Пользуясь определением предела доказать что

Предел функции

Понятие предела.

Важную роль в курсе математического анализа играет понятие предела, связанное с поведением функции в окрестности данной точки. Напомним, что \(\delta\) — окрестностью точки \(a\) называется интервал длины \(2\delta\) с центром в точке \(a\), то есть множество
$$
U_<\delta>(a)=\

Исследуем функцию \(f(x)=\displaystyle \frac\) в окрестности точки \(x=1\).

\(\triangle\) Функция \(f\) определена при всех \(x\in\mathbb\), кроме \(x=1\), причем \(f(x)=x+1\) при \(x\neq 1\). График этой функции изображен на рис. 10.1.

Пользуясь определением предела доказать чтоРис. 10.1

Из этого рисунка видно, что значения функции близки к 2, если значения \(x\) близки к 1 (\(x\neq 1)\). Придадим этому утверждению точный смысл.

Пусть задано любое число \(\varepsilon>0\) и требуется найти число \(\delta>0\) такое, что для всех \(x\) из проколотой \(\delta\)-окрестности точки \(x=1\) значения функции \(f(x)\) отличаются от числа 2 по абсолютной величине меньше, чем на \(\varepsilon\).

Иначе говоря, нужно найти число \(\delta>0\) такое, чтобы для всех \(x\in\dot_<\delta>(a)\) соответствующие точки графика функции \(y=f(x)\) лежали в горизонтальной полосе, ограниченной прямыми \(y=2-\varepsilon\) и \(y=2+\varepsilon\) (см. рис. 10.1), то есть чтобы выполнялось условие \(f(x)\in U_<\varepsilon>(2)\). В данном примере можно взять \(\delta=\varepsilon\).

В этом случае говорят, что функция \(f(x)\) стремится к двум при \(x\), стремящемся к единице, а число 2 называют пределом функции \(f(x)\) при \(x\rightarrow 1\) и пишут \(\displaystyle \limf(x)=2\) или \(f(x)\rightarrow 2\) при \(x\rightarrow 1.\quad\blacktriangle\)

\(\triangle\) Из графика этой функции (рис. 10.2) видно, что для любого \(\varepsilon>0\) можно найти \(\delta>0\) такое, что для всех \(x\in\dot_<\delta>(0)\) выполняется условие \(f(x)\in U_<\varepsilon>(1)\). В самом деле, прямые \(y=1+\varepsilon\) и \(y=1-\varepsilon\) пересекают график функции \(y=f(x)\) в точках, абсциссы которых равны \(x_<1>=-\varepsilon,\ x_2=\sqrt<\varepsilon>\). Пусть \(\delta\) — наименьшее из чисел \(|x_<1>|\) и \(x_2\), т.e. \(\displaystyle \delta=\min(\varepsilon,\sqrt<\varepsilon>)\). Тогда если \(|x|

Два определения предела функции и их эквивалентность.

Определение предела по Коши.

Число \(A\) называется пределом функции \(f(x)\) в точке \(a\), если эта функция определена в некоторой окрестности точки \(a\), за исключением, быть может, самой точки \(a\), и для каждого \(\varepsilon>0\) найдется число \(\delta>0\) такое, что для всех \(x\), удовлетворяющих условию \(|x-a| 0\ \exists\delta>0:\ \forall x:0 0\ \exists\delta>0:\ \forall x\in\dot_<\delta>(a)\rightarrow f(x)\in U_<\varepsilon>(A).\nonumber
$$

Таким образом, число \(A\) есть предел функции \(f(x)\) в точке \(a\), если для любой \(\varepsilon\)-окрестности числа \(A\) можно найти такую проколотую \(\delta\)-окрестность точки \(a\), что для всех \(x\), принадлежащих этой \(\delta\)-окрестности, соответствующие значения функции содержатся в \(\varepsilon\)-окрестности числа \(A\).

В определении предела функции в точке \(a\) предполагается, что \(x\neq a\). Это требование связано с тем, что точка \(a\) может не принадлежать области определения функции. Отсутствие этого требования сделало бы невозможным использование предела для определения производной, так как производная функции \(f(x)\) в точке \(a\) — это предел функции
$$
F(x) = \frac,\nonumber
$$
которая не определена в точке \(a\).

Отметим еще, что число \(\delta\), фигурирующее в определении предела, зависит, вообще говоря, от \(\varepsilon\), то есть \(\delta=\delta(\varepsilon)\).

