Полиморфная активность на ээг что это

Расшифровка ЭЭГ головного мозга

Грамотная расшифровка ЭЭГ – это гарантированный шаг к установлению верного диагноза и последующего назначения соответствующего лечения. Далеко не во всех клиниках, где проводится ЭЭГ, можно получить расшифровку показаний. Мы предлагаем расшифровать ваши результаты исследования из других клиник и центров и провести консультацию. Расшифровка ЭЭГ выполняется в течение 5-7 рабочих дней (входит в стоимость исследования). Возможна срочная расшифровка за 2-3 дня (за дополнительную оплату).

Иногда, диагноз ставят ошибочно, или наоборот, не смогли определить наличие признаков заболевания. Для достоверности и уверенности в результате рекомендуем получить мнение нашего специалиста, который имеет большой опыт в расшифровке, диагностике и лечении.

Содержание

Стоимость расшифровки

УслугаЦена
К019Расшифровка видео-ЭЭГ-мониторинга, сделанного в другом центре5,000 руб.
Д010Срочная расшифровка (2-3 дня)*3,000 руб.*

Акция! Скидка 15% на диагностику и бесплатная* срочная расшифровка за 2-3 дня. Акция действует до 14 июня 2020 года.

* Бесплатная срочная расшифровка предоставляется пациентам, обратившимся в клинику впервые.

Полиморфная активность на ээг что это

Расшифровку и консультацию проводит

Тысячина Мария Дмитриевна

Руководитель центра, заведующая лабораторией видео-ЭЭГ-мониторинга, эпилептолог.
Опыт работы – 16 лет.
Основное направление – диагностика и лечение эпилепсии у детей.

Подробно об энцефалограмме

Суть обследования заключается в фиксации электрической активности нейронов структурных образований головного мозга. Электроэнцефалограмма – это своеобразная запись нейронной деятельности на специальной ленте при использовании электродов. Последние закрепляются на участки головы и регистрируют активность определенного участка мозга.

Активность человеческого мозга напрямую определяется работой его срединных образований – переднего мозга и ретикулярной формации (связующего нейронного комплекса), обуславливающих динамику, ритмичность и построение ЭЭГ. Связующая функция формации определяет симметричность и относительную идентичность сигналов между всеми структурами мозга.

Исследование назначается при подозрениях на различные нарушения структуры и деятельности ЦНС (центральной нервной системы) – нейроинфекции, такие как менингит, энцефалит, полиомиелит. При данных патологиях изменяется активность мозговой деятельности, и это сразу же можно диагностировать на ЭЭГ, а в дополнение установить локализацию пораженного участка. ЭЭГ проводится на основании стандартного протокола, в котором фиксируются снятие показателей при бодрствовании или сне (у младенцев), а также с применением специализированных тестов.

К основным тестам относятся:

Эти тесты считаются стандартными и их применяют при энцефалограмме головного мозга и взрослым и детям любого возраста, и при различных патологиях. Существует еще несколько дополнительных тестов, назначающихся в отдельных случаях, таких как: сжатие пальцев в так называемый кулак, нахождение 40 минут в темноте, лишение сна на определенный период, мониторинг ночного сна, прохождение психологических тестов.

Что можно оценить при ЭЭГ?

Данный вид обследования позволяет определить функционирование отделов головного мозга при разных состояниях организма – сне, бодрствовании, активной физической, умственной деятельности и других. ЭЭГ – это простой, абсолютно безвредный и безопасный метод, не нуждающийся в нарушении кожных покровов и слизистой оболочки органа.

В настоящее время он широко востребован в неврологической практике, поскольку дает возможность диагностировать эпилепсию, с высокой степенью выявлять воспалительные, дегенеративные и сосудистые нарушения в мозговых отделах. Также исследование обеспечивает определение конкретного месторасположения новообразований, кистозных разрастаний и структурных повреждений в результате травмы.

ЭЭГ с применением световых и звуковых раздражителей позволяет отличить истерические патологии от истинных, или выявить симуляцию последних. Исследование стало практически незаменимым для реанимационных палат, обеспечивая динамическое наблюдение коматозных пациентов.

