическом смысле, или чистая объектно-ориентированная, которая основана не на «последовательности действий», а на обмене сообщениями между абстрактными объектами.
Заключение
Иногда мир устроен несколько сложнее, чем хотелось бы. Существующие формализмы в теории алгоритмов не более чем абстрактные математические системы, наподобие геометрии Евклида или теории вероятности, тогда как понятие вычислимости, возможно, находится вне математики и является свойством нашей Вселенной наряду со скоростью света и законом всемирного тяготения. И хотя, скорее всего, нам так и не удастся ответить на вопрос, что такое алгоритмы и вычислимость, попытки найти ответ на этот вопрос оказались более ценными, чем возможный однозначный ответ.
Материал данной статьи во многом опирается на 1-ый том «Программирование: введение в профессию» А. В. Столярова. Тем, кто хочет подробнее изучить вопросы, связанные с алгоритмами и теорией вычислимости, кроме этой книги, советую Босс В «От Диофанта до Тьюринга» и трехтомник А. Шеня по математической логике и теории алгоритмов.
Дата-центр ITSOFT — размещение и аренда серверов и стоек в двух дата-центрах в Москве. За последние годы UPTIME 100%. Размещение GPU-ферм и ASIC-майнеров, аренда GPU-серверов, лицензии связи, SSL-сертификаты, администрирование серверов и поддержка сайтов.
Информатика. 11 класс
Тезаурус
Алгоритм — это точная конечная система предписаний, определяющая содержание и порядок действий исполнителя над некоторыми объектами для получения искомого результата.
Исполнитель алгоритма — это субъект или устройство, способные правильно интерпретировать описание алгоритма и выполнить содержащийся в нем перечень действий.
Дискретность — свойство алгоритма, которое означает, что алгоритм состоит из отдельных команд, каждая из которых выполняется за конечное число шагов.
Детерминированность (или определенность) — свойство алгоритма, которое означает, что при каждом запуске алгоритма с одними и теми же исходными данными должен быть получен один и тот же результат.
Понятность — свойство алгоритма, которое означает, что алгоритм содержит только те команды, которые входят в систему команд исполнителя, для которого он предназначен.
Конечность (или результативность) — свойство алгоритма, которое означает, что для корректного набора данных алгоритм должен завершиться через конечное время с вполне определенным результатом. При этом результатом может быть и сообщение о том, что задача не имеет решений.
Массовость — свойство алгоритма, которое означает, что алгоритм предназначен для решения не одной частной задачи, а для некоторого класса задач.
Сложность алгоритма — количество элементарных шагов в вычислительном процессе этого алгоритма.
Список литературы
Основная литература по теме урока:
— Л. Л. Босова, А. Ю. Босова. Информатика. Базовый уровень: учебник для 11 класса — М.: БИНОМ. Лаборатория знаний, 2017
Дополнительная литература по теме урока:
— К. Ю. Поляков, Е. А. Еремин. Информатика углубленный уровень: учебник для 10 класса: часть 2 — М.: БИНОМ. Лаборатория знаний, 2013
— И. Г. Семакин, Т. Ю. Шеина, Л. В. Шестакова. Информатика и ИКТ. Профильный уровень: учебник для 10 класса — М.: БИНОМ. Лаборатория знаний, 2010
Алгоритмизация | Лекция №1
Алгоритм и его свойства
Понятие алгоритма
Одним из фундаментальных понятий в информатике является понятие алгоритма. Происхождение этого термина связано с математикой. Еще на самых ранних ступенях развития математики (Древний Египет, Вавилон, Греция) в ней стали возникать различные вычислительные процессы чисто механического характера. С их помощью искомые величины ряда задач вычислялись последовательно из исходных величин по определенным правилам и инструкциям. Со временем все такие процессы в математике получили название алгоритмов.
Термин алгоритм происходит от имени средневекового персидского математика Мухаммеда Аль-Хорезми (787 – 850 гг.), который еще в IX в. (825 г.) дал правила выполнения четырех арифметических действий в десятичной системе счисления. Процесс выполнения арифметических действий был назван алгоризмом.
С 1747 г. вместо слова алгоризм стали употреблять алгорисмус, смысл которого состоял в комбинировании четырех операций арифметического исчисления – сложения, вычитания, умножения, деления.
