Полуширина доверительного интервала в чем измеряется
Доверительные интервалы
Определение
Доверительные интервалы (англ. Confidence Intervals) одним из типов интервальных оценок используемых в статистике, которые рассчитываются для заданного уровня значимости. Они позволяют сделать утверждение, что истинное значение неизвестного статистического параметра генеральной совокупности находится в полученном диапазоне значений с вероятностью, которая задана выбранным уровнем статистической значимости.
Нормальное распределение
Когда известна вариация (σ 2 ) генеральной совокупности данных, для расчета доверительных пределов (граничных точек доверительного интервала) может быть использована z-оценка. По сравнению с применением t-распределения, использование z-оценки позволит построить не только более узкий доверительный интервал, но и получить более надежные оценки математического ожидания и среднеквадратического (стандартного) отклонения (σ), поскольку Z-оценка основывается на нормальном распределении.
Формула
Для определения граничных точек доверительного интервала, при условии что известно среднеквадратическое отклонение генеральной совокупности данных, используется следующая формула
где X – математическое ожидание выборки, α – уровень статистической значимости, Zα/2 – Z-оценка для уровня статистической значимости α/2, σ – среднеквадратическое отклонение генеральной совокупности, n – количество наблюдений в выборке. При этом, σ/√ n является стандартной ошибкой.
Таким образом, доверительный интервал для уровня статистической значимости α можно записать в виде
Пример
Предположим, что размер выборки насчитывает 25 наблюдений, математическое ожидание выборки равняется 15, а среднеквадратическое отклонение генеральной совокупности составляет 8. Для уровня значимости α=5% Z-оценка равна Zα/2=1,96. В этом случае нижняя и верхняя граница доверительного интервала составят
А сам доверительный интервал может быть записан в виде
Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности попадет в диапазон от 11,864 до 18,136.
Методы сужения доверительного интервала
Допустим, что диапазон [11,864; 18,136] является слишком широким для целей нашего исследования. Уменьшить диапазон доверительного интервала можно двумя способами.
Снизив уровень статистической значимости до α=10%, мы получим Z-оценку равную Zα/2=1,64. В этом случае нижняя и верхняя граница интервала составят
А сам доверительный интервал может быть записан в виде
В этом случае, мы можем сделать предположение, что с вероятностью 90% математическое ожидание генеральной совокупности попадет в диапазон [12,376; 17,624].
Если мы хотим не снижать уровень статистической значимости α, то единственной альтернативой остается увеличение объема выборки. Увеличив ее до 144 наблюдений, получим следующие значения доверительных пределов
Сам доверительный интервал станет иметь следующий вид
Таким образом, сужение доверительного интервала без снижения уровня статистической значимости возможно только лишь за счет увеличения объема выборки. Если увеличение объема выборки не представляется возможным, то сужение доверительного интервала может достигаться исключительно за счет снижения уровня статистической значимости.
Построение доверительного интервала при распределении отличном от нормального
В случае если среднеквадратичное отклонение генеральной совокупности не известно или распределение отлично от нормального, для построения доверительного интервала используется t-распределение. Это методика является более консервативной, что выражается в более широких доверительных интервалах, по сравнению с методикой, базирующейся на Z-оценке.
Формула
Для расчета нижнего и верхнего предела доверительного интервала на основании t-распределения применяются следующие формулы
где X – математическое ожидание выборки, α – уровень статистической значимости, tα – t-критерий Стьюдента для уровня статистической значимости α и количества степеней свободы (n-1), σ – среднеквадратическое отклонение выборки, n – количество наблюдений в выборке.
Сам доверительный интервал может быть записан в следующем виде
Распределение Стьюдента или t-распределение зависит только от одного параметра – количества степеней свободы, которое равно количеству индивидуальных значений признака (количество наблюдений в выборке). Значение t-критерия Стьюдента для заданного количества степеней свободы (n) и уровня статистической значимости α можно узнать из справочных таблиц.
Пример
Предположим, что размер выборки составляет 25 индивидуальных значений, математическое ожидание выборки равно 50, а среднеквадратическое отклонение выборки равно 28. Необходимо построить доверительный интервал для уровня статистической значимости α=5%.
В нашем случае количество степеней свободы равно 24 (25-1), следовательно соответствующее табличное значение t-критерия Стьюдента для уровня статистической значимости α=5% составляет 2,064. Следовательно, нижняя и верхняя граница доверительного интервала составят
А сам интервал может быть записан в виде
Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне [38,442; 61,558].
Использование t-распределения позволяет сузить доверительный интервал либо за счет снижения статистической значимости, либо за счет увеличения размера выборки.
Снизив статистическую значимость с 95% до 90% в условиях нашего примера мы получим соответствующее табличное значение t-критерия Стьюдента 1,711.
В этом случае мы можем утверждать, что с вероятностью 90% математическое ожидание генеральной совокупности окажется в диапазоне [40,418; 59,582].
Если мы не хотим снижать статистическую значимость, то единственной альтернативой будет увеличение объема выборки. Допустим, что он составляет 64 индивидуальных наблюдения, а не 25 как в первоначальном условии примера. Табличное значение t-критерия Стьюдента для 63 степеней свободы (64-1) и уровня статистической значимости α=5% составляет 1,998.
Это дает нам возможность утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне [43,007; 56,993].
Выборки большого объема
К выборкам большого объема относятся выборки из генеральной совокупности данных, количество индивидуальных наблюдений в которых превышает 100. Статистические исследования показали, что выборки большего объема имеют тенденцию быть нормально распределенными, даже если распределение генеральной совокупности отличается от нормального. Кроме того, для таких выборок применение z-оценки и t-распределения дают примерно одинаковые результаты при построении доверительных интервалов. Таким образом, для выборок большого объема допускается применение z-оценки для нормального распределения вместо t-распределения.
Подведем итоги
В таблице собраны рекомендации по выбору методики построения доверительных интервалов для различных ситуаций.
Способы расчета доверительного интервала
Часто оценщику приходится анализировать рынок недвижимости того сегмента, в котором располагается объект оценки. Если рынок развит, проанализировать всю совокупность представленных объектов бывает сложно, поэтому для анализа используется выборка объектов. Не всегда эта выборка получается однородной, иногда требуется очистить ее от экстремумов – слишком высоких или слишком низких предложений рынка. Для этой цели применяется доверительный интервал. Цель данного исследования – провести сравнительный анализ двух способов расчета доверительного интервала и выбрать оптимальный вариант расчета при работе с разными выборками в системе estimatica.pro.
Способы расчета доверительного интервала
Доверительный интервал – вычисленный на основе выборки интервал значений признака, который с известной вероятностью содержит оцениваемый параметр генеральной совокупности.
Смысл вычисления доверительного интервала заключается в построении по данным выборки такого интервала, чтобы можно было утверждать с заданной вероятностью, что значение оцениваемого параметра находится в этом интервале. Другими словами, доверительный интервал с определенной вероятностью содержит неизвестное значение оцениваемой величины. Чем шире интервал, тем выше неточность.
Существуют разные методы определения доверительного интервала. В этой статье рассмотрим 2 способа:
Этапы сравнительного анализа разных способов расчета ДИ:
1. формируем выборку данных;
2. обрабатываем ее статистическими методами: рассчитываем среднее значение, медиану, дисперсию и т.д.;
3. рассчитываем доверительный интервал двумя способами;
4. анализируем очищенные выборки и полученные доверительные интервалы.
Этап 1. Выборка данных
Выборка сформирована с помощью системы estimatica.pro. В выборку вошло 91 предложение о продаже 1 комнатных квартир в 3-ем ценовом поясе с типом планировки «Хрущевка».
Таблица 1. Исходная выборка
Методика вычисления погрешности
На практике любую физическую величину мы имеем возможность измерить ограниченное число раз, поэтому ее истинное значение остается неизменным. За наилучшее приближение к истинному значению измеряемой величины принимается среднее арифметическое из всех имеющихся чисел:
Интервал значений физической величины, в который попадает ее истинное значение с некоторой вероятностью α, называется доверительным интервалом. Вероятность α, с которой истинное значение измеряемой величины попадает в доверительный интервал, называется доверительной вероятностью или надежностью.
Используя понятие доверительного интервала и доверительной вероятности, результат измерений некоторой физической величины можно записать в краткой символической форме следующим образом:
( ± ∆Х) с надежностью α.
Как показывается в математической статистике, при малом числе измерений (n
2. Вычислить абсолютные погрешности отдельных измерений:
3. Вычислить квадраты абсолютных погрешностей:
4. Определить среднюю квадратичную погрешность результата измерений (погрешность среднего арифметического) по формуле:
5. Задать значение надежности (доверительной вероятности) α, если нет специальных рекомендаций, принять α=0,95.
6. По таблице найти коэффициент Стьюдента t при заданной надежности α =0,95 и известном числе измерений n.
7. Вычислить полуширину доверительного интервала для случайных погрешностей:
8. Определить суммарную погрешность результата измерений как сумму случайных и систематической погрешностей:
, где
9. Результаты измерений записать в виде
X = ± ∆Xi
О формуле Байеса, прогнозах и доверительных интервалах
На Хабре много статей по этой теме, но они не рассматривают практических задач. Я попытаюсь исправить это досадное недоразумение. Формула Байеса применяется для фильтрации спама, в рекомендательных сервисах и в рейтингах. Без нее значительное число алгоритмов нечеткого поиска было бы невозможно. Кроме того, это формула явилась причиной холивара среди математиков.
Введение
Начнем издалека. Если наступление одного события увеличивает или уменьшает вероятность наступления другого, то такие события называются зависимыми. Тервер не изучает причинно-следственные связи. Поэтому зависимые события не обязательно следствия друг-друга, связь может быть не очевидной. Например, «у человека голубые глаза» и «человек знает арабский» — зависимые события, поскольку у арабов голубые глаза встречаются крайне редко.
Давайте подумаем чему равно вероятность наступления двух событий одновременно. P(AB). Вероятности наступления первого события умноженной на вероятность наступления второго события, в случае наступления первого. P(AB)=P(A)P(B|A). Теперь, если вспомнить, что P(AB)= P(BA). Получим, P(A)P(B|A)=P(B)P(A|B). Перенесем P(B) влево и получим формулу Байеса:
Все настолько просто, что 300 лет тому назад эту формулу вывел простой священник. Но это не уменьшает практической ценности этой теоремы. Она позволяет решать «обратную задачу»: по данным испытаний оценить ситуацию.
Прямая и обратная задачи
Прямую задачу можно описать так: по причине найти вероятность одного из следствий. Например, дана абсолютно симметричная монета (вероятность выпадения орла, как и решки, равны 1/2). Нужно посчитать вероятность того, что если мы дважды подкинем монету, оба раза выпадет орел. Очевидно, что она равна 1/2 * 1/2 =1/4.
Но проблема в том, что мы знаем вероятность того или иного события только в меньшинстве случаев, почти все их которых искусственные, например, азартные игры. При этом в природе нет ничего абсолютного, вероятность выпадения орла у реальной монеты равна 1/2 только приблизительно. Можно сказать, что прямая задача изучает некоторых сферических коней в вакууме.
На практике, важнее обратная задача: оценить ситуацию по данным испытаний. Но проблема обратной задачи в том, что ее решение сложнее. Главным образом из-за того, что наше решения будет не точкой P=С, а некоторой функцией P=f(x).
Например, у нас есть монета, нужно оценить с помощью опытов вероятность выпадения решки. Если мы подкинули монету 1 раз и выпал орел, то это не значит, что всегда выпадают орлы. Если 2 раза подкинули и получили 2 орла, то опять это не значит, что выпадают только орлы. Чтобы получить абсолютно точно вероятность выпадения решки, мы должны подкинуть монету бесконечное число раз. На практике это не возможно и мы всегда вычисляем вероятность события с некоторой точностью.
Мы вынуждены использовать некоторую функцию. Обычно ее принято обозначать как P(p=x|s решек, f орлов) и называть плотностью вероятности. Читается это так вероятность, того, что вероятность выпадения орла равна x, если по данным эксперимента выпало s решек и f орлов. Звучит сложно звучит из-за тафтологии. Проще считать p некоторым свойством монетки, а не вероятностью. И читать: так вероятность того, что p=x…
Забегая вперед скажу, что если в первую монетку подкинем 1000 раз и получим 500 орлов, а вторую 10000 и получим 5000 орлов, то плотности вероятности будут выглядеть так:
Из-за того, что у нас не точка, а кривая мы вынуждены использовать доверительные интервалы. Например, если говорят 80% доверительный интервал для p равен 45% до 55%, то это значит с 80% вероятностью p находиться между 45% и 55%.