Определение предела по Гейне.

Число \(A\) называется пределом функции \(f(x)\) в точке \(a\), если эта функция определена в некоторой проколотой окрестности точки \(\alpha\), то есть \(\exists\delta_<0>>0:\ \dot_<\delta_<0>>(a)\subset D(f)\), и для любой последовательности \(\\>\), сходящейся к \(a\) и такой, что \(x_\in U_<\delta_0>(a)\) для всех \(n\in\mathbb\), соответствующая последовательность значений функции \(\)\>\) сходится к числу \(A\).

Пользуясь определением предела по Гейне, доказать, что функция

$$
f(x)=\sin\frac<1>\nonumber
$$
не имеет предела в точке \(x=0\).

\(\triangle\) Достаточно показать, что существуют последовательности \(\\>\) и \(\<\widetilde_\>\) с отличными от нуля членами, сходящиеся к нулю и такие, что \(\displaystyle \lim_f(x_)\neq\lim_ f(\widetilde_n)\).

Тогда \(\displaystyle \lim_x_=\lim_\widetilde_=0,\ f(x_)=1\) и \(f(\widetilde_)=0\) для всех \(n\in\mathbb\) и поэтому \(\displaystyle \lim_f(x_)=1\), a \(\displaystyle \lim_f(\widetilde_)=0\). Следовательно, функция \(\displaystyle \sin\frac<1>\) не имеет предела в точке \(x=0.\quad \blacktriangle\)

Если функция \(f\) определена в проколотой \(\delta_<0>\)-окрестности точки \(a\) и существуют число \(A\) и последовательность \(\\) такие, что \(x_n \in \dot_<\delta_<0>>(a)\) при всех \(n \in\mathbb,\ \displaystyle \lim_x_=a\) и \(\displaystyle \lim_f(x_)=A\), то число \(A\) называют частичным пределом функции \(f\) в точке \(a\).

Так, например, для функции \(f(х)=\displaystyle \sin\frac<1>\) каждое число \(A \in [-1, 1]\) является ее частичным пределом. В самом деле, последовательность \(\\>\), где \(x_=\displaystyle (\arcsin A+2\pi n)^<-1>\), образованная из корней уравнения \(\displaystyle \sin\frac<1>=A\) (рис. 10.3), такова, что \(x_n\neq 0\) для всех \(n\in\mathbb,\ \displaystyle \lim_x_n=0\) и \(\displaystyle \lim_f(x_)=A\).

Пользуясь определением предела доказать чтоРис. 10.3

Эквивалентность двух определений предела.

Определения предела функции по Коши и по Гейне эквиваленты.

\(\circ\) В определениях предела функции \(f(x)\) по Коши и по Гейне предполагается, что функция \(f\) определена в некоторой проколотой окрестности точки \(a\), то есть существует число \(\delta_0>0\) такое, что \(\dot_<\delta_<0>>\in D(f)\).

Пусть \(а\) — предельная точка числового множества \(E\), то есть такая точка, в любой окрестности которой содержится по крайней мере одна точка множества \(E\), отличная от \(a\). Тогда число \(A\) называют пределом по Коши функции \(f(x)\) в точке \(a\) по множеству \(E\) и обозначают \(\displaystyle \lim_f(x)=A\), если
$$
\forall\varepsilon>0\quad \exists\delta>0:\quad\forall x\in \dot_<\delta>(a)\cap E\rightarrow|f(x)-A|

Различные типы пределов.

Односторонние конечные пределы.

Число \(A\) называют пределом слева функции \(f(x)\) в точке a и обозначают \(\displaystyle \lim_>f(x)\) или \(f(a-0)\), если
$$
\forall\varepsilon>0\quad\exists\delta>0:\quad\forall x\in(a-\delta,a)\rightarrow|f(x)-A_<1>| 0\quad\exists\delta>0:\ \forall x\in (a,a+\delta)\rightarrow|f(x)-A_2| 0,
\end\right.\nonumber
$$
график которой изображен на рис. 10.4 \(\displaystyle \lim_f(x)=f(-0)=-1,\ \displaystyle \lim_f(x)=f(+0)=1\).