Процесс изучения результатов

Анализ полученных результатов проводится параллельно во время исследования, и в ходе фиксации показателей, и продолжается по ее окончании. При записи учитываются присутствие артефактов – механического движения электродов, электрокардиограммы, электромиограммы, наведение полей сетевого тока. Оценивается амплитуда и частота, выделяют наиболее характерные графические элементы, определяют их временное и пространственное распределение.

По окончании производится пато- и физиологическая интерпретация материалов, и на ее базе формулируется заключение ЭЭГ. По окончании заполняется основной медицинский формуляр по данному исследованию, имеющем название «клинико-электроэнцефалографическое заключение», составленный диагностом на проанализированных данных «сырой» записи.

Расшифровка заключения ЭЭГ формируется на базе свода правил и состоит из трех разделов:

Виды активности человеческого мозга, фиксируемые при записи ЭЭГ

Основными видами активности, которые записываются в ходе исследования и впоследствии подвергают интерпретации, а также дальнейшему изучению считаются волновые частота, амплитуда и фаза.

Частота

Показатель оценивается количеством волновых колебаний за секунду, фиксируется цифрами, и выражается в единице измерения – герцах (Гц). В описании указывается средняя частота изучаемой активности. Как правило, берется 4-5 участков записи длительностью, и рассчитывается число волн на каждом временном отрезке.

Амплитуда

Данный показатель – размах волновых колебаний эклектического потенциала. Измеряется расстоянием между пиками волн в противоположных фазах и выражается в микровольтах (мкВ). Для замера амплитуды применяется калибровочный сигнал. Если, к примеру, калибровочный сигнал при напряжении 50 мкВ определяется на записи высотой 10 мм, то 1 мм будет соответствовать 5 мкВ. В расшифровке результатов дается интерпретациям наиболее частым значениям, полностью исключая редко встречающиеся.

Значение этого показателя оценивает текущее состояние процесса, и определяет его векторные изменения. На электроэнцефалограмме некоторые феномены оцениваются количеством содержащихся в них фаз. Колебания подразделяются на монофазные, двухфазные и полифазные (содержащие более двух фаз).

Ритмы мозговой деятельности

Понятием «ритм» на электроэнцефалограмме считается тип электрической активности, относящийся к определенному состоянию мозга, координируемый соответствующими механизмами. При расшифровке показателей ритма ЭЭГ головного мозга вносятся его частота, соответствующая состоянию участка мозга, амплитуда, и характерные его изменения при функциональных сменах активности.

Полиморфная активность на ээг что это

Ритмы бодрствующего человека

Мозговая деятельность, зафиксированная на ЭЭГ у взрослого человека, имеет несколько типов ритмов, характеризующихся определенными показателями и состояниями организма.

Ритмы в состоянии сна

Отдельная категория видов ритмов, проявляющихся либо в условиях сна, либо при патологических состояниях включает в себя три разновидности данного показателя.

По итогам, полученным при записи ЭЭГ, определяется показатель, характеризующий полную всеохватывающую оценку волн – биоэлектрическую активность мозга (БЭА). Диагност проверяет параметры ЭЭГ – частоту, ритмичность и присутствие резких вспышек, провоцирующих характерные проявления, и на этих основаниях делает окончательное заключение.

Расшифровка показателей электроэнцефалограммы

Чтобы расшифровать ЭЭГ, и не упустить никаких мельчайших проявлений на записи, специалисту необходимо учесть все важные моменты, которые могут отразиться на исследуемых показателях. К ним относятся возраст, наличие определенных заболеваний, возможные противопоказания и другие факторы.

По окончании сбора всех данных исследования и их обработки, анализ идет к завершению и затем формируется итоговое заключение, которое и будет предоставлено для принятия дальнейшего решения по выбору метода терапии. Любое нарушение активностей может быть симптомом болезней, обусловленных определенными факторами.

Альфа-ритм

Норма для частоты определяется в диапазоне 8–13 Гц, и его амплитуда не выходит за отметку 100 мкВ. Такие характеристики свидетельствуют о здоровом состоянии человека и отсутствии каких-либо патологий. Нарушениями считается:

Наличие нарушений данного показателя свидетельствует о возможной асимметричности полушарий, что может быть результатом возникновения онкологических новообразований или патологий кровообращения мозга, например, инсульта или кровоизлияния. Высокая частота указывает на повреждения мозга или на ЧМТ (черепно-мозговую травму).