Биномиальное распределение
Для простоты будем рассматривать биномиальное распределение. Это распределение количества «успехов» в последовательности из некоторого числа независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна. Оно наблюдается практически всегда, когда у нас есть последовательность испытаний с двумя возможными исходами. Например, когда мы несколько раз подкидываем монету, или оцениваем CTR банера, или конверсию на сайте.
Для примера будем считать, что нам нужно оценить вероятность выпадения решки у монеты. Мы подкинули монету некоторое число раз и получили f орлов и s решек. Обозначим это событие как [s,f] и подставим это в формулу Байеса вместо B. Событие когда p равно некоторому числу будем обозначать как p=x и подставим вместо события А.
P([s,d]|p=x), Вероятность получить [s,d], если p=x, при условии, что p=x нам известна P([s,f]|p=x)=K(f,s) * x^s (1-x)^f. Где K(f,s) биномиальный коэффициент. Получаем:
Нам неизвестна P([s,f]). Да и биномиальный коэффициент вычислить проблематично: там факториалы. Но эти проблемы можно решить: суммарная вероятность всех возможных x должна быть равна 1.
С помощью простых преобразований мы получим формулу:
Программируется это просто, всего 10 строк:
Однако, у нас остается неизвестной P(p=x). Она выражает, насколько вероятно, что p=x, если данных по эксперименту у нас нет. Эту функцию принято называть априори. Из-за нее и произошел холивар в теории вероятностей. Вычислить априори строго математически мы не можем, только задать субъективно. А без априори мы не можем решить обратную задачу.
Холивар
Сторонники классической интерпретации (частотного подхода, ЧП), считают, что все возможные p равновероятны до начала эксперимента. Т.е. перед экспериментом нужно «забыть» те данные, которые нам известны до него. Их оппоненты, сторонники байесовского подхода (БП), считают, что нужно задать какую-то априори исходя из наших знаний до начала эксперимента. Это фундаментальное отличия, даже определение понятия вероятности у этих групп разное.
Кстати, создатель этой формулы, Томас Баейс умер лет на 200 раньше холивара и отношение к этому спору имеет только косвенное. Формула Байеса часть обоих конкурирующих теорий.
Частотный подход(ЧП) лучше подходит для науки, где нужно объективно доказать какую-то гипотезу. Например, то что смертность от препарата меньше определенного порога. Если же вам нужно, учитывая всю доступную информацию, принять решение, то лучше использовать БП.
ЧП не подходит для прогнозирования. Кстати, формулы доверительных интервалов, считают доверительные интервал по ЧП. Сторонники БП, обычно, в качестве априори для биномиального распределения используют Бета распределение, при a=1 и b=1 оно вырождается в непрерывное распределение, которое используют их противники. В итоге формула принимает вид:
Это универсальная формула. При использовании ЧП нужно задать b=a=1. Сторонники БП некоторым образом должны выбрать эти параметры, так чтобы получилось правдоподобное бета-распределение. Зная a и b можно использовать формулы ЧП, например для расчета доверительного интервала. Например, мы выбрали a=4.5, b=20, у нас есть 50 успехов и 100 неудач, чтобы вычислить доверительный интервал в БП нам нужно в обычную формулу ввести 53.5 (50+4.5-1) успеха и 119 неудачу.
Однако, у нас нет никаких критериев выбора a и b. Следующая глава расскажет как их выбрать по статическим данным.
Прогноз
Логичнее всего в качестве прогноза использовать мат. ожидание. Его формулу легко получить из формулы мат. ожидания бета-рапределения. Получим:
.
Например, у нас есть сайт, со статьями. На каждой из них есть кнопка «лайк». Если мы будем сортировать по числу лайков, то у новых статей мало шансов перебить старых. Если мы будем сортировать по соотношению лайков к посещениям, то статьи с одном заходом и одним лайком будут перебивать статью с 1000 заходами и с 999 лайками. Разумнее всего сортировать по последней формуле, но нужно каким-то образом определить a и b. Самый простой способ через 2 основных момента бета-распределения: мат. ожидание (сколько в среднем будет) и дисперсию (каково в среднем отклонение от среднего).
Пусть L средняя вероятность лайка. Из матожидания бета-распределения L=a/(a+b) =>a+b=a/L=> aL+bL=a => b=a(1/L — 1). Подставим в формулу дисперсии:
На псевдокоде это будет выглядеть так:
Не смотря на то, что данный выбор a и b кажется объективным. Это не строгая математика. Прежде всего не факт, что лайкабельность статей подвержена Бета-распределению, в отличии от биномиального это распределение «не физично», оно введено для удобства. Мы по сути подогнали кривую к статистическим данным. Причем вариантов подгонки есть несколько.
Шанс побить всех
Например, мы провели А/B тест нескольких вариантов дизайна сайта. Получили некоторые результаты и думаем, нужно ли его останавливать. Если мы остановимся слишком рано мы можем выбрать не верный вариант, но остановиться когда-то все-таки нужно. Мы можем оценивать доверительные интервалы, но их анализ сложен. Как минимум, поскольку в зависимости от коэффициента значимости у нас получаются разные доверительные интервалы. Сейчас я покажу как посчитать вероятность того, что один вариант лучше всех остальных.
Кроме зависимых событий существуют и независимые события. Для таких событий P(A|B)=P(A). Поэтому P(AB)=P(B)P(A|B)=P(A)P(B). Для начала нужно показать что варианты независимы. Кстати сравнивать доверительные интервалы корректно, только в случае когда варианты независимы. Как уже было сказано, сторонники ЧП отбрасывают все данные кроме самого эксперимента. Варианты это отдельные эксперименты, поэтому каждый из них зависит только от своих результатов. Поэтому они независимы.
Для БП доказательство сложнее, основной момент, что априори «изолирует» варианты друг от друга. Например, события «голубые глаза» и «знает арабский» зависимы, а события «араб знает арабский» и «у араба голубые глаза» нет, поскольку взаимосвязь между первыми двумя событиями исчерпывается событием «человек араб». Более верная запись P(p=x) в нашем случае следующая: P(p=x|apriori=f(x)). Поскольку все зависит от выбора функции априори. А события P(pi=x|apriori=f(x)) и P(pj=x|apriori=f(x)) независимы, поскольку единственная взаимосвязь между ними это функция априори.
Доверительный интервал за 15 минут
Добрый день, уважаемые читатели!
Меня зовут Кирилл Мильчаков. Сегодня мы продолжаем наш разговор о биостатистике. Тема сегодняшней нашей беседы будет «Доверительный интервал». Что такое доверительный интервал? Вы наверняка встречались с ним в научной литературе. Доверительный интервал 95 %, либо сочетание символов ДИ и CI (confidence interval) 95 %. Что же означают эти 95 %? Какие он еще может принимать значения? И как его рассчитывать самостоятельно? Об этом обо всем сегодня мы и поговорим в этой статье.
Видео-версия статьи о доверительном интервале
Генеральная совокупность и выборочная совокупность
Прежде чем углубляться в тайны доверительного интервала, хотел бы вспомнить с вами 2 основных понятия статистической совокупности, с которыми чаще всего работают – это генеральная совокупность или выборочная совокупность или выборка.
Генеральная совокупность – это тот массив данных, о которых вы хотите сделать выводы.
Выборка является частью генеральной совокупности, которая участвует непосредственно в вашем эксперименте. Есть такое понятие как репрезентативность, сегодня мы не будем его касаться, главное запомнить, что выборка должна быть репрезентативной.
Если привести небольшой пример относительно генеральной совокупности и выборки, то можно вспомнить о простом случае из вашей жизни. Когда вы хотите узнать, достаточно ли посолен суп, вы берете ложку супа и пробуете его. Вам необязательно есть весь суп, чтобы понять, насколько он посолен. Ложка в данном случае является выборкой, по которой вы делаете вывод обо всей кастрюле супа. В данном случае кастрюля супа является генеральной совокупностью, а ложка супа является выборкой.
Итак, мы вспомнили с вами о 2 ключевых статистических совокупностях – о генеральной совокупности и выборочной совокупности. Теперь нужно вспомнить, что типы исследования, которые проводятся над генеральной совокупностью и выборочной совокупностью, называют по-разному. Над генеральной совокупностью проводятся так называемые сплошные исследования, над выборочной совокупностью – выборочные.
Теперь вспомним небольшие отличия между параметрами этих 2 совокупностей. Сегодня для того, чтобы понять, что такое доверительный интервал, нам понадобятся следующие вещи: во-первых, отличие средней арифметической в генеральной совокупности и в выборочной совокупности. В генеральной совокупности она имеет значок µ (мю), в выборочной – это x̅ (х с чертой) — это средние арифметические по каждому виду совокупности.
Далее нужно знать, что стандартное отклонение имеет значок выборочной – либо S, либо SD (standard deviation), а в случае генеральной совокупности оно носит название среднеквадратичного отклонения и обозначается буквой σ (сигма).
Приведем пример расчета доврительного интервала
Представьте чисто гипотетическую ситуацию, когда перед нами стоит задача исследований среднего роста марсианина. Для того, чтобы его узнать, было отправлено 3 экспедиции. Первой из них повезло больше всего: они смогли поймать каждого из 200 марсианин и померить его рост.
Как мы помним, по закону нормального распределения по оси Х находится величина изучаемого признака, либо варианта (в данном случае это рост в сантиметрах), а по оси Y – частота встречаемости какого-то признака (мы его обозначаем буквой П.
Итак, оказалось, что у всех 200 марсиан средний рост составил 40 сантиметров. Таким образом, первая экспедиция смогла провести так называемое сплошное исследование, так как поработала со всеми единицами наблюдения генеральной совокупности. Поэтому мы имеем право назвать этот параметр µ.
Однако, второй и третьей экспедиции повезло гораздо меньше. Они попали в самые плохо населенные участки Марса и смогли отобрать только 10 марсиан. В данном случае оказалось, что средний рост по их выборке составил всего 38 сантиметров в первом случае и 41 сантиметр во втором случае.
Что же делать? Да, у нас есть данные из самого полного исследования, которое относится к первой экспедиции. Но представьте, что ни одна бы из них не смогла бы поработать со всей совокупностью полностью, и у нас были бы данные только от второй и третьей экспедиции. Что же в этой ситуации делать? Видно, что никто 40 сантиметров в действительности не достиг: во второй экспедиции Б она равна 38 сантиметрам, а в экспедиции В – 41 сантиметр. То есть в реальности никто не достиг 40 сантиметров. Что же делать в данном случае?
И вот здесь на помощь к нам приходит доверительный интервал, точнее оценка параметра. Доверительный интервал является вторым этапом оценки параметра. Прежде чем строить доверительный интервал, нам нужно понять, насколько в принципе этот параметр наша средняя (x̅б, x̅в) может отличаться, ошибаться от реального параметра в генеральной совокупности. Насколько?
Итак, предположим, мы нашли нашу ошибку репрезентативности mr. В данном случае она составила 2,7 сантиметра. Но что же это нам дает? А дает нам это уже достаточно много. Теперь мы, зная, насколько в принципе наша выборка может ошибаться относительно генеральной совокупности, можем составить определенное предположение о том, где же находится реальный параметр – реальные 40 сантиметров генеральной совокупности на основании данных лишь нашей выборки.
Для того, чтобы не залезать в критерий Стьюдента сегодня, я скажу лишь, что:
для доверительного интервала 95 % используется t=2,
для доверительного интервала 99 % используется t=3
и для доверительного интервала 68 % используется t=1.
Итак, после того, как мы нашли нашу предельную ошибку, мы можем построить доверительный интервал. Но для этого нам нужно самим задать тот доверительный интервал, который для нас подходит больше всего. Чаще всего в медицине используется вероятность ошибки 5 %, то есть доверительный интервал 95 % или вероятность ошибки 5 % (р=0,05, р=5 %).
Что же значат эти 95 %? А значат они следующее, что с 95%-ной вероятностью в нашем интервале лежит реальное значение, и лишь в 5 % случаев мы ошибаемся. То есть в нашем конкретном случае наша ошибка репрезентативности составила 2,7 сантиметра. Предельная ошибка отсюда будет равна чему? Именно 5,4 сантиметра, то есть доверительный интервал, так как здесь и плюс, и минус, то есть нам нужно ошибку умножить на 2, составил 10,8 сантиметров. А именно наши 38 см±5,4 см. Ширина всего доверительного интервала составляет 10,8 см. Напомню, что он складывается из положительной и отрицательной предельных ошибок вокруг нашей выборочной средней.
Итак, говоря о доверительном интервале, нужно сделать ряд важных выводов.
Если это видео оказалось Вам полезным, оно хотя бы немного раскрыло тайны доверительного интервала, ставьте лайки, подписывайтесь на наши рассылки и в комментариях пишите, какие темы по биостатистике вам бы были интересны для следующих выпусков. На этом я с вами прощаюсь. Меня зовут Кирилл. Пока!