К 1950 г. алгорисмус стал алгорифмом. Смысл алгорифма чаще всего связывался с алгорифмами Евклида – процессами нахождения наибольшего общего делителя двух натуральных чисел, наибольшей общей меры двух отрезков и т.п.
Под алгоритмом понимали конечную последовательность точно сформулированных правил, которые позволяют решать те или иные классы задач. Это определение не является строго математическим, так как в нем не содержится точной характеристики того, что следует понимать под классом задач и под правилами их решения.
Первоначально для записи алгоритмов пользовались средствами обычного языка (словесное представление алгоритмов).
Примеры алгоритмов
Алгоритмы, в соответствии с которыми решение поставленных задач сводится к арифметическим действиям, называются численными алгоритмами (первый алгоритм).
Алгоритмы, в соответствии с которыми решение поставленных задач сводится к логическим действиям, называются логическими алгоритмами (второй алгоритм, поиск пути в лабиринте и др.).
Алгоритм – это понятное и точное предписание (указание) исполнителю совершить определенную последовательность действий для достижения указанной цели или решения поставленной задачи (приводящую от исходных данных к искомому результату).
Разработать алгоритм означает разбить задачу на определенную последовательность шагов. От разработчика алгоритма требуется знание особенностей и правил составления алгоритмов.
Каждое указание алгоритма предписывает исполнителю выполнить одно конкретное действие. Исполнитель не может перейти к выполнению следующей операции, не закончив полностью выполнения предыдущей. Поочередное выполнение команд алгоритма за конечное число шагов приводит к решению задачи, к достижению цели. Разделение выполнения решения задачи на отдельные операции, выполняемые исполнителем по определенным командам – важное свойство алгоритмов, называемое дискретностью.
Алгоритм представляет собой последовательность команд (инструкций, директив), определяющих действия исполнителя (субъекта или управляемого объекта). Исполнитель, выполняя алгоритм, может не вникать в смысл того, что он делает, и вместе с тем получать нужный результат. В этом случае говорят, что исполнитель действует формально, т.е. отвлекается от содержания поставленной задачи и строго выполняет инструкции. Таким образом, возможность решения задачи, механически исполняя команды алгоритма в указанной последовательности, называется формальностью.
Всякий алгоритм составляется в расчете на конкретного исполнителя с учетом его возможностей. Для того чтобы алгоритм мог быть выполнен, нельзя включать в него команды, которые исполнитель не в состоянии выполнить. Нельзя повару поручать работу токаря, какая бы подробная инструкция ему не давалась. У каждого исполнителя имеется свой перечень команд, которые он может исполнить. Каждая команда алгоритма должна определять однозначно действие исполнителя. Такое свойство алгоритмов называется определенностью (или точностью) алгоритма.
Алгоритм, составленный для конкретного исполнителя, должен включать только те команды, которые он может выполнить. Это свойство алгоритма называется понятностью. Алгоритм не должен быть рассчитан на принятие каких-либо самостоятельных решений исполнителем, не предусмотренных алгоритмом.
Еще одно важное требование, предъявляемое к алгоритмам, – результативность (или конечность) алгоритма. Оно означает, что исполнение алгоритма должно закончиться за конечное число шагов.
Разработка алгоритмов – процесс творческий, требующий умственных усилий и затрат времени. Поэтому предпочтительно разрабатывать алгоритмы, обеспечивающие решения всего класса задач данного типа. Например, если составляется алгоритм решения кубического уравнения ax 3 + bx 2 + cx + d = 0, то он должен быть вариативен, т.е. обеспечивать возможность решения для любых допустимых исходных значений коэффициентов a, b, c, d. Про такой алгоритм говорят, что он отвечает требованию массовости.
Основные особенности и свойства алгоритмов:
Свойства дискретности, формальности, точности, понятности и конечности являются необходимыми (иначе это не алгоритм). Свойство массовости не является необходимым свойством алгоритма, оно скорее определяет его качество.
Алгоритмы можно записывать по-разному. Форма записи, состав и количество операций алгоритма зависит от того, кто будет исполнителем этого алгоритма.
Способы описания алгоритма:
Например: найти большее из трех чисел.
Алгоритм БИТ