Полное отсутствие альфа-ритма зачастую наблюдается при слабоумии, а у детей отклонения от нормы напрямую связаны с задержкой психического развития (ЗПР). О такой задержке у детей свидетельствует: неорганизованность альфа-волн, смещение фокуса с затылочной области, повышенная синхронность, короткая реакция активации, сверхреакция на интенсивное дыхание.

Бета-ритм

В принятой норме эти волны ярко определяются в лобных долях мозга с симметричной амплитудой в интервале 3–5 мкВ, регистрирующейся в обоих полушариях. Высокая амплитуда наводит врачей на мысли о присутствии сотрясения мозга, а при появлении коротких веретен на возникновение энцефалита. Увеличение частоты и продолжительности веретен свидетельствует о развитии воспаления.

У детей, патологическими проявлениями бета-колебаний считается частота 15–16 Гц и присутствующая высокая амплитуда – 40–50 мкВ, и если ее локализация центральный или передний отдел мозга, то это должно насторожить врача. Такие характеристики говорят о высокой вероятности задержки развития малыша.

Дельта и тета-ритмы

Увеличение амплитуды данных показателей свыше 45 мкВ на постоянной основе характерно при функциональных расстройствах мозга. Если же показатели увеличены во всех мозговых отделах, то это может свидетельствовать о тяжелых нарушениях функций ЦНС.

При выявлении высокой амплитуды дельта-ритма выставляется подозрение на новообразование. Завышенные значения тета и дельта-ритма, регистрирующиеся в затылочной области свидетельствуют, о заторможенности ребенка и задержку в его развитии, а также о нарушении функции кровообращения.

Расшифровка значений в разных возрастных интервалах

Запись ЭЭГ недоношенного ребенка на 25–28 гестационной неделе выглядит кривой в виде медленных вспышек дельта и тета-ритмов, периодически сочетающихся с острыми волновыми пиками длиной 3–15 секунд при снижении амплитуды до 25 мкВ. У доношенных младенцев эти значения ярко разделяются на три вида показателей. При бодрствовании (с периодической частотой 5 Гц и амплитудой 55–60 Гц), активной фазой сна (при стабильной частоте 5–7 Гц и быстрой заниженной амплитудой) и спокойного сна со вспышками дельта колебаний при высокой амплитуде.

На протяжении 3-6 месяцев жизни ребенка количество тета-колебаний постоянно растет, а для дельта-ритма, наоборот, характерен спад. Далее, с 7 месяцев до года у ребенка идет формирование альфа-волн, а дельта и тета постепенно угасают. На протяжении следующих 8 лет на ЭЭГ наблюдается постепенная замена медленных волн на быстрые – альфа и бета-колебания.

До 15 лет в основном преобладают альфа-волны, и к 18 годам преобразование БЭА завершается. На протяжении периода от 21 до 50 лет устойчивые показатели почти не изменяются. А с 50 начинается следующая фаза перестройки ритмичности, что характеризуется снижением амплитуды альфа-колебаний и возрастанием бета и дельта.

После 60 лет частота также начинает постепенно угасать, и у здорового человека на ЭЭГ замечаются проявления дельта и тета-колебаний. По статистическим данным, возрастные показатели от 1 до 21 года, считающиеся «здоровыми» определяются у обследуемых 1–15 лет, достигая 70%, и в интервале 16–21 – около 80%.

Наиболее частые диагностируемые патологии

Благодаря электроэнцефалограмме довольно легко диагностируются заболевания, такие как эпилепсия, или различные виды черепно-мозговых травм (ЧМТ).

Эпилепсия

Исследование позволяет определить локализацию патологического участка, а также конкретный вид эпилептической болезни. В момент судорожного синдрома запись ЭЭГ имеет ряд определенных проявлений:

Применение стимулирующих искусственных сигналов помогает при определении формы эпилептической болезни, так как они обеспечивают видимость скрытой активности, сложно поддающейся диагностированию при ЭЭГ. Например, интенсивное дыхание, требующее гипервентиляцию, приводит к уменьшению просвета сосудов.

Также используется фотостимуляция, проводимая при помощи стробоскопа (мощного светового источника), и если реакции на раздражитель нет, то, скорее всего, присутствует патология, связанная с проводимостью зрительных импульсов. Появление нестандартных колебаний указывает на патологические изменения в мозге. Врачу не следует забывать, воздействие мощным светом может привести к эпилептическому припадку.