Пользуясь определением предела доказать чтоРис. 10.4

Отметим еще, что если
$$
\forall\varepsilon>0\ \exists\delta>0:\forall x\in\dot_<\delta>(a)\rightarrow f(x)\in[A,A+\varepsilon),
$$
то есть значения функции лежат в правой \(\varepsilon\)-полуокрестности числа \(A\), то пишут \(\displaystyle \lim_f(x)=A+0\). В частности, если \(A=0\), то пишут \(\displaystyle \lim_f(x)=+0\).

Аналогично
$$
\displaystyle \<\lim_f(x)=A-0\>\Leftrightarrow\forall\varepsilon>0\ \exists\delta>0:\ \forall x\in\dot_<\delta>(a)\rightarrow f(x)\in (A-\varepsilon,A\rbrack.\nonumber
$$
Например, для функции
$$
\varphi (x)=\left\<\begin
1-x,\ если\ x 0,
\end\right.\nonumber
$$
график которой изображен на рис. 10.5, \(\displaystyle \lim_f(x)=1+0\).

Пользуясь определением предела доказать чтоРис. 10.5

Аналогичный смысл имеют записи вида
$$
\lim_f(x)=A+0,\quad \lim_f(x)=A-0\nonumber
$$

Например,
$$
\displaystyle \<\lim_f(x)=A+0\>\Leftrightarrow\forall\varepsilon>0\exists\delta>0:\forall x\in(a-\delta,a)\rightarrow f(x)\in[A,A+\varepsilon).
$$

Бесконечные пределы в конечной точке.

Говорят, что функция \(f(x)\), определенная в некоторой проколотой окрестности точки \(a\), имеет в этой точке бесконечный предел, и пишут \(\lim_f(x)=\infty\), если
$$
\forall\varepsilon>0\quad\exists\delta>0:\ \forall x\in\dot_<\delta>(a)\rightarrow|f(x)|>\varepsilon.\label
$$

В этом случае функцию \(f(x)\) называют бесконечно большой при \(x\rightarrow a\).

Пользуясь определением предела доказать чтоРис. 10.6

Например, если \(f(x)=1/x\), то \(\displaystyle \lim_f(x)=\infty\), так как условие \eqref выполняется при \(\delta=1/\varepsilon\) (рис.10.6).

Аналогично говорят, что функция \(f(x)\), определенная в некоторой проколотой окрестности точки \(a\), имеет в этой точке предел, равный \(+\infty\), и пишут \(\displaystyle \lim_f(x)=+\infty\), если \(\forall\varepsilon>0\quad\exists\delta>0:\ \forall x\in\dot_<\delta>(a)\rightarrow f(x)>\varepsilon\), то есть \(f(x)\in U_<\varepsilon>(+\infty)\), где множество \(U_\varepsilon (+\infty )\) называют \(\varepsilon\)-окрестностью символа \(+\infty\).

Если
$$
\forall\varepsilon>0\quad\exists\delta>0:\forall x\in\dot_<\delta>(a)\rightarrow f(x) Пользуясь определением предела доказать чтоРис. 10.7 Пользуясь определением предела доказать чтоРис. 10.8

Предел в бесконечности.

$$
\forall\varepsilon>0\exists\delta>0:\forall x\in U_<\delta>(+\infty)\rightarrow f(x)\in U_<\varepsilon>(A),\nonumber
$$

то говорят, что число \(A\) есть предел функции \(f(x)\) при x, стремящемся к плюс бесконечности, и пишут \(\displaystyle \lim_ f(x)=A.\)

Например, если \(f(x)=\displaystyle\frac<3-2x>\), то \(\displaystyle \lim_ f(x)=-2\). В самом деле \(f(x)=-2+\frac<5>\), и если \(x>0\), то \(x+1>x>0.\) Поэтому \(\displaystyle\frac<5> 0\) выполняется при любом \(x >\delta\), где \(\delta=\displaystyle\frac<5><\varepsilon>\), то есть при любом \(x\in U_<\delta>(+\infty)\).

Если \(\forall\varepsilon>0 \ \exists\delta>0:\forall x\in U_<\delta>(-\infty)\rightarrow f(x)\in U_<\varepsilon>(A)\), то есть неравенство \(|f(x)-A| 0\ \exists\delta>0:\forall x\in U_<\delta>(\infty)\rightarrow f(x)\in U_<\varepsilon>(A),\nonumber
$$
то говорят, что число A есть предел функции f(x) при x, стремящемся к бесконечности, и пишут \(\displaystyle \lim_=A\). Например, если \(f(x)=\frac<3-2x>\), то \(\displaystyle \lim_f(x)=-2.\)

Точно так же вводится понятие бесконечного предела в бесконечности. Например,запись \(\displaystyle \lim_ f(x)=-\infty\) означает, что
$$
\forall\varepsilon>0\ \exists\delta>0:\forall x\in U_<\delta>(+\infty)\rightarrow f(x)\in U_<\varepsilon>(-\infty).\nonumber
$$
Аналогично определяются бесконечные пределы при \(x\rightarrow\infty\) и \(x\rightarrow-\infty.\)

Свойства пределов функций.

Локальные свойства функции, имеющей предел.

Покажем, что функция, имеющая конечный предел в заданной точке, обладает некоторыми локальными свойствами, то есть свойствами, которые справедливы в окрестности этой точки.

Если функция \(f(x)\) имеет предел в точке \(a\), то существует такая проколотая окрестность точки \(a\), в которой эта функция ограничена.

\(\circ\) Пусть \(\displaystyle \lim_f(x)=A\). В силу определения предела по заданному числу \(\varepsilon=1\) можно найти число \(\delta>0\) такое, что для всех \(x\in\dot_<\delta>(a)\) выполняется неравенство \(|f(x)-A| Свойство 2

Свойство сохранения знака предела.

Если \(\displaystyle \lim_f(x)=A\), причем \(A\neq 0,\) то найдется такая проколотая окрестность точки \(a\), в которой значения функции \(f\) имеют тот же знак, что и число \(A\).

\(\circ\) Согласно определению предела по заданному числу \(\varepsilon = \frac<|A|><2>>0\) можно найти такое число \(\delta>0\), что для всех \(x\in\dot_<\delta>(a)\) выполняется неравенство \(\displaystyle |f(x)-A| 0\), то из левого неравенства \eqref следует, что
$$
f(x)>\frac<2>>0\ для\ x\in\dot_<\delta>(a).\nonumber
$$
Если \(A Свойство 3

Если \(\displaystyle \lim_g(x)=B\), причем \( B\neq0\), то существует число \(\delta>0\) такое, что функция \(\displaystyle\frac<1>\) ограничена на множестве \(\dot_<\delta>(a).\)

\(\circ\) В силу определения предела по заданному числу \(\varepsilon=\frac<|B|><2>\) можно найти число \(\delta>0\), такое, что для всех \(x\in\dot_\delta(a)\) выполняется неравенство
$$
|g(x)-B| \frac<|B|><2>\),и поэтому \(\displaystyle \frac<1> <|g(x)|>Свойство 1

Если существует число \(\delta>0\) такое, что для всех \(\dot_<\delta>(a)\) выполняются неравенства
$$
g(x)\leq f(x)\leq h(x),\label
$$
и если
$$
\lim_g(x)=\lim_h(x)=A,\label
$$
то существует \(\displaystyle \lim_f(x)=A.\)

\(\circ\) Воспользуемся определением предела функции по Гейне. Пусть \(\\>\) — произвольная последовательность такая, что \(x_n\in\dot_<\delta>(a)\) для \(n\in\mathbb\) и \(\displaystyle \lim_f(x)=a\). Тогда в силу условия \eqref \(\displaystyle \lim_g(x_)=\lim_h(x_)=A.\)

Так как, согласно условию \eqref, для всех \(n\in\mathbb\) выполняется неравенство
$$
g(x_)\leq f(x_)\leq h(x_),\nonumber
$$
то в силу свойств пределов последовательностей \(\displaystyle \lim_f(x_)=A\). Следовательно, \(\displaystyle \lim_f(x)=A.\ \bullet\)

\(\circ\) Для доказательства этого свойства достаточно воспользоваться определением предела функции по Гейне и соответствующими свойствами пределов последовательностей. \(\bullet\)

Бесконечно малые функции обладают следующими свойствами:

Эти свойства легко доказать, используя определения бесконечно малой и ограниченной функции, либо с помощью определения предела функции по Гейне и свойств бесконечно малых последовательностей. Из свойства 2) следует, что произведение конечного числа бесконечно малых при \(x\rightarrow a\) функций есть бесконечно малая при \(x\rightarrow a\) функция.

Из определения предела функции и определения бесконечно малой функции следует, что число \(A\) является пределом функции \(f(x)\) в точке \(a\) тогда и только тогда, когда эта функция представляется в виде
$$
f(x)=A+a(x),\nonumber
$$ где \(a(x)\) — бесконечно малая при \(x\rightarrow a\) функция.

Свойства пределов, связанные с арифметическими операциями.

Если функции \(f(x)\) и \(g(x)\) имеют конечные пределы в точке \(а\), причем \(\displaystyle \lim_f(x)=A,\ \lim_g(x)=B\), то:

\(\circ\) Для доказательства этих свойств достаточно воспользоваться определением предела функции по Гейне и свойствами пределов последовательностей. \(\bullet\)

Отметим частный случай утверждения \eqref:
$$
\lim_(C f(x))=C\lim_f(x),\nonumber
$$
то есть постоянный множитель можно вынести за знак предела.

Пределы монотонных функций.

Ранее мы уже ввели понятие монотонной функции. Докажем теорему о существовании односторонних пределов у монотонной функции.

Если функция \(f\) определена и является монотонной на отрезке \([a,b]\), то в каждой точке \(x_<0>\in(a,b)\) эта функция имеет конечные пределы слева и справа, a в точках \(а\) и \(b\) — соответственно правый и левый пределы.

\(\circ\) Пусть, например, функция \(f\) является возрастающей на отрезке \([a,b]\). Зафиксируем точку \(х_0\in\)(а, \(b\)]. Тогда
$$
\forall x\in[a,x_<0>)\rightarrow f(x)\leq f(x_<0>).\label
$$

В силу условия \eqref множество значений, которые функция \(f\) принимает на промежутке \([a,x_<0>)\), ограничено сверху, и по теореме о точной верхней грани существует
$$
\sup_\in[a,\ x_<0>):M-\varepsilon 0\), так как \(x_\varepsilon 0\ \exists\delta>0:\forall x\in(x_<0>-\delta,x_<0>)\rightarrow f(x)\in(M-\varepsilon,M].\nonumber
$$
Согласно определению предела слева это означает, что существует
$$
\lim_-0> f(x)=f(x_<0>-0)=M.\nonumber
$$
Итак,
$$
f(x_<0>-0)=\sup_

Если функция \(f\) определена и возрастает на отрезке \([a,b],\ x_<0>\in(a,b),\) то
$$
f(x_<0>-0) Замечание.

Теорема о пределе монотонной функции справедлива для любого конечного или бесконечного промежутка. При этом, если \(f\) — возрастающая функция, не ограниченная сверху на \((a,b)\), то \(\displaystyle \lim_f(x)= +\infty\) (в случае, когда \(b =+\infty\) пишут \(\displaystyle \lim_f(x)= +\infty\)), а если \(f\) — возрастающая и не ограниченная снизу на промежутке \((a,b)\) функция, то \(\displaystyle \lim_f(x)=-\infty\quad (\lim_f(x)=-\infty)\).

Критерий Коши существования предела функции.

Будем говорить, что функция \(f(x)\) удовлетворяет в точке \(x=a\) условию Коши, если она определена в некоторой проколотой окрестности точки \(a\) и
$$
\forall\varepsilon>0\quad \exists\delta=\delta(\varepsilon)>0:\ \forall x’,x″\in \dot_<\delta>(a)\rightarrow|f(x’)-f(x″)|

Пусть существует число \(\delta >0\) такое, что функция \(f(x)\) определена в проколотой \(\delta\) — окрестности точки \(a\), и пусть для каждой последовательности <\(x_n\)>, удовлетворяющей условию \(x_n\in\dot_<\delta>(a)\) при всех \(n\in\mathbb\) и сходящейся к \(a\), соответствующая последовательность значений функции \(\) имеет конечный предел. Тогда этот предел не зависит от выбора последовательности \(\), то есть если
$$
\lim_f(x_)=A,\nonumber
$$
и
$$
\lim_f(\widetilde>)=\widetilde,\nonumber
$$
где \(\widetilde_n =\dot_<\delta>(a)\) при всех \(n \in\mathbb\) и \( \widetilde_\rightarrow a \) при \(n\rightarrow\infty\) то \(\widetilde=A.\)

\(\circ\) Образуем последовательность
$$
x_<1>,\widetilde_<1>, x_<2>,\widetilde_<2>,\ldots, x_,\widetilde_,\ldots\nonumber
$$
и обозначим k-й член этой последовательности через \(y_\). Так как \(\displaystyle \lim_y_k=a\) (см. пример 3 здесь) и \(y_k\in \dot_<\delta>(a)\) при любом \(k\in\mathbb\), то по условию леммы существует конечный \(\displaystyle \lim_f(y_)=A’\) Заметим, что \(\)\>\) и \(\_)\>\) являются подпоследовательностями сходящейся последовательности \(\\). Поэтому \(A=A’,\widetilde=A’\) откуда получаем, что \(A=\widetilde.\ \bullet\)

Для того чтобы существовал конечный предел функции \(f(x)\) в точке \(x = a\) необходимо и достаточно, чтобы эта функция удовлетворяла в точке a условию Коши \eqref.

\(\circ\) Необходимость. Пусть \(\displaystyle \lim_f(x)=A\); тогда
$$
\forall\varepsilon>0 \ \exists\delta>0:\forall x\in\dot_<\delta>(a)\rightarrow|f(x)-A| 0\) можно найти число \(\delta=\delta_\varepsilon>0\) такое, что
$$
\forall x’,x″\in \dot_<\delta>(a)\rightarrow|f(x’)-f(x″)| 0,\) указанное в условии \eqref, найдем в силу определения предела последовательности номер \(n_<\delta>=N_<\varepsilon>\) такой, что
$$
\forall n>N_<\varepsilon>\rightarrow 0 Замечание.

Теорема 3 остается в силе, если точку \(a\) заменить одним из символов \(a-0, a+0,-\infty, +\infty\); при этом условие \eqref должно выполняться в окрестности этого символа.

Источник

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки

Правила форума

В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе «Помогите решить/разобраться (М)».

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.

Пользуясь определением предела последовательности доказать

Пользуясь определением предела доказать что

Последний раз редактировалось rodo_by 24.10.2013, 23:26, всего редактировалось 4 раз(а).

Пользуясь определением предела последовательности доказать

Пользуясь определением предела доказать что

что равносильно найти решение

Пользуясь определением предела доказать что

при натуральных n дробь положительна, поэтому модуль можно убрать,
а что делать с неравенством

Пользуясь определением предела доказать что

Я должен решать квадратное уравнение?

А если я буду искать N при которых это неравенство верно, рассуждая так:

Т.к. Пользуясь определением предела доказать что, то и

Пользуясь определением предела доказать что, а также

Пользуясь определением предела доказать что

Пользуясь определением предела доказать что\sqrt<\frac<1><2\cdot\varepsilon>>$» title=»$N > \sqrt<\frac<1><2\cdot\varepsilon>>$» />

Ведь моя задача не обязательно найти наименьшее N, а одно из (при котором будет выполняться неравенство).

Заслуженный участник
Пользуясь определением предела доказать что

Последний раз редактировалось provincialka 24.10.2013, 23:30, всего редактировалось 2 раз(а).

Пользуясь определением предела доказать что

Заслуженный участник
Пользуясь определением предела доказать что

Пользуясь определением предела доказать что

Понял ошибочность своих рассуждений (у меня B \frac<4><\varepsilon>$» />

Пользуясь определением предела доказать что

Последний раз редактировалось gefest_md 25.10.2013, 01:10, всего редактировалось 1 раз.

Пользуясь определением предела доказать что

Заслуженный участник
Пользуясь определением предела доказать что

Пользуясь определением предела доказать что

Заслуженный участник
Пользуясь определением предела доказать что

Последний раз редактировалось iifat 25.10.2013, 08:21, всего редактировалось 1 раз.

Заслуженный участник
Пользуясь определением предела доказать что

Заслуженный участник
Пользуясь определением предела доказать что

Последний раз редактировалось ewert 25.10.2013, 08:33, всего редактировалось 1 раз.

Оно лишь случайно безобидное. Что, скажем, если бы в числителе стояла минус единичка вместо плюс? Сразу же начались бы совершенно ненужные размышления.

Заслуженный участник
Пользуясь определением предела доказать что

Пользуясь определением предела доказать что

Заслуженный участник
Пользуясь определением предела доказать что

Пользуясь определением предела доказать что

Последний раз редактировалось rodo_by 25.10.2013, 11:05, всего редактировалось 1 раз.

Это пожалуй лучший вариант.

Пользуясь определением предела доказать что

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *