Полимерное волокно что это такое
Полимеры
Немного о волокнах.
Химические волокна изготавливаются в промышленных условиях с применением химического синтеза из органических природных и синтетических полимеров.
Промышленное производство полимеров началось в начале ХХ века и развивалось одновременно в двух направлениях: создание искусственных и синтетических волокон.
Основой для производства искусственных волокон являются природные виды сырья растительного происхождения, а именно: целлюлоза, отходы переработки хлопкового волокна, поэтому и свойства искусственных волокон и тканей очень похожи на свойства натуральных. К ним относят вискозу, модал и ацетатцеллюлозные волокна.
Синтетические волокна получают из продуктов переработки нефти, угля и природного газа путем химического синтеза. Синтетические волокна стали использоваться в производстве одежды довольно давно, более 40 лет назад. Сегодня наиболее популярны: полиэстер, полиамид, акрил/полиакрил, эластан.
Благодаря постоянно развивающимся технологиям, синтетические ткани постепенно вытесняют натуральные. Синтетические волокна (нити) формируют из полимеров, не существующих в природе.
Что же такое полимер?
Понимание такой структуры синтетических чудо-волокон важно. Ведь именно благодаря цепному строению, все полимерные волокна обладают высокой эластичностью, прочностью и способностью изменять свои физические свойства под воздействием реагентов.
Что такое полиэфирное волокно: отличие от полиэстера и виды
С развитием химической промышленности полиэфирное волокно получило повсеместное применение. Оно содержится в постельных комплектах, натяжных потолках, канатах, бытовом пластике, в одежде и подкладочной ткани, домашнем текстиле.
Описание
Полимеры, как продукт химической промышленности, широко используются для производства бытовых предметов и даже текстиля.
Не все знают, что полиэфирное волокно — это высокомолекулярное соединение на основе полиэтилентерефталата с набором примесей, который является производной нефтепродуктов. Для получения нитей для текстиля подготовленная масса проходит экструзию при разных температурах, что определяет их толщину и характеристики.
В чистом виде полиэфир встречается редко. Он служит добавкой к составу различных тканей, что улучшает их эксплуатационные качества. Текстильная промышленность освоила выпуск смесовых полотен с шелковыми, хлопковыми, шерстяными и другими нитями.
Ткани с волокнами полиэстера обладают множеством достоинств и невысокой ценой. Они прочные на разрыв, стойкие к истиранию, быстро восстанавливают форму после смятия за счет жесткости. Они не подвержены износу и выгоранию, не пропускают воду. Дополнительная пропитка повышает стойкость к высоким температурам, химическим веществам и воспламенению. Фактура полотна гладкая, с синтетическим блеском.
Плавление полиэфирного волокна происходит при температуре 250-265°, а для деформации достаточно горячей воды или утюга, нагретых до +40°.
Преимущества и недостатки
Какими достоинствами обладает волокно синтетического происхождения:
В перечень минусов относится отсутствие воздухопроницаемости, неприятная для кожи жесткость, склонность накапливать статическое электричество и сложности при окрашивании.
Где применяют волокна
Полиэфир входит в состав большинства текстильных изделий, которые нас окружают.
Важно! Материю с полиэфиром отличает специфический блеск поверхности и некоторая грубоватость при тактильном контакте. Если полотно слегка потереть в руке, то будет слышен синтетический скрип.
Ткани
Виды полиэфирных материй:
Полиэстер
Полиэстер – лидер по распространенности и востребованности. Популярность ему обеспечили эстетическая и тактильная привлекательность плюс разнообразие цветов и оттенков. Он востребован для одежды, чехлов, наматрасников, покрывал, занавесей, накидок, ковриков для ног и домашнего текстиля. Изделия хорошо стираются, чистятся от грязи, жира и пятен универсальными моющими средствами.
Микрофибра
Состоит из тонких полиэфирных волокон, что придает ей водостойкость, воздухопроницаемость, способность поглощать жир и выделения пота. Микрофибра применяется для спортивной одежды, мебельных материалов, постельного белья, для рукавичек, губок и салфеток для уборки дома и салона автомобиля.
Акрил
Акрил или искусственная шерсть. Хорошо удерживает тепло и не теряет форму, легкий и с насыщенными красками, но из-за плотности лишен воздухопроницаемости. Применяется в пошиве одежды и для объемного, вязаного трикотажа. Кроме того, из акрила делают обои, натяжные потолки, рулонные шторы и занавески, декорации. Высокая плотность такого полотна (200-500 кг/м 3 ) делает его светонепроницаемым и позволяет размещать на открытом пространстве. Например, оформлять рекламные плакаты, вывески, афиши.
Нейлон
Нейлон имеет легкий вес, прочность и стойкость к химическим реагентам. Отличается особой гладкостью нитей. легко стирается, но не пропускает воздух.
Полиэфирный шёлк
Лайкра
Лайкра или эластан – прочное, упругое и сильно растягивающееся волокно. Тонкая лайкровая нить вплетается в ткани из хлопка, вискозы, шерсти. Они красиво облегают фигуру и не мнутся.
Бифлекс
Бифлекс – яркий, гладкий и красивый трикотажный материал для облегающей одежды, спортивных костюмов и танцевальных трико. Он способен растягиваться в двух направлениях и восстанавливать форму.
Оксфорд
Оксфорд – водонепроницаемый и грязестойкий материал с плетением рогожка и полиуретановым покрытием. Область применения – одежда для спорта и отдыха, туристическая экипировка, тенты и палатки, мебельная обивка, сумки и рюкзаки. Для пошива спецодежды производятся смесовые варианты: оксфорд с нейлоном, с вискозой «Метелица», «Пульс» и «Панацея», с хлопком «Грета», «Твил» и «Томбой».
Флис – мягкий, пушистый и не тяжелый материал, с высокими теплосберегающими свойствами. Благодаря способности пропускать воздух и обеспечивать гигроскопичность. Применяется в одежде для активного отдыха и для теплых вещей.
Смешанные виды тканей
В результате соединения полиэфира с другими нитями получаются ткани с разными свойствами и внешними характеристиками. Полиэфирные волокна способствуют повышению качества основного компонента.
С хлопком
Такая ткань получается красивая, яркая и долговечная. Она прочная и упругая, не мнется и быстро высыхает. Однако, гигиенические качества несколько теряются. Применяется для пошива постельного белья.
Со спандексом
Эластичный и плотный материал используется для чулочно-носочной продукции, трико и спортивных костюмов.
С полиамидом
Смешивание полиэфира с полиамидом позволяет получить шелковистый, податливый материал, не подверженный износу. Он не склонен к деформации и накоплению влаги, отличается стойкостью цвета. Его недостаток – образование статики. Используется в пошиве нижнего белья.
С шерстью
Добавка полиэфира к шерсти повышает эксплуатационный ресурс в 4-6 раз. При содержании синтетики в пределах 30% ткань мало отличается от чистошерстяного аналога. Материал применяется для пошива костюмов, платьев и брюк.
Со льном
Ткань изо льна и полиэфира востребована в сфере пошива одежды и белья. Она хорошо стирается и чистится.
Наполнители
Нетканое полотно из полиэфира широко применяется в качестве утеплителя. В нем равномерно распределенные волокна сплетаются в хаотическом порядке. Материал получается легким, объемным и воздушным. Его преимущества заключаются в следующем:
Используется материал в разных сферах: обувная и швейная промышленность, производство мягкой мебели и ковров, автомобилестроение, ландшафтные работы, как наполнитель в подушки и одеяла, куртки и пуховики.
Освоено массовое производство таких утеплителей – синтепон и синтепух, холлофайбер, тинсулейт и прималофт.
Отличие полиэстера от полиэфира
Оба материала относятся к группе полимеров или высокомолекулярных соединений синтетического происхождения. Разница между полиэфиром и полиэстером в том, что полиэстер появился позднее, как усовершенствованный вариант. С использованием полиэфира производится большая группа тканей, текстильных изделий и пластиков. В чистом виде он не используется.
Вреден ли, полиэфир в одежде
Сырьем для синтетического волокна служат продукты переработки нефти. В зависимости от технологии получения в готовой продукции может оставаться доля токсичных компонентов, которые не выветриваются и не смываются водой. В процессе носки такие изделия вызывают раздражение кожи и зуд. Поэтому одежда из синтетики противопоказана аллергикам, астматикам и людям, страдающим дерматологическими заболеваниями.
Негативное мнение вызвано тем, что полиэфирные ткани не пропускают воздух и не впитывают влагу. Отсутствие вентиляции приводит к перегреву. От контакта с кожей накапливается статическое электричество, которое способно повысить утомляемость. Все это становится причиной дискомфорта при носке.
Содержание добавок полиэфира в пределах 30% считается безопасным. Тем более, если остальную часть занимают натуральные волокна. Полиэфир в ограниченных количествах не представляет угрозы для здоровья, что подтверждает использование его в производстве детских подгузников и нижнего белья.
Вредность полиэфира для человека не доказана. Но даже при наличии угрозы материал не получил бы таких масштабов распространения.
Материалы с полиэфирным волокном отличаются неприхотливостью в уходе. Для поддержания привлекательности и сохранения свойств необходимо соблюдение следующих правил:
Совет! Отбеливать ткани с полиэстером запрещено. Агрессивная химия разрушает волокна и полотно быстрее изнашивается.
Ткани это мое все! Я училась в Московском Государственном Текстильном институте имени А. Н. Косыгина, на кафедре материаловедения и товарной экспертизы. Работала на швейном производстве технологом и вот я в декрете, жду ребеночка:). Благодаря знакомству я стала автором статей о тканях и безумно этому рада! Надеюсь вам нравится мой труд!
Полимерные материалы: что такое, основные виды, примеры изделий
Полимерные материалы, что это такое точно определяют химики. Сам термин «полимер» обозначает пластик и используется для изготовления пластмассовой продукции ежедневного применения. Мы пользуемся изделиями из такого сырья дома, на работе. Они окружают нас в общественном транспорте (автомобили, самолеты, вагоны железнодорожного состава). Современная промышленность изобрела новое сырье, в структуру которого входят натуральные и синтетические составляющие.
Основные физические свойства
Отличительной чертой этого материала является то, что в его химический состав входит вещество, обладающее высокомолекулярными цепочками, повторяющиеся с данной периодичностью. Благодаря этому самым распространенным стал каучук (резина), отличающийся своей эластичностью и повышенной стойкостью к истиранию. Он и другие виды не только обладают свойствами упругости, но и имеют иные важные качества:
Какие бывают полимеры – классификация
В современной промышленности насчитывается несколько десятков разновидностей. Разделение происходит по химическому составу, агрегатному состоянию и эксплуатационным качествам.
По происхождению
По молекулярным соединениям
Различные химические свойства позволяют разделять на:
Виды полимерных материалов по агрегатному состоянию
Характеристики вещества, подверженного различными температурами и давлением:
По структуре, на которую влияет макромолекула
Бывает: разветвленный, линейный, сетчатый, плоский, ленточный, гребнеобразный.
Типы полимеров по полярности
В этом случае на конструкцию влияют положительные и отрицательные заряды, которые определяют характер растворимости в различных средах:
Что такое полимеризация
Это процесс образования полимеров путем синтеза низкомолекулярных веществ и присоединения молекул к активному центру, который находится в конечной точке цепи.
Поликонденсация
В отличие от предыдущей обработки, здесь происходит слияние частиц ступенчатым методом. При этом образуется высокомолекулярное соединение, где уничтожаются некоторые элементы, при этом выделяется (вода, хлор, водород).
Полиприсоединение
Сущность
Состав и основа полимерных материалов – это однотипные группы атомов, из которых синтезируется высокомолекулярное вещество. Обычно производство происходит из продуктов переработки нефти, угля и газа. Второй способ – из вторичного сырья (целлюлоза, лигнин).
Материалы
Как мы писали выше, синтетика плохо переносит высокие температуры, воспламеняется и выделяет при тлении токсичные вещества. Во избежание этого химики экспериментальным способом добавляют различные примеси. При синтезе они используют бром или хлор. После обработки получается галогенизированное сырье, способное при сгорании выделять газ, который повышает коррозийность металлических изделий.
Мы рассмотрим примеры и определим, что относится к полимерным материалам:
Классификация по температурному режиму
Высокомолекулярные соединения различаются по степени влияния тепла:
Примеры изделий из полимерных материалов
Благодаря своим уникальным качествам и доступной цене область применения товаров из этого сырья разнообразна. Изделия из пластмассы применяются в медицинском оборудовании; в строительной отрасли; в железнодорожном, автомобильном и авиационном транспорте; в бытовой технике; в сельском хозяйстве; в легкой и тяжелой промышленности.
При возведении жилых объектов используется обшивка стен для утепления и облицовки. Большую популярность приобрели пластиковые окна и двери, напольные покрытия (ламинат, линолеум). Все строительные инструменты сделаны с элементами из полимера.
Декоративные изделия (сетка для цветов, поливалки, ведра, плошки) и мебель для садоводческих хозяйств из этого сырья получили широкую популярность у населения из-за небольшого веса, устойчивости к коррозии, эластичности, долговечности и недорогой стоимости. Детские и взрослые переносные бассейны, лодки и искусственные водоемы, круги для плавания изготавливаются из геотекстиля и мембраны, обладающие водонепроницаемостью. Несущие конструкции мотоциклов и некоторых легковых автомобилей производятся из пластмассы для облегчения веса и избежания воздействия ржавчины.
Структура
Свойства и технические характеристики полимерного материала зависят от молекулярных соединений в цепи. По строению идет разделение на:
Применение полимеров
Производство таких материалов началось в начале прошлого столетия, где при обработке целлюлозы и отходов нефтепереработки стали получать краску и пленку. Это позволило активному развитию кинематографа. Сейчас пластик вошел в нашу повседневную жизнь. Из него изготавливаются детские игрушки, всевозможные синтетические ткани, прорезиненную подошву для обуви, спортивный инвентарь, компьютерную технику.
Инженеры космической отрасли создали летательные ракеты и спутники на основе полипропилена. При лабораторных испытаниях оказалось, что низкая масса этого сырья без особых усилий помогает преодолеть притяжение Земли, и при больших температурных перепадах в агрессивной среде пластмасса не деформируется.
В быту
Изделия из высокомолекулярных соединений встречаются намного чаще, чем их натуральных компонентов. Этому способствуют высокие характеристики (прочность, гигиеничность, универсальность, эластичность) и низкая стоимость на продукцию.
Приведем несколько примеров тех вещей, которыми мы пользуемся каждый день:
В строительной отрасли
Последние пятьдесят лет пластмасса вытеснила натуральные материалы (дерево, металл и бетон). Она стала использоваться при производстве:
В медицине
Более трех тысяч разновидностей изделий изготовляется для этой отрасли.
Приведем несколько примеров:
Виды изделий из полимеров и их применение в сельском хозяйстве
Тепличный бизнес невозможно представить без помещения, сделанного из полипропиленовой арматуры и покрытого поликарбонатом со стенкой толщиной в 1 см. Также для повышения урожайности всегда требуются различные ткани и пленки, предотвращающие появление сорняков.
Для полива используются трубы и шланги, которые намного превосходят по своим техническим характеристикам металлическую мелиоративную систему. Они удобны в монтаже, легкий вес помогает перевозить трубы без применения тяжелой техники, срок эксплуатации составляет около пятидесяти лет.
В пищевой промышленности
Главным условием создания станков для выпечки хлебной продукции, производства мясных, рыбных и овощных полуфабрикатов является соблюдение требований и правил санэпидемстанции. Антиадгезионное покрытие необходимо для бочек и контейнеров для хранения и перевозки зерновых и сыпучих продуктов.
На полках магазина вы встречаете продовольствие, запечатанное в пакеты и пленки, которые защищают от внешних загрязнителей и предохраняют от порчи. Раньше изделия изготавливались из пластмассы с низкомолекулярными веществами, которые имели множество недостатков. Основным из которых является выделение вредных частиц в окружающую среду. На сегодняшний день эта отрасль постоянно развивается, что привело к усовершенствованию химических, механических и физических качеств.
Мы подробно рассказали, что это такое, полимерная продукция, какие имеет свойства и характеристики, виды и область применения.
Полимерные волокна
Волокна
Все волокна, применяющиеся в современной жизни, относятся либо к натуральным волокнам (шерсть, хлопок, лен и т.д.), либо к синтетическим или искусственным волокнам. Классификацию синтетических волокон можно представить как: полимерные волокна и неорганические (стекловолокно, углеродное волокно), а классификацию полимерных волокон по типу полимерного сырья: вискозные волокна, полиэфирные волокна, полиамидные волокна (капрон, лавсан, найлон и др.), полипропиленовые волокна. В данной статье подробно рассмотрим оптические полимерные синтетические волокна, которые можно встретить в продаже на рынках России и СНГ.
Полимерные оптические волокна
Оптические волокна по виду применяемого материала можно разделить на волокна из неорганического и органического стекла. Несмотря на то, что компании-производители волокон достигли значительного прогресса в производстве волокон высокой прочности из неорганических стекол, их небольшое относительное удлинение при разрыве ограничивает диаметр волокна, исходя из практических требований к радиусу изгиба. Немаловажное значение имеет также возможность сварки волокон. Кроме того, поверхность световода из стекла необходимо защищать от влияния внешней среды с помощью полимерного покрытия. Полимерные оптические волокна (ПОВ) обладают исключительной гибкостью при относительно больших диаметрах и способностью выдерживать без разрушения многократный изгиб. Так, радиус изгиба ПОВ диаметром 0,75 мм определяется оптическими, а не механическими свойствами. При диаметре 1,5 мм минимально допустимый радиус изгиба этих материалов равен 8 мм. Кроме того, они обладают малой плотностью, хорошей механической прочностью, радиационной стойкостью, технологичны. Из существующих типов оптических волокон наибольшее относительное удлинение имеют полимерные или химические волокна (рис. 1). В частности, ПОВ из метилметакрилата могут выдерживать обратимые деформации, равные 13%. У более хрупких полимеров, таких, как полиэфир, упругая деформация составляет 6%. Путем предварительной ориентации молекул полимера можно подавить рост микротрещин и увеличить эластичность.
ПОВ применяются в локальных волоконно-оптических системах связи на участках длиной до 3 км, а также для внутриобъектовой связи. Стоимость кабелей на их основе на 70-90% дешевле, чем кабелей на основе кварцевых волокон. На основе ПОВ изготовляют гибкие изолирующие вставки, которые применяются на электрических подстанциях для обеспечения безопасности персонала, обслуживающего системы управления мощными выключателями Высокая гибкость ПОВ позволяет выпускать волокна диаметром свыше 400 мкм, что облегчает условия ввода в них излучения и стимулирует их применение.
Оптические свойства полимеров
ПОВ предназначены в основном для работы в видимой области спектра. За пределами видимой области в ультрафиолетовой и ближней инфракрасной зонах светопропускание используемых полимеров падает, и эффективность их применения снижается (рис. 2).
Оптические потери синтетических полимерных волокон состоят из собственного поглощения, которое зависит от структуры и качества материала и несобственного поглощения, определяемого загрязнениями металлами переходной группы и оптическими примесями. Кроме того, несобственные потери вызывают неровности на границе сердцевины и оболочки, а также двойное лучепреломление материала.
Влияние несобственных факторов можно уменьшить за счет усовершенствования технологии изготовления ПОВ.
Таким образом, предельные характеристики потерь ПОВ могут быть установлены, если принимать во внимание потери на собственное поглощение и рассеяние материала. Поглощение света полимером в ИК-области спектра связано с возбуждением колебаний молекул. В ближней и средней ИК-областях (0,75-25 мкм) проявляются внутримолекулярные колебания, при которых меняется относительное расположение ядер атомов, составляющих молекулу.
Такие колебания сопровождаются изменением длин связей, соединяющих атомы (валентные колебания), и валентных углов между связями (деформационные колебания).
В каждом молекулярном колебании принимают участие в той или иной степени все атомы молекулы. Тем не менее, можно выделить такие колебания, в которых участвуют главным образом определенные атомы или группы атомов, роль остальных атомов молекулы оказывается незначительной. Частоты этих колебаний сохраняются в спектрах различных соединений и называются характеристическими
В спектрах поглощения тем больше полос и меньше окон прозрачности, чем сложнее химическое строение полимера (наличие в его макромолекуле ароматических колец, гетероатомов, кратных связей и пр.).
Макромолекулы с одной и той же химической структурой, но различной конфигурацией или конформацией (молекулы одной и той же химической структуры, отличающиеся геометрической формой благодаря возможности поворотов отдельных звеньев вокруг простых связей, соединяющих эти звенья) имеют разные колебания, а, следовательно, и различия в спектрах поглощения. Полимерные цепи могут содержать также примесные группы разного происхождения. Эти группы в молекулах полимера могут появиться в процессе полимеризации или образоваться в результате деструктивных и окислительных процессов при его переработке
Кроме того, полимеры могут содержать остатки инициаторов, растворителей, катализаторов, а также специальные добавки. Добавки вводят для сохранения свойств полимеров при их переработке и эксплуатации (стабилизаторы) или для модификации свойств полимерного материала (пластификаторы, наполнители, красители, антистатики и пр.). Вся химия, которая вводится в полимеры волокон при синтезе, также в той или иной мере влияет на их оптические свойства.
Если исходить из предпосылки, что состояние молекулярных связей у полимеров при температуре выше температуры стеклования сохраняется, то можно считать, что потери на собственное рассеяние у полимерных материалов обусловлены рэлеевским рассеянием, возникающим вследствие флуктуации плотности полимеров. У аморфных полимеров отмечаются лишь обычные флуктуации плотности, которые можно наблюдать в жидком состоянии, и не зафиксировано анизотропии, не свойственной жидкости. Существенные структурные изменения у жидкого и твердого аморфного полимера отсутствуют.
Рассеяние (мутность), обусловленное флуктуациями плотности изотропной жидкости, можно описать уравнением:
В ультрафиолетовой и видимой областях спектра так же, как и в инфракрасной, возможно появление постороннего примесного поглощения, которое ухудшает оптические свойства полимеров и может вызвать окраску. Примесные группы могут возникнуть не только в процессе полимеризации, но и в результате структурных превращений в полимере и при переработке или старении, что часто приводит к окрашиванию полимеров.
Изменение показателя преломления от температуры для прозрачных полимерных материалов составляет обычно (1-2)*10-4 на 1°С, то есть на порядок выше соответствующего температурного коэффициента лучших неорганических стекол
Резкое увеличение дисперсии в сторону коротких волн (рис. 3, б) связано с влиянием края сильного поглощения в УФ-области. Для полистирола этот край ближе к видимой области, чем для акриловых полимеров, поскольку последние обладают большей прозрачностью в УФ-области.
Актуальной технической задачей является создание материалов с заданными значениями показателей преломления. Для этого можно использовать сополимеры, показатели преломления которых занимают промежуточное положение между значениями для гомополимера.
С целью повышения показателя преломления в полимерные материалы вводят ароматические кольца, галогены (кроме фтора). Уменьшение показателя преломления до минимальной величины достигается введением фтора.
Показатель преломления зависит от метода полимеризации, влияющего на структуру полимера, от содержания незаполимеризовавшегося мономера и других факторов. Диффузия остаточного мономера к поверхности образца и его испарение с поверхности могут приводить к неоднородности материала по показателю преломления. Как правило, колебания показателя преломления проявляются в четвертом десятичном знаке.
Влияние температуры на характеристики полимеров для ПОВ
Применение оптико-волокон в автомобилестроении и аэрокосмической технике требует обеспечения их длительной эксплуатации при температурах 80-140°С. Возможность работы полимера при повышенной температуре определяется температурой стеклования Тg. Для полистирола и полиметилметакрилата Тg равна 100-105°С. Однако наличие в этих материалах даже 1% свободного мономера оказывает на них пластифицирующее действие, которое уменьшает Тg до 90°С и даже ниже.
Рэлеевские потери увеличиваются с повышением температуры, однако этот процесс до Тg незначителен. Увеличение потерь на рассеяние является процессом обратимым, однако, воздействие повышенной температуры в течение длительного периода времени может привести к окислению материала и уменьшению прозрачности, особенно в УФ-области спектра.
При создании теплостойких полимеров для ПОВ необходимо уделять внимание связи между Тg и эластичностью материала. Эта связь очень сложна и определяется не только молекулярным весом и его распределением, но и образованием сетки волосных трещин, механизмом повышения прочности за счет ориентации молекул. Полимеры с малым значением Тg имеют при комнатной температуре более высокую эластичность, чем полимеры с высоким значением Тg.
Материалы, применяемые для изготовления ПОВ
Химические формулы мономеров, из которых получены оптические полимерные материалы и световоды, приведены в таблице.
Одной из основных проблем при разработке технологии изготовления ПОВ является выбор исходных материалов. До настоящего времени единой схемы выбора не существует. Можно считать, что решающее значение имеют атомный состав, молекулярная структура и степень чистоты материалов. Эти факторы определяют весь комплекс термодинамических, физико-механических и оптических свойств полимеров для ПОВ. Материалы должны обладать высокой степенью аморфности, обеспечивающей отсутствие способности к кристаллизации как в условиях эксплуатации, так и при воздействии низких и высоких температур, механических деформаций (растяжение, изгиб, сжатие), которым подвергаются оптические волокна при изготовлении. Высокая степень аморфности способствует достижению полимерами идеального стеклообразного состояния с высоким светопропусканием и минимальным рассеянием, что особенно важно при использовании ПОВ в видимой и УФ-области спектра.
Атомный состав и молекулярная структура обусловливают реологические свойства полимеров. Влияние молекулярно-массового распределения на свойства ПОВ пока еще детально не изучено. Материалы для ПОВ, кроме рассмотренных выше требований, должны быть взаимно совместимы, так как ПОВ являются двух- или многокомпонентными изделиями. Материалы сердцевины и оптической оболочки должны совмещаться по реологическим характеристикам. Соответствие этих материалов по реологии особенно важно при изготовлении ПОВ методом экструзии.
Для того чтобы в процессе получения полимерных волокон была сформирована бездефектная граница раздела, полимеры должны иметь высокие адгезионные свойства. В то же время материалы должны обладать взаимной химической индифферентностью и малой растворимостью. В противном случае произойдет размывание отражающей границы раздела сред, что приведет к высоким потерям на излучение. Материалы сердцевины и оптической оболочки должны совмещаться между собой по ТКЛР. Если ТКЛР оболочки меньше, чем у сердцевины, оболочка находится в сжатом состоянии, что повышает механическую прочность ПОВ.
Количество материалов, применяемых при изготовлении ПОВ, достаточно велико. ПОВ изготавливают путем комбинирования этих материалов, один из которых используют для получения сердцевины, а другой для получения оптической оболочки.
Материалы для сердцевины ПОВ
Одно из первых мест среди прозрачных полимерных полимеров занимает полиметилметакрилат (ПММА). Отличительной его характеристикой является высокая прозрачность и атмосферостойкость (по сравнению с другими прозрачными полимерами). Термостабильность ПММА определяется реакцией деполимеризации. Интенсивная деструкция ПММА происходит при 250°С. Гораздо раньше наблюдается выделение летучих компонентов и образование пузырей. При температуре выше 230°С появляется желтое окрашивание.
Недостатком ПММА является значительная краевая неоднородность (градиент показателя преломления), объясняемая испарением остаточного мономера и поглощением влаги. С целью повышения теплостойкости ПММА модифицирует используя: сополимеризацию метилметакрилата с a-метилстиролом; растворение поли-a-метилстирола в мономерном метилметакрилате с дальнейшей полимеризацией метилметакрилата; сополимеризацию метилметакрилата с амидом N-аллималеиновой кислоты; сополимеризацию метилметакрилата с a-метилстиролом и имидом малеиновой кислоты. Перечисленные способы позволяют улучшить теплостойкость получаемых полимеров, однако они являются недостаточными по нескольким причинам. Например, скорость полимеризации и эффективность исключительно малы, так что их практическое применение незначительно. Полученные полимеры обладают плохими механическими и оптическими свойствами, подвержены заметному изменению цвета при переработке.
Недостатком ПММА и ПС их сополимеров являются сравнительно низкие теплостойкость и ударопрочность. Существенно выше эти показатели у поликарбонатов (ПК).
ПК относится к аморфным полимерам с незначительными оптическими потерями на рассеяние, обусловленными флуктуацией плотности, а также высокой когезионной энергией молекул. Поэтому он может рассматриваться в качестве материала для изготовления высокопрозрачного и термостойкого ПОВ.
Окно прозрачности с минимальными потерями для ПОВ на основе ПК находится на длине волны 0,765 мкм, а потери составляют 0,8 дБ/м.
Полимерные материалы для оптической оболочки ПОВ
В наибольшей степени этим требованиям удовлетворяет кристаллический полимер поли-4-метилпентен-1. Однако на границе раздела между аморфной сердцевиной и кристаллической оболочкой вследствие различия модулей упругости материалов могут возникать зазоры, что вызывает увеличение потерь. С этой целью поли-4-метилпентен-1 дополнительно обрабатывают.
Коэффициент затухания ПОВ с оболочкой из данного материала и сердцевиной из ПММА в смеси с метакрилатным сложным эфиром при 25°С составляет 210 дБ/км.
В качестве оболочки ПОВ могут также применяться: фторалкилметакрилаты совместно с винилиденфторидом со статическими связями; фторсодержащие полиолефины с привитым силановым полимером, сшитым молекулами воды.
Материалы буферного и защитных покрытий оптических волокон
Первичное защитное покрытие (ПЗП) наносится на поверхность ПОВ при его непосредственном изготовлении в едином технологическом процессе. Оно предназначено защищать ОВ от механических повреждений, влаги и других внешних факторов.
Существует несколько важных требований к полимеру, используемому для первичного покрытия. Он должен быть стоек при воздействии рабочих температур; реагенты должны быть жидкими при комнатной температуре и иметь достаточно низкую вязкость для наложения на световод в виде пленки толщиной 10-50 мкм концентричным слоем, постоянным по толщине. Реагирующие компоненты материала должны полностью превращаться в твердый полимер (свободный от растворителя или продуктов реакции) с гладкой поверхностью. Время полимеризации должно быть соотнесено со скоростью вытяжки ОВ. Показатель преломления полимера должен быть не менее 1,43. ПЗП должен иметь хорошую адгезию к материалу оптической оболочки световода и быть эластичным.
Первое защитное покрытие, как и другие виды покрытий, при его наложении на световод не должно вызывать остаточных напряжений по всей его длине или в локальных точках. Полимерное покрытие должно легко сниматься с поверхности волокна. При выборе материала необходимо учитывать ТКЛР, который должен приближаться к ТКЛР материала световода.
Большей частью в качестве материала световода ПЗП используются лаки. По способу полимеризации они делятся на материалы теплового и ультрафиолетового (УФ) отверждения. К первым из них можно отнести силиконовые компаунды, превращающиеся в мягкую, прозрачную, каучукоподобную композицию (силиконизированное волокно).
Материалы ПЗП УФ-отверждения включают в себя кремнийорганические компаунды эпоксиакрилаты, уританокрилаты. Они обладают существенным преимуществом по сравнению с материалами теплового отверждения, заключающимся в высокой скорости полимеризации, а также лучшую однородность покрытия, так как отверждение происходит практически мгновенно и при низкой температуре. В качестве ПЗП могут выступать металлы и неорганические соединения.
Металлы наносят на поверхность оптических волокон в процессе его вытяжки. Используются следующие металлы: олово, индий, свинец и алюминий. Неорганические ПЗП выполняются из SiN4, SiC, TiC, TiO2. Разработана технология покрытия световодов оболочкой из углерода.
При изготовлении ОВ с многослойным защитным полимерным покрытием в некоторых случаях между основными слоями наносят дополнительный промежуточный, получивший название буферного. Материал буферного слоя должен иметь высокое значение модуля Юнга и играть роль демпфера, уменьшающего воздействие защитных оболочек на ОВ. Буферный слой выполняется из мягкого полимерного материала, например из кремнийорганических или уретанакрилатных композиций.