При необходимости установить диагноз ЧМТ или сотрясения со всеми присущими патологическими особенностями, зачастую применяют ЭЭГ, особенно в случаях, когда требуется установить место локализации травмы. Если ЧМТ легкая, то запись зафиксирует несущественные отклонения от нормы – несимметричность и неустойчивость ритмов.

Если же поражение окажется серьезным, то и соответственно отклонения на ЭЭГ будут ярко выражены. Нетипичные изменения в записи, ухудшающиеся на протяжении первых 7 дней, свидетельствуют о масштабном поражении мозга. Эпидуральные гематомы чаще всего не сопровождаются особой клиникой, их можно определить лишь по замедлению альфа-колебаний.

А вот субдуральные кровоизлияния выглядят совсем иначе – при них формируются специфические дельта-волны со вспышками медленных колебаний, и при этом расстраиваются альфа. Даже после исчезновения клинических проявлений на записи могут еще какое-то время наблюдаться общемозговые патологические изменения, за счет ЧМТ.

Восстановление функции мозга напрямую зависит от типа и степени поражения, а также от его локализации. В зонах, подвергающимся нарушениям или травмам, может возникнуть патологическая активность, что опасно развитием эпилепсии, поэтому во избежание осложнений травм, следует регулярно проходить ЭЭГ и наблюдать за состоянием показателей.

Несмотря на то что ЭЭГ довольно несложный и не требующий вмешательства в организм пациента метод исследования, он отличается довольно высокой диагностической способностью. Выявление даже мельчайших нарушений в деятельности головного мозга обеспечивает быстрое принятие решения по выбору терапии и дает больному шанс на продуктивную и здоровую жизнь!

Источник

Электроэнцефалография и ее клиническое значение

Биофизическим проявлением функционирования нервной системы является спонтанная электрическая активность. Благодаря процессам генерации электрических импульсов, их подавления, передачи, нервные клетки объединяются в единую систему, управляющую организмом. Данную электрическую активность можно зарегистрировать в нервной системе на любом уровне.

Электроэнцефалография — раздел электрофизиологии центральной нервной системы (ЦНС), занимающийся изучением закономерностей распространения электрической активности в головном мозге для определения функционального состояния головного мозга. В настоящее время данная методика нашла очень широкое применение в неврологии, нейрохирургии, психиатрии, эндокринологии и является ведущей при изучении функции ЦНС. Методика основана на регистрации электрической активности, являющейся основой функционирования всякой возбудимой ткани организма.

Электроэнцефалограмма (ЭЭГ) — кривая, получаемая при регистрации электрической активности головного мозга через ткани черепа. Регистрация потенциалов непосредственно с коры головного мозга называется электрокортикограммой.

Электрическая активность в коре головного мозга была обнаружена физиологами еще в середине прошлого столетия (1849 г.), когда была выявлена электронегативность в месте разреза головного мозга лягушки и черепахи. Затем дли¬тельное время электрическую активность мозга никто не изучал. Только в 1875 — 1876 г. возобновили изучение потенциалов головного мозга животных при различных раздражениях (Данилевский В. Я., Caton). В 1884 г. Введенский Н. Е. приме¬нил телефон для прослушивания электрических процессов в мышцах и нервах, а в дальнейшем и в нервных центрах. В дальнейшем изучение электрофизиологии головного мозга проводилось с помощью гальванометров, которые из-за своей инертности позволяли наблюдать изменение постоянного потенциала при различных раздражениях, т. е. фиксировались медленные колебания в коре. Быстрые ритмы определялись со значительными искажениями.

Началом клинической ЭЭГ считают 1924 г., когда Ганс Бергер впервые осуществил регистрацию ЭЭГ сигналов у человека. Тогда же в его работах было да¬но описание основных ритмов. В 1936 году G.Walter при исследовании больных с опухолью головного мозга обнаружил, что изменения ритмов могут иметь диагностическое значение. В ЭЭГ больных он нашел медленные волны, которые, назвал Дельта-волнами. В США в середине 30-х годов Devis, Jasper и Gibbs обнаружили специфические проявления на ЭЭГ у больных с малыми эпилептическими припадками.

В дальнейшем ЭЭГ развивалась двумя путями: совершенствование технической базы, с созданием новых, более чувствительных и точных приборов; исследование феноменологии ЭЭГ и совершенствование диагностики. Но постоянно перед энцефалографистами вставал вопрос о локализации и механизме гене¬рации импульсов. В этом направлении были достигнуты значительные успехи, особенно после начала изучения нейрофизиологии отдельных нейронов. Это имело важное значение для понимания природы ЭЭГ.

В настоящее время установлено, что центральная нервная система на всех своих уровнях генерирует спонтанную электрическую активность. Эта ритмика сложна, особенно в коре больших полушарий, она зависит от функциональной организации и изменяется под действием различных раздражителей.

Существует много теорий объяснения природы данных ритмических процессов, основанных на изучении электрической активности отдельных нейронов, синоптических потенциалов. Установлено, что нейроны, даже находящиеся близко друг от друга, обладают различной активностью. Но если считать, что нейроны все работают независимо друг от друга, тогда каким образом из этой шумовой кривой получается ритмическая активность, наблюдаемая на ЭЭГ. Наличие ритмов на ЭЭГ сейчас считают прямым показателем того, что нейроны мозга синхронизируют свою активность сложным образом, что позволяет системе функционировать как единому целому. Т.е. нейроны работают в едином динамическом соотношении, и изменение соотношений на разных уровнях организации, межуровневых соотношений приведет к изменению ритмической активности, что будет прямым отражением изменения функционального состояния.

Оборудование

Для регистрации ЭЭГ используют приборы, называемые Электроэнцефалографами. Они состоят из электродной части, системы усилителей, регистрирующего прибора. Электроды бывают разными: чашечковые и мостиковые. Изготавливают их из электропроводного угля или из металла с хлорсеребряным покрытием. Такое покрытие необходимо, что бы на электроде не накапливался постоянный потенциал, который вызывает поляризацию электрода. Это приводит к появлению помех. Менее всего поляризуются неметаллические электроды.

Для обеспечения точной регистрации используют параллельные синфазные усилители с режекционным фильтром. Это позволяет бороться с сетевыми помехами. По своему качеству усилители сейчас позволяют проводить запись без электроизолированной камеры и без заземления.

Регистрирующий прибор. Первоначально в качестве регистратора использовались пишущие приборы с подачей бумажной ленты. Они различались на чернильные приборы, приборы с термопером. Но расходные материалы были достаточно дороги. Сейчас в качестве регистрирующего прибора используют компьютерную технику. С приходом компьютерной техники появилась возможность не только записывать ЭЭГ на небумажный носитель, но так же проводить дополнительную математическую обработку ЭЭГ. Это повысило разрешающую способность метода.

Наложение электродов проводится так же различными способами. Международной системой, принятой за эталон, является система 10 — 20. Электроды накладывают следующим образом. Измеряют расстояние по сагиттальной линии от Inion до Nasion и принимают его за 100%. В 10% этого расстояния от Inion и Nasion соответственно устанавливают нижние лобные и затылочные электроды. Остальные расставляют на равном расстоянии составляющем 20% от расстояния inion — nasion. Вторая основная линия проходит между слуховыми проходами через макушку.

Нижние височные электроды располагают соответственно в 10% этого расстояния над слуховыми проходами, а остальные электроды этой линии на расстоянии 20% длины биаурикулярной линии. Буквенные символы обозначают соответственно области мозга и ориентиры на голове: О — occipitalis, F — frontalis, A — auricularis, P — parietalis, С — centralis, Т — temporalis. Нечетные номера соответствуют электродам левого полушария, четные — правому.

По системе Юнга лобные электроды (Fd, Fs) располагают в верхней части лба на расстоянии 3 — 4 см от средней линии, затылочные (Od, Os) — на 3 см выше от inion и на 3 — 4 см от средней линии. Отрезки линий Od — Fd и Os — Fs делят на три равные части и в точках деления устанавливают центральные (Cd, Cs) и теменные (Pd, Ps) электроды. На горизонтальном уровне верхнего края ушной раковины по фронтальной линии Cd — Cs устанавливают передние височные (Tad, Tas), а по фронтальной линии Ps — Pd — задние височные (Tpd, Tps).

Преимуществом системы 10 — 20 является большое количество электродов (от 16 до 19 — 24), но эта система требует более чувствительного оборудования, т.к. межэлектродное расстояние мало и потенциал слаб. Система Юнга дает достаточное расстояние и все электроды равномерно распределены по поверхности головы, но степень локализации при отведении недостаточна.

Способ отведения потенциала так же может быть различен. Общепринятой является система монополярной записи. При этом электроды на голове являются активными и регистрируют изменение потенциала относительно индифферентно¬го электрода (чаще всего располагают на мочках ушей). Биполярная запись определяет изменение потенциала между двумя электродами, расположенными в разных точках на поверхности скальпа.

Нормальный рисунок ЭЭГ

В норме ЭЭГ снимается в состоянии спокойного бодрствования, когда пациент сидит с закрытыми глазами, расслабившись. В своей основе нормальная ЭЭГ представляет достаточно организованную кривую, состоящую преимущественно из быстрых ритмов, которые имеют определенную пространственную и временную организацию.

Параметры нормального альфа-ритма

Частота 8-13 Гц, по некоторым авторам признается частота 7-12 Гц или 8-12 Гц. Чаще всего в нормальном состоянии встречается частота 9-10 Гц, что можно назвать норморитмом. Тогда среднюю частоту 8-9 (7-9) Гц можно считать замедленным альфа ритмом, а 11-12 Гц — учащенным. Естественно замедлен¬ный и учащенный ритмы уже выходят за рамки нормы (у взрослых людей) и могут рассматриваться, как условно патологические (по Гриндель О. М.)

Амплитуда в норме составляет 20-80 мкВ. Некоторые авторы признают за норму 20 110 мкВ. Амплитуда в норме варьирует в зависимости от возраста.

Зональное распределение — в норме определяются затылочно-теменной зоной, где ритм наиболее выражен. Данное положение признается всеми одинаково.

Модулированность характеризуется волнообразным изменением амплитуды ритма.

Синусоидальность устанавливает в норме закругленность вершин. При ком-пьютерной визуализации синусоидальность не выявляется столь четко (при 8-ми битовой записи) и все ритмы кажутся заостренными. Но, как правило, истинное заострение ритма должно сочетаться с другими нарушениями нормального ритма.

Симметричность по амплитуде и частоте. Достоверность амплитудной сим¬метрии устанавливается путем хорошего наложения электродов с измерением импеданса. Частотная асимметрия так же должна быть объективизирована (критерии достоверности). При этом надо учитывать наличие физиологической асим¬метрии полушарий.

Реакция активации альфа-ритма, т. е. его угнетение при открывании глаз или вспышке света. Данный феномен является одним из основных в характери¬стике альфа-ритма. По нему можно точно отнести выявляемый ритм к альфа-ритму.

Индекс альфа-ритма, который в норме составляет 80 %. При математической обработке индекс можно вычислять, как процент мощности альфа-ритма относительно мощности остальных ритмов в затылочных и теменных отведениях.

Параметры нормального бета ритма

Амплитуда мала — 10—15 мкВ.

Зональность — в норме распределяется в передне-центральных и височных отделах. По мнению Жирмунской Е.А. Бета 1-ритм не является чисто физиологическим и для нормы не характерен. Височный бета ритм часто бывает результатом мышечного артефакта.

Ц-ритм — является вариантом нормального ритма частотой 8 — 13 Гц и выявляется в центральных отделах. Имеет следующие особенности: исчезает при контралатеральном активном сжимании кисти в кулак, узко локализован в цен¬тральных отделах.Медленные ритмы, встречающиеся в норме.
Тета-ритм — частота 4—8 Гц, амплитуда до 30—40 мкВ.
Дельта-ритм — частота 0,5—4 Гц, амплитуда до 30—40 мкВ.

Регионарные особенности ЭЭГ

Доминирующий ритм — это ритм потенциалов, преобладающий на данном участке кривой и при визуальном анализе отличается наибольшей периодичностью и регулярностью, а при частотном анализе — наибольшей амплитудой.Затылочная, теменно-затылочная и височно-затылочная область. Четко выражен доминирующий альфа-ритм, двухфазный, синусоидальный, подавляе¬мый на открывание глаз. Появление в задне-теменной и теменной области ритма частотой в 20—26 Гц, в состоянии покоя, может рассматриваться, как ирритация коры.

Передние отделы полушарий — прецентральная и лобная области. Частые ритмы усилены, альфа почти не прослеживается. Тета-ритм снижен по сравнению с центральными отделами.

Т. о. фоновый рисунок ЭЭГ представляет собой сложный организованный волновой процесс, состоящий из веретен модулированного в разной степени альфа-ритма, на фоне низкоамплитудной высокочастотной активности типа бета-ритма. Данный паттерн проявляется в задних отделах. В более оральных отделах появляются элементы медленноволновой активности с фоновым бета-ритмом.

Теоретически происхождение основного рисунка ЭЭГ выводится из биофизической предпосылки, что каждая клетка представляет собой малый генератор импульсов. Но ЦНС нельзя воспринимать, как совокупность различных центров, которые в свою очередь состоят из отдельных, элементарных (пусть даже взаимосвязанных процессами возбуждения и торможения) генераторов импульсов. Нервная система является сложной, сбалансированной, гибкой системой, функция которой определяется, в первую очередь, морфологическими и динамически¬ми связями. Это подтверждается большими компенсаторными возможностями НС.

Филогенетически оральный ганглий червя развился в обонятельный мозг, который в дальнейшем развитии дополнился зрительным мозгом и лимбической корой для организации поведенческих реакций. С увеличением сложности афферентной импульсации организуется таламическая система. С усложнением движений образуется подкорковая экстрапирамидная система. Последней формируется кора. Параллельно с возникновением новых структур усложняется и организация системы. Чтобы обеспечить все многообразие связей, их гибкость и постоянство, система должна иметь энергетическую и информационную подпитку. Организуется дополнительная, недифференцированная система — ретикулярная формация. Следовательно, основными функциональными структурами, определяющими активность мозга, являются кора, подкорковые отделы и ретикулярная формация.

Взаимосвязь ритмов, независимо от амплитудных значений, математически оценивается когерентностью, кроскорелляцией и фазностью. По волновой теории (Гриндель О. М. с соавт.), построенной на основании анализа большого количества данных, все ЭЭГ были разделены на два больших типа по характеру связей: волновой и импульсный (20%). Волновой тип, являясь более распространенным, определяет сбалансированность и постоянство циклических процессов, что согласуется с принципом активной обратной связи (по Анохину П. К.). Когерентность максимальна в лобных отделах по всем диапазонам волн и минимальна в затылочных. Учитывая, что когерентность определяет степень связи, можно считать, что в затылочных отделах происходит образование большого количества разобщенных источников, а в лобных отделах они объединяются единой организующей силой. Попробуем объяснить процессы следующим образом.

Афферентные импульсы приходят в таламус, где переключаются и после определенной обработки переходят в кору (общепринятое представление). По теории динамической локализации функций в коре (Павлов И. П.) импульсы функ¬ционально приходят в разные отделы, что приводит к возникновению многих центров по обработке разнородной информации. Совокупность центров дает сочета¬ние импульсов, проявляющегося в затылке (не удивительно т. к. основная часть информации приходит к зрительным центрам, кроме того, в височно-затылочные области приходит разнородная информация от других аффекторов) (Кроль Б. М.). Эта информация достаточно не специфична в состоянии спокойного бодрствования. Посылки идут импульсно, что согласуется с триггерной функцией таламуса (иные посылки не будут приводить к образованию центров с учетом функциональной рефрактерности последних). Импульсность выражается в модулированности альфа-ритма в затылочных отделах и несовпадении по фазе огибающей веретен в разных отведениях (видно на глаз при оценке кривой). Подобные процессы про¬исходят в центральных отделах, где стыкуются афферентный и эфферентный (двигательный) анализаторы. Благодаря этой стыковке степень рассогласования процессов меньше. Далее идет сложный процесс восприятия и анализа раздра¬жении «на местах». В лобных отделах происходит интегрирование всей информации и формирование единого действия. Это приводит к возникновению в лобных отделах единого центра, но более медленного по волновой функции. Далее информация идет в подкорковые структуры и реализуется системой в виде произвольных реакций. Волновой круг информации замыкается и начинается новый, что также определяет степень модулированности.

Картина ЭЭГ меняется при проведении функциональных проб. При функциональных пробах происходит повышение активности тех или иных структур. В качестве нагрузок используют следующие: открывание глаз, вспышка света, гипер-вентиляция, фотостимуляция, фоностимуляция.

Проба «Открывание глаз». При открывании глаз на ЭЭГ альфа-ритм исчезает и заменяется быстрыми ритмами (реакция активации). При этом оценивают скорость наступления реакции, степень угнетения альфа-ритма, стойкость активации (по нашим данным замечено, что в среднем реакция сохраняется 20 — 25 с, далее появляются элементы альфа-ритма). После закрывания глаз, в норме, наступает реакция отдачи, которая проявляется во временном усилении основного ритма. При этом оценивают латенцию восстановления основного ритма, степень и стойкость реакции отдачи. При данной пробе оценивают реактивность коры, стойкость процессов возбуждения в коре, выраженность тонуса подкорки. Данная проба более физиологична, чем реакция активации на вспышку света и несет больше информации. (Но реакцию на вспышку света можно использовать при обследовании коматозных больных). Процессы, происходящие при реакции активации, функционально можно представить следующим образом. Открывание глаз значительно усиливает поток импульсов в корковые отделы, что приводит к повышению дифференцировки коры. Это проявляется на ЭЭГ в виде реакции активации с десинхронизацией (внешняя десинхронизация) за счет быстрых ритмов. Математически происходит усиление градиента когерентности, но в целом когерентность остается на основном уровне т.к. физиологическая активация не нарушает системы связей.

Проба с гипервентиляцией. При проведении пробы больной усиленно дышит, акцентируя внимание больше на выдохе. Гипервентиляция проводится в течение 3 мин. При экспертизе, при специальных обследованиях, проводят 5 минутную гипервентиляцию. На ЭЭГ, при проведении пробы возникает усиление альфа-ритма с его незначительным замедлением и перераспределением на передние отделы. Степень модулированности уменьшается. Физиологически при гипервентиляции снижается парциальное давление С02 в крови. Это приводит к активации неспецифических подкорковых структур и усиливает поток неспецифических, синхронизирующих импульсов в кору. При перевозбуждении подкорковых отделов возникает островолновая активность на ЭЭГ (наступает в норме при гипервентиляции более пяти минут).

Фотостимуляция. Проводится в двух вариантах: ритмическая и триггерная. При ритмической фотостимуляции вспышки света подаются ритмично с определенной частотой. Используют различные частотные диапазоны. При ритмической стимуляции возникает реакция усвоения ритма. На ЭЭГ появляется ритм, соответствующий по частоте ритму стимуляции. При спектральном анализе можно выявить не только усвоение ритма по основной гармонике (частоте стимуляции), но и субгармоники, как правило, по частотам, четным основной частоте стимуляции. В норме перестройка ритма у людей выражена в разной степени. Но чаще усваиваются средние и быстрые ритмы, без выраженной асимметрии, преимущественно в задних или центральных отделах. По степени усвоения ритма, соблюдению частоты гармоник, симметричности можно оценить степень триггер-ной функции таламуса, подвижность процессов в коре. Триггерная стимуляция проводится путем подачи световых раздражении с частотой основного ритма ЭЭГ. Для этого используют специальные синхронизирующие устройства.

Дополнительные способы анализа ЭЭГ

В настоящее время основным способом анализа ЭЭГ остается визуальный анализ. Из дополнительных методов анализа используют расчет спектра мощности с применением быстрого преобразования Фурье. Спектр мощности показывает степень выраженности ритма данной частоты. Наглядно спектр мощности представляется в виде усредненных кривых, распределения спектров мощности по эпохам, спектральное картирование.

Другим дополнительным методом является расчет когерентности. Когерентность показывает степень схожести колебательных процессов в двух разных точках, независимо от их амплитудной представленности. Установлено, что среднее значение когерентности постоянно и отражает степень стабильности связей в системе.

Последнее время используется еще один способ обработки. Это локализация источников патологической активности методом Многошаговой дипольной локализации. Путем многочисленных расчетов создается математическая модель вероятного расположения источника данной волны. Данная модель сравнивается с амплитудным распределением тех же волн на скальпе. Для локализации ис¬пользуют только те срезы ЭЭГ, которые имеют заданную вероятность сходимости расчетной модели и скальповой записи. Достоверной считается вероятность 0,95 и более.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *