Покой что такое биология
ПОКОЙ РАСТЕНИЙ
Полезное
Смотреть что такое «ПОКОЙ РАСТЕНИЙ» в других словарях:
ПОКОЙ РАСТЕНИЙ — физиологическое состояние, при котором жизнедеятельность (главным образом интенсивность метаболизма и рост) растений максимально снижается, вследствие чего задерживается распускание почек, прорастание семян, клубней, луковиц. Покой растений… … Экологический словарь
Покой — Покой м., состояние бездействия, в вещественном и духовном значениях; недвижность; отдых, роздых; мир и тишина, безмятежное состоянье; отсутствие возмущения, тревоги. Покой тела, вещи, предмета, недвижность, косненье, равновесие всех… … Википедия
Покой (значения) — Покой м. состоянье бездействия, в веществен. и духовн. знач.; косность, косненье, недвижность; отдых, роздых; мир и тишина, безмятежное состоянье; отсутствие возмущенья, тревоги. покой тела, вещи, предмета, недвижность, косненье, равновесие всех … Википедия
ПОКОЙ У РАСТЕНИЙ — состояние растений, при котором резко снижаются скорость роста и интенсивность обмена веществ. В состоянии покоя могут находиться семена, почки, клубни, споры и другие органы, а также деревья зимой после листопада. Покой у растений возник как… … Большой Энциклопедический словарь
Покой у растений — это физиологическое состояние, при котором резко снижаются скорость роста и интенсивность обмена веществ. Оно необходимо для переживания неблагоприятных условий среды в различные периоды жизненного цикла или сезона года. Источник: Распоряжение… … Официальная терминология
покой — ПОКОЙ, я, муж. 1. Состояние относительной неподвижности, отсутствия движения (спец.). 2. Состояние тишины, отдыха, бездеятельности, отсутствие беспокойства. Больному нужен п. Нет покоя от соседей. Оставить кого н. в покое (не беспокоить). Вечный… … Толковый словарь Ожегова
ПОКОЙ ФИЗИОЛОГИЧЕСКИЙ — период в жизни растений и животных, при котором процессы обмена веществ протекают очень медленно. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь
ПОКОЙ — растений, физиол. состояние, при к ром резко снижаются скорость роста и обмен в в; выражается в задержке прорастания семян, клубней, луковиц, распускания почек и прекращении роста растения. При отсутствии видимого роста во время П. в конусе… … Сельско-хозяйственный энциклопедический словарь
Покой у растений — физиологическое состояние растений, при котором у них резко снижаются скорость роста и интенсивность обмена веществ (См. Обмен веществ); возникло в ходе эволюции как приспособление для переживания неблагоприятных условий среды в различные … Большая советская энциклопедия
покой у растений — состояние растений, при котором резко снижаются скорость роста и интенсивность обмена веществ. В состоянии покоя могут находиться семена, почки, клубни, споры и другие органы, а также деревья зимой после листопада. Покой у растений возник как… … Энциклопедический словарь
Формирование мембранного потенциала покоя
Автор
Редакторы
Статья на конкурс «био/мол/текст»: Потенциал покоя — это важное явление в жизни всех клеток организма, и важно знать, как он формируется. Однако это сложный динамический процесс, трудный для восприятия целиком, особенно для студентов младших курсов (биологических, медицинских и психологических специальностей) и неподготовленных читателей. Впрочем, при рассмотрении по пунктам, вполне возможно понять его основные детали и этапы. В работе вводится понятие потенциала покоя и выделяются основные этапы его формирования с использованием образных метафор, помогающих понять и запомнить молекулярные механизмы формирования потенциала покоя.
«Био/мол/текст»-2011
Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2011 в номинации «Лучшая обзорная статья».
Мембранные транспортные структуры — натрий-калиевые насосы — создают предпосылки для возникновения потенциала покоя. Предпосылки эти — разность в концентрации ионов на внутренней и наружной сторонах клеточной мембраны. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка ионов калия (K + ) выровнять свою концентрацию по обе стороны мембраны приводит к его утечке из клетки и потере вместе с ними положительных электрических зарядов, за счёт чего значительно усиливается общий отрицательный заряд внутренней поверхности клетки. Эта «калиевая» отрицательность составляет бóльшую часть потенциала покоя (−60 мВ в среднем), а меньшую его часть (−10 мВ) составляет «обменная» отрицательность, вызванная электрогенностью самого ионного насоса-обменника.
Давайте разбираться подробнее.
Зачем нам нужно знать, что такое потенциал покоя и как он возникает?
Вы знаете, что такое «животное электричество»? Откуда в организме берутся «биотоки»? Как живая клетка, находящаяся в водной среде, может превратиться в «электрическую батарейку» и почему она моментально не разряжается?
На эти вопросы можно ответить только в том случае, если узнать, как клетка создаёт себе разность электрических потенциалов (потенциал покоя) на мембране.
Совершенно очевидно, что для понимания того, как работает нервная система, необходимо вначале разобраться, как работает её отдельная нервная клетка — нейрон. Главное, что лежит в основе работы нейрона — это перемещение электрических зарядов через его мембрану и появление вследствие этого на мембране электрических потенциалов. Можно сказать, что нейрон, готовясь к своей нервной работе, вначале запасает энергию в электрической форме, а затем использует ее в процессе проведения и передачи нервного возбуждения.
Таким образом, наш самый первый шаг к изучению работы нервной системы — это понять, каким образом появляется электрический потенциал на мембране нервных клеток. Этим мы и займёмся, и назовём этот процесс формированием потенциала покоя.
Определение понятия «потенциал покоя»
В норме, когда нервная клетка находится в физиологическом покое и готова к работе, у неё уже произошло перераспределение электрических зарядов между внутренней и наружной сторонами мембраны. За счёт этого возникло электрическое поле, и на мембране появился электрический потенциал — мембранный потенциал покоя.
Как известно из физики, электрические заряды (движущиеся и неподвижные) формируют в пространстве электромагнитное поле, которое влияет на тела, обладающие электрическим зарядом. С точки зрения электромагнетизма клеточную мембрану можно представить как плоский конденсатор, заполненный однородным диэлектриком из неполярных молекул. Если конденсатор заряжен, то внутри него возникает электрическое поле, обусловленное поверхностной плотностью заряда. На поверхности мембраны возникают некомпенсированные заряды: положительные у «отрицательной» поверхности и отрицательные — у «положительной» [6].
Таким образом, мембрана оказывается поляризованной. Это означает, что она имеет разный электрический потенциал наружной и внутренней поверхностей. Разность между этими потенциалами вполне возможно зарегистрировать.
В этом можно убедиться, если ввести внутрь клетки микроэлектрод, соединённый с регистрирующей установкой. Как только электрод попадает внутрь клетки, он мгновенно приобретает некоторый постоянный электроотрицательный потенциал по отношению к электроду, расположенному в окружающей клетку жидкости. Величина внутриклеточного электрического потенциала у нервных клеток и волокон, например, гигантских нервных волокон кальмара, в покое составляет около −70 мВ. Эту величину называют мембранным потенциалом покоя (МПП). Во всех точках аксоплазмы этот потенциал практически одинаков.
Ноздрачёв А.Д. и др. Начала физиологии [5].
Ещё немного физики. Макроскопические физические тела, как правило, электрически нейтральны, т.е. в них в равных количествах содержатся как положительные, так и отрицательные заряды. Зарядить тело можно, создав в нем избыток заряженных частиц одного вида, например, трением о другое тело, в котором при этом образуется избыток зарядов противоположного вида. Учитывая наличие элементарного заряда (e), полный электрический заряд любого тела можно представить как q = ±N×e, где N — целое число.
Потенциал электростатического поля φ определяется как отношение потенциальной энергии W пробного заряда q к величине этого заряда: φ = W/q, откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит вольт (1 В) [4]. В некоторых случаях потенциал электрического поля нагляднее определяется как физическая величина, численно равная работе внешних сил против сил электрического поля E при перемещении единичного положительного точечного заряда из бесконечности в данную точку. Последнее определение удобно записать следующим образом:
В электрофизиологии кроме потенциала покоя рассматриваются и другие электрические потенциалы: локальные постсинаптические и рецепторные потенциалы (возбуждающие и тормозные), электротонические и следовые потенциалы, миниатюрные потенциалы концевой пластинки, концентрационный потенциал и потенциал действия [5].
Потенциал покоя — это разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны, когда клетка находится в состоянии физиологического покоя. Его величина измеряется изнутри клетки, она отрицательна и составляет в среднем −70 мВ (милливольт), хотя в разных клетках может быть различной: от −35 мВ до −90 мВ.
Важно учитывать, что в нервной системе электрические заряды представлены не электронами, как в обычных металлических проводах, а ионами — химическими частицами, имеющими электрический заряд. И вообще в водных растворах в виде электрического тока перемещаются не электроны, а ионы. Поэтому все электрические токи в клетках и окружающей их среде — это ионные токи.
Итак, изнутри клетка в покое заряжена отрицательно, а снаружи — положительно. Это свойственно всем живым клеткам, за исключением, разве что, эритроцитов, которые, наоборот, заряжены отрицательно снаружи. Если говорить конкретнее, то получается, что снаружи вокруг клетки будут преобладать положительные ионы (катионы Na + и K + ), а внутри — отрицательные ионы (анионы органических кислот, не способные свободно перемещаться через мембрану, как Na + и K + ).
Теперь нам всего лишь осталось объяснить, каким же образом всё получилось именно так. Хотя, конечно, неприятно сознавать, что все наши клетки кроме эритроцитов только снаружи выглядят положительными, а внутри они — отрицательные.
Термин «отрицательность», который мы будем применять для характеристики электрического потенциала внутри клетки, пригодится нам для простоты объяснения изменений уровня потенциала покоя. В этом термине ценно то, что интуитивно понятно следующее: чем больше отрицательность внутри клетки — тем ниже в отрицательную сторону от нуля смещён потенциал, а чем меньше отрицательность — тем ближе отрицательный потенциал к нулю. Это намного проще понять, чем каждый раз разбираться в том, что же именно означает выражение «потенциал возрастает» — возрастание по абсолютному значению (или «по модулю») будет означать смещение потенциала покоя вниз от нуля, а просто «возрастание» — смещение потенциала вверх к нулю. Термин «отрицательность» не создаёт подобных проблем неоднозначности понимания.
Сущность формирования потенциала покоя
Попробуем разобраться, откуда берётся электрический заряд нервных клеток, хотя их никто не трёт, как это делают физики в своих опытах с электрическими зарядами.
Здесь исследователя и студента поджидает одна из логических ловушек: внутренняя отрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а, наоборот, из-за потери некоторого количества положительных частиц (катионов)!
Главный секрет появления отрицательности внутри клетки
Сразу откроем этот секрет и скажем, что клетка лишается части своих положительных частиц и заряжается отрицательно за счёт двух процессов:
Эти два процесса нам и надо объяснить.
Первый этап создания внутренней отрицательности: обмен Na + на K +
Но ведь при обмене одного положительного заряда (Na + ) на другой такой же положительный заряд (K + ) никакого дефицита положительных зарядов в клетке возникать не может! Правильно. Но, тем не менее, из-за этого обмена в клетке остаётся очень мало ионов натрия, потому что они почти все ушли наружу. И в то же время клетка переполняется ионами калия, которые в неё накачали молекулярные насосы. Если бы мы могли попробовать на вкус цитоплазму клетки, мы бы заметили, что в результате работы насосов-обменников она превратилась из солёной в горько-солёно-кислую, потому что солёный вкус хлорида натрия сменился сложным вкусом довольно-таки концентрированного раствора хлорида калия. В клетке концентрация калия достигает 0,4 моль/л. Растворы хлорида калия в пределах 0,009–0,02 моль/л имеют сладкий вкус, 0,03–0,04 — горький, 0,05–0,1 — горько-солёный, а начиная с 0,2 и выше — сложный вкус, состоящий из солёного, горького и кислого [8].
Важно здесь то, что обмен натрия на калий — неравный. За каждые отданные клеткой три иона натрия она получает всего два иона калия. Это приводит к потере одного положительного заряда при каждом акте ионного обмена. Так что уже на этом этапе за счёт неравноценного обмена клетка теряет больше «плюсов», чем получает взамен. В электрическом выражении это составляет примерно −10 мВ отрицательности внутри клетки. (Но помните, что нам надо ещё найти объяснение для оставшихся −60 мВ!)
Чтобы легче было запомнить работу насосов-обменников, образно можно выразиться так: «Клетка любит калий!» Поэтому клетка и затаскивает калий к себе, несмотря на то, что его и так в ней полно. И поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. И поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. (Вот что делает любовь, пусть она даже и не настоящая!)
Кстати, интересно, что клетка не рождается с готовым потенциалом покоя. Ей его ещё надо создать. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от −10 до −70 мВ, т.е. их мембрана становится более отрицательной — поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках костного мозга человека искусственная деполяризация, противодействующая потенциалу покоя и уменьшающая отрицательность клеток, даже ингибировала (угнетала) дифференцировку клеток [1].
Образно говоря, можно выразиться так: Создавая потенциал покоя, клетка «заряжается любовью». Это любовь к двум вещам:
Механизм насыщения клетки калием мы уже объяснили (это работа насосов-обменников), а механизм ухода калия из клетки объясним ниже, когда перейдём к описанию второго этапа создания внутриклеточной отрицательности. Итак, результат деятельности мембранных ионных насосов-обменников на первом этапе формирования потенциала покоя таков:
Можно сказать так: на первом этапе ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.
Второй этап создания отрицательности: утечка ионов K + из клетки
Итак, что начинается в клетке после того, как с ионами поработают её мембранные натрий-калиевые насосы-обменники?
Из-за образовавшегося дефицита натрия внутри клетки этот ион при каждом удобном случае норовит устремиться внутрь: растворённые вещества всегда стремятся выровнять свою концентрацию во всём объёме раствора. Но это у натрия получается плохо, поскольку ионные натриевые каналы обычно закрыты и открываются только при определённых условиях: под воздействием специальных веществ (трансмиттеров) или при уменьшении отрицательности в клетке (деполяризации мембраны).
В то же время в клетке имеется избыток ионов калия по сравнению с наружной средой — потому что насосы мембраны насильно накачали его в клетку. И он, тоже стремясь уравнять свою концентрацию внутри и снаружи, норовит, напротив, выйти из клетки. И это у него получается!
Тут ещё важно понять то, что ионы натрия и калия как бы «не замечают» друг друга, они реагируют только «на самих себя». Т.е. натрий реагирует на концентрацию натрия же, но «не обращает внимания» на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и «не замечает» натрий. Получается, что для понимания поведения ионов надо по отдельности рассматривать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно — концентрацию по калию внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это, бывает, делается в учебниках.
По закону выравнивания химических концентраций, который действует в растворах, натрий «хочет» снаружи войти в клетку; туда же его влечёт и электрическая сила (как мы помним, цитоплазма заряжена отрицательно). Хотеть-то он хочет, но не может, так как мембрана в обычном состоянии плохо его пропускает. Натриевые ионные каналы, имеющиеся в мембране, в норме закрыты. Если все же его заходит немножко, то клетка сразу же обменивает его на наружный калий с помощью своих натрий-калиевых насосов-обменников. Получается, что ионы натрия проходят через клетку как бы транзитом и не задерживаются в ней. Поэтому натрий в нейронах всегда в дефиците.
А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Он выходит наружу через особые каналы в мембране — «калиевые каналы утечки», которые в норме открыты и выпускают калий [5, 7].
Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология) [7].
От химического — к электрическому
А теперь — ещё раз самое главное. Мы должны осознанно перейти от движения химических частиц к движению электрических зарядов.
Калий (K + ) положительно заряжен, и поэтому он, когда выходит из клетки, выносит из неё не только самого себя, но и положительный заряд. За ним изнутри клетки к мембране тянутся «минусы» — отрицательные заряды. Но они не могут просочиться через мембрану — в отличие от ионов калия — т.к. для них нет подходящих ионных каналов, и мембрана их не пропускает. Помните про оставшиеся необъяснёнными нами −60 мВ отрицательности? Это и есть та самая часть мембранного потенциала покоя, которую создаёт утечка ионов калия из клетки! И это — большая часть потенциала покоя.
Для этой составной части потенциала покоя есть даже специальное название — концентрационный потенциал [5]. Концентрационный потенциал — это часть потенциала покоя, созданная дефицитом положительных зарядов внутри клетки, образовавшимся за счёт утечки из неё положительных ионов калия.
Ну, а теперь немного физики, химии и математики для любителей точности.
Электрические силы связаны с химическими по уравнению Гольдмана. Его частным случаем является более простое уравнение Нернста, по формуле которого можно рассчитать трансмембранную диффузионную разность потенциалов на основе различной концентрации ионов одного вида по разные стороны мембраны. Так, зная концентрацию ионов калия снаружи и внутри клетки, можно рассчитать калиевый равновесный потенциал EK:
Более точно итоговая величина суммарного диффузионного потенциала, который создаётся утечкой нескольких видов ионов, рассчитывается по формуле Гольдмана-Ходжкина-Катца. В ней учтено, что потенциал покоя зависит от трех факторов: (1) полярности электрического заряда каждого иона; (2) проницаемости мембраны Р для каждого иона; (3) [концентраций соответствующих ионов] внутри (внутр) и снаружи мембраны (внеш). Для мембраны аксона кальмара в покое отношение проводимостей РK : PNa :PCl = 1 : 0,04 : 0,45 [5].
Заключение
Итак, поте нциал покоя состоит из двух частей:
Что интересно, калий перестанет выходить из клетки (точнее, его вход и выход уравниваются) только при уровне отрицательности клетки −90 мВ. В этом случае сравняются химические и электрические силы, проталкивающие калий через мембрану, но направляющие его в противоположные стороны. Но этому мешает постоянно подтекающий в клетку натрий, который несёт с собой положительные заряды и уменьшает отрицательность, за которую «борется» калий. И в итоге в клетке поддерживается равновесное состояние на уровне −70 мВ.
Вот теперь мембранный потенциал покоя окончательно сформирован.
покой семян
Смотреть что такое «покой семян» в других словарях:
покой семян — Состояние жизнеспособных семян, при котором они не прорастают в обычных условиях, прорастают замедленно или прорастают только при специфических условиях. [ГОСТ 20290 74] Тематики семеноводство Обобщающие термины состояние и свойства семян EN seed … Справочник технического переводчика
ПОКОЙ СЕМЯН — полное отсутствие прорастания семян или снижение их всхожести, вызываемое внеш. причинами (вынужденный П. с.) или свойствами самих семян (органич. П. с.). Вынужденный П. с. обычно связан с отсутствием влаги или необходимой для прорастания семян… … Сельско-хозяйственный энциклопедический словарь
ПОКОЙ РАСТЕНИЙ — физиологическое состояние, при к ром резко снижаются скорость роста и интенсивность обмена веществ; выражается в задержке прорастания семян, клубней, луковиц и распускания почек. П. р. приспособление для переживания неблагоприятных внеш. условий… … Биологический энциклопедический словарь
ПОКОЙ РАСТЕНИЙ — физиологическое состояние, при котором жизнедеятельность (главным образом интенсивность метаболизма и рост) растений максимально снижается, вследствие чего задерживается распускание почек, прорастание семян, клубней, луковиц. Покой растений… … Экологический словарь
Покой у растений — физиологическое состояние растений, при котором у них резко снижаются скорость роста и интенсивность обмена веществ (См. Обмен веществ); возникло в ходе эволюции как приспособление для переживания неблагоприятных условий среды в различные … Большая советская энциклопедия
ПОКОЙ — растений, физиол. состояние, при к ром резко снижаются скорость роста и обмен в в; выражается в задержке прорастания семян, клубней, луковиц, распускания почек и прекращении роста растения. При отсутствии видимого роста во время П. в конусе… … Сельско-хозяйственный энциклопедический словарь
Прорастание семян — процесс перехода семян от состояния покоя к интенсивной жизнедеятельности, в результате чего трогается в рост Зародыш и образуется проросток, из которого развивается молодое растение; начальный этап Онтогенеза растений. П. с. происходит… … Большая советская энциклопедия
ПОСЛЕУБОРОЧНОЕ ДОЗРЕВАНИЕ СЕМЯН — биохим. процесс, протекающий в свежесобранных семенах и ведущий к их физиол. зрелости, т. е. способности давать нормальные всходы. Свежесобранные семена б. ч. не способны прорастать сразу же после уборки, если их не подвергнуть разл. предпосевной … Сельско-хозяйственный энциклопедический словарь
послеуборочное дозревание семян — послеуборочное дозревание семян, биохимический процесс, протекающий в свежесобранных семенах и ведущий к их физиологической зрелости, то есть способности давать нормальные всходы. Свежесобранные семена большей частью не способны прорастать сразу… … Сельское хозяйство. Большой энциклопедический словарь
ГЛУБОКИЙ ПОКОЙ — неспособность к прорастанию или активному росту семян либо вегетативных органов растения, обусловленная определенными внутренними факторами, под влиянием которых не могут быть использованы внешние условия, благоприятные для перехода растений к… … Словарь ботанических терминов
Что означают термины анабиоз, гипобиоз, диапауза, покой, гипотермия, гибернация, эстивация, летаргия, криобиология и криомедицина?
Что означают термины анабиоз, гипобиоз, диапауза, покой, гипотермия, гибернация, эстивация, летаргия, криобиология и криомедицина?
В своем эволюционном развитии многие растительные и животные организмы приобрели своеобразные механизмы приспособления, чтобы иметь возможность пережить неблагоприятные сезоны года. В эти периоды условия их жизни резко ухудшаются в связи с нехваткой пищи, исключительно низкими или высокими температурами, высокой влажностью или засухой и пр. Многие организмы погибли бы, если не обладали бы совершенными физиологическими механизмами приспособления. Речь идет о возможности впадать в состояние продолжительного бездействия и покоя, наблюдаемого у многих животных и растительных организмов. У различных видов это состояние осуществляется своеобразно, разными способами, в зависимости от степени эволюционного развития животного или растительного организма и обозначается разными наименованиями. Чтобы многие научные понятия стали ясными, остановимся на часто используемых в научной литературе терминах и соответствующих им синонимах в популярном изложении.
Как уже говорилось, первые исследователи этого загадочного для прошлых времен явления (Левенгук, Спалланцани и др.) использовали понятие «скрытая жизнь», «мнимая смерть», «вита минима» (минимальная жизнь), «оцепенение», «бессознательное состояние», «безжизненность», «асфиксия» и другие и они рассматривали состояние возвращения к жизни как воскрешение.
Позже, в 1873 г., немецкий ученый Прайер, изучая явления возвращения к жизни после высушивания коловраток, тихоходок и нематод, пришел к выводу, что все представления, трактующие явления оживления этих организмов и их состояние при высушивании, Не соответствовали действительности. Состояние высушивания этих микроорганизмов и их способность возвращаться к жизни Прайер предложил назвать анабиотическим, а само явление — анабиозом (от греческого ana — обратно и bios — жизнь), т. е. возвращение к жизни, оживание.
Прайер, однако, различал два противоположных состояния при отсутствии признаков жизни. Первое, когда живое существо хоть и находится в безжизненном состоянии, но способно вернуться к жизни (т. е. анабиотическое состояние): второе, когда живое существо в безжизненном состоянии не способно вернуться к жизни (т. е. мертвое состояние). Это разграничение является важным дополнением к понятию анабиоза, так как указывает, что речь идет не об оживлении после предшествовавшей смерти, а о временной приостановке процессов жизнедеятельности, т. е. о скрытых формах жизни.
Серьезную попытку систематизировать явления остановки и возвращения к жизни сделал в 1934 г. итальянский исследователь Монтероссо. Он сохранил название «анабиоз» только для явления высыхания организмов, в то время как для всех остальных явлений угнетения жизни он предложил новый термин — гипобиоз (hypobiosis — от греч. hypo — под, низко и bios — жизнь). К этой категории явлений, по его мнению, следовало отнести: 1) осмотический анабиоз; 2) замораживание; 3) зимнюю спячку; 4) инцистирование, 5) сон; 6) высушивание тканей; 7) оживление изолированных органов.
По мнению известного советского исследователя П. Ю. Шмидта, из перечисленных состояний следует исключить как совершенно неравнозначные остальным состояниям высушивание тканей и оживление изолированных органов, в связи с тем что первое является лишь частным случаем анабиоза при высушивании, доказывающим широкое распространение этого явления, а второе — вовсе не относится к явлению подавления жизнедеятельности, и можно считать, что это пример физиологической самостоятельности органов. Кроме того, П. Ю. Шмидт считал, что связь между остальными явлениями подавления жизнедеятельности и сном, как и его патологическими формами — гипнозом и каталепсией, является слабой. Как чисто биологическое приспособление к смене дня и ночи сон сопровождается торможением только высшей нервной деятельности. При этом отсутствуют моменты торможения и остановки процессов, связанных с обменом веществ, что характерно для других явлений анабиоза.
По мнению П. Ю. Шмидта, в своей основе явление анабиоза охватывает два основных состояния:
1) анабиоз при высушивании — непосредственное высыхание живых организмов. Тесно связан с этим явлением и осмотический анабиоз — этот своеобразный процесс обезвоживания животных организмов, обитающих в морской воде. В известной степени связана с анабиозом при высушивании и летняя спячка животных вследствие уменьшения количества воды в теле из-за усиленного испарения и недостатка воды в жарких пустынных областях;
2) анабиоз при замерзании — извлечение воды из живого организма вследствие его замерзания, сопровождающееся различными неблагоприятными изменениями при образовании льда.
К такому состоянию принадлежит явление зимней спячки у млекопитающих. При их высокой организации и постоянной температуре тела подавление жизнедеятельности у них более сложное, но все же его трудно резко разграничить с анабиозом при замерзании. По существу, по мнению П. Ю. Шмидта, между зимней спячкой и анабиозом разница скорее количественная, чем качественная.
С общебиологической точки зрения анабиоз представляет собой приобретенное в ходе эволюции физиологическое приспособление организма к неблагоприятным внешним условиям.
Подтверждением этой его точки зрения является определение, которое всемирно известный советский академик Опарин дал в своем известном труде «Происхождение жизни»: «…во всех этих случаях, когда мы путем внешнего воздействия затрудняем деятельность ферментов (например, при высушивании семян или при глубоком охлаждении организмов), процессы жизнедеятельности исключительно сильно замедляются, и организм впадает в анабиотическое состояние или даже эти процессы полностью останавливаются и тогда наступает смерть».
Придерживаясь некоторых уже принятых в биологии понятий, П. Ю. Шмидт объединяет все явления более или менее значительного торможения и приостановления жизни (кроме сна и зимней спячки), сопровождающихся потерей воды, под общим названием анабиоз. Это наименование подчеркивает общую, самую существенную особенность всех явлений — способность сохранить жизнь, выходить из состояния заторможенности, оживать. По существу, к этой категории явлений относится и «скрытая смерть» семян, спор, цист и других живых объектов. В данном случае различие заключается в том, что при анабиозе торможение жизнедеятельности и ее почти полное прекращение входят в нормальный цикл жизни, прочно установленный и закрепленный эволюцией. Без них невозможно существование многих живых растительных и животных организмов.
Анабиоз — широко распространенное явление в животном мире. Например, у насекомых при отрицательных температурах весьма замедляется или практически останавливается все их развитие. Подобное анабиотическое состояние известно как диапауза, которая, по мнению Бей-Биенко (1980 г.), представляет собой состояние временного физиологического покоя и возникает в жизненном цикле насекомых как специальное приспособление, обеспечивающее возможность пережить неблагоприятные условия в областях с сезонным климатом.
Позже в биологической науке возникло понятие «гибернация» (от лат. hybernus — зима и hybernar — перезимовать), которое точно соответствует наименованию «зимняя спячка» у животных. С физиологической точки зрения так называется состояние оцепенения, сопровождающееся значительной заторможенностью ряда физиологических процессов в организме (частоты сердечных сокращений, ритма дыхания, обмена веществ, понижения температуры тела), но при продолжающемся контроле со стороны центров терморегуляции. Способность впадать в состояние оцепенения свойственна млекопитающим, например, однопроходным, сумчатым, насекомоядным, летучим мышам, неполнозубым, хищникам, грызунам, некоторым птицам и пресмыкающимся. Ученые различают
дневное оцепенение, в которое впадают, например, летучие мыши и колибри, и сезонное оцепенение, отличающееся от зимней (например, у грызунов, насекомоядных и др.) и летней спячки (например, у некоторых млекопитающих и рыб, обитающих в степях и пустынях), а также и непериодическое оцепенение — при резком наступлении неблагоприятных условий (например, у сусликов, енотовидных собак, некоторых видов ласточек). Но термин «гибернация», естественно, не может распространяться на состояние животных, впадающих в состояние летней спячки при неблагоприятных условиях жизни во время летней засухи.
Вот почему в науку было введено и понятие «эстивация» (от лат. aestas — лето), которое полностью соответствует названию «летняя спячка». Эстивацией можно назвать сонное, неактивное состояние некоторых животных при наступлении засухи, когда становится невозможным добывать пищу и воду. Так поступают улитки во время засухи, а также некоторые виды сусликов, которые в самые жаркие месяцы прячутся в свои подземные убежища, оставаясь там вялыми и неподвижными. Своеобразным рекордсменом продолжительности летней и зимней спячки является колумбийский суслик, впадающий в летнюю спячку в августе и остающийся неактивным на протяжении всей осени и зимы (гибернация); выходит он из норы только в мае следующего года. Что же это такое — зимняя или летняя спячка? И при каких обстоятельствах одно состояние переходит в другое? По существу, между ними нет резкого физиологического различия. Кроме того, многие зимоспящие животные (например, летучие мыши) могут впадать в торпидное состояние (о нем ниже) ежедневно, если при этом у них понижается температура тела и интенсивность обмена веществ. Таким образом, это физиологическое состояние вполне сходно с гибернацией, хотя продолжается не месяцами, а всего лишь несколько часов.
В связи с тем что нет точного определения этих состояний, их трудно разграничивать, и многие физиологи рассматривают гибернацию и оцепенение как единое физиологическое явление.
Следует считать ошибкой, когда в общедоступном изложении часто употребляется термин «летаргический сон» и это понятие распространяют на животных, впадающих в зимнюю и летнюю спячку. В медицинской литературе летаргией (от греч. lethargia — глубокий сон) и соответственно летаргическим сном называют состояние патологического (болезненного) сна у человека, неподдающегося насильственному прекращению. Вот почему этот термин вовсе не подходит для определения физиологических явлений в мире животных.
Продолжительное пребывание птиц при низких температурах ученые обозначают термином «гипотермия» (от греч. hypo — под, низкое и thermos — тепло, теплота), т. е. охлаждение. Тот же термин медики используют при искусственном охлаждении всего или части организма человека при сложных операциях (см. главу «Находит ли применение искусственное охлаждение в медицине?»). Состояние кратковременного оцепенения у птиц ученые называют торпидностью. Она наблюдается у только что вылупившихся птенцов некоторых видов, когда родители покидают их на несколько дней при неблагоприятных условиях (например, у черных стрижей). Под торпидным состоянием ученые подразумевают состояние временного оцепенения организма, при котором он слабо реагирует на внешние раздражители (например, шум или прикосновение).
Для растительных организмов используются понятия анабиоза и зимнего покоя; первое — в случаях, когда некоторые растения после высыхания при благоприятных условиях могут снова развиваться, а второе — при особом физиологическом состоянии растительных. организмов, при котором семена, почки (зародыши) предохраняются от преждевременного развития и гибели.
В последнее время возникло и бурно развивается новое направление в биологической науке — криобиология (от греч. kryos — холод, мороз, bios — жизнь и logos — наука), т. е. наука о жизни при охлаждении. Криобиология занимается исследованиями механизмов анабиоза при низких температурах и морозоустойчивостью различных видов растений и животных; генетическим и иммуногенетическим влиянием низких температур; повреждением и защитой клеток организма под действием холода; глубоким замораживанием мужских половых клеток (спермы) для сохранения их продолжительное время с целью последующего искусственного осеменения животных; глубоким замораживанием с учетом продолжительного сохранения тканей и органов для последующей пересадки (трансплантации).
В связи с этим возникло и новое направление криобиологии, названное криомедициной, объектом медицинского приложения которой является не только консервирование тканей и органов при низких температурах, но и искусственное охлаждение (гипотермия) организма человека при сложных операциях на сердце и кровеносных сосудах, в мозге и глазах, при котором резко понижается обмен веществ, движение крови значительно замедляется, а чувствительность исчезает.
Используя патенты живой природы и созданные ею на протяжении многовековой эволюции приспособления, помогающие организмам пережить неблагоприятные условия, человек все чаще начинает их применять в различных областях жизни. Криобиология и криомедицина — науки будущего, о них будут все чаще говорить и писать.
Читайте также
Анабиоз и зимний покой в мире микроорганизмов и в мире растений
Анабиоз и зимний покой в мире микроорганизмов и в мире растений В природе анабиоз не является патентом только животных организмов. Он широко представлен и среди микроорганизмов из царства Prokaryotae, к которым относятся все виды бактерий и синезеленых водорослей. Анабиоз
Где находят применение анабиоз и зимняя спячка — эти патенты природы?
Где находят применение анабиоз и зимняя спячка — эти патенты природы? Можно ли сохранять «запасные части» для нормальной жизнедеятельности? В последние десятилетия в хирургической практике все чаще стали применять (различные виды трансплантации (пересадок) для замены
Возможны ли «химические» анабиоз и гибернация?
Возможны ли «химические» анабиоз и гибернация? В последние десятилетия современная медицинская наука все чаще использует патент природы — анабиоз — при консервировании различных тканей и органов, т. е. «запасных частей», для хирургического «ремонта» путем замены
Анабиоз в прикладной микробиологии, вирусологии и энтомологии
Анабиоз в прикладной микробиологии, вирусологии и энтомологии Изучение анабиоза у бактерий и вирусов, как выяснилось, имеет огромное значение для теоретических и практических основ решения вопроса продолжительного сохранения свойств микроорганизмов и живых микробных
Могут ли йоги впадать в анабиоз?
Могут ли йоги впадать в анабиоз? Известно, что йогизм — одно из самых древних культурных наследий Индии — возник в IV–II вв. до н. э. Упоминания о нем встречаются в древних веддах (молитвенниках и книгах песнопений ранних индоарийцев). Все формы йоги и его учения ставят себе
СПЕЦИАЛЬНЫЕ ТЕРМИНЫ, ИСПОЛЬЗОВАННЫЕ В ЭТОЙ КНИГЕ
СПЕЦИАЛЬНЫЕ ТЕРМИНЫ, ИСПОЛЬЗОВАННЫЕ В ЭТОЙ КНИГЕ Аденин — пуриновое основание, комплементарное тимину (в ДНК) и урацилу (в РНК), входящее в состав ДНК и РНК.Аллель — одно из возможных структурных состояний гена.Альтернативный сплайсинг — форма сплайсинга
СПЕЦИАЛЬНЫЕ ТЕРМИНЫ, ИСПОЛЬЗОВАННЫЕ В ЭТОЙ КНИГЕ
СПЕЦИАЛЬНЫЕ ТЕРМИНЫ, ИСПОЛЬЗОВАННЫЕ В ЭТОЙ КНИГЕ Аденин — пуриновое основание, комплементарное тимину (в ДНК) и урацилу (в РНК), входящее в состав ДНК и РНК.Аллель — одно из возможных структурных состояний гена.Альтернативный сплайсинг — форма сплайсинга
Термины, добавленные переводчиком.
Термины, добавленные переводчиком. Апомиксис – потенциально неограниченное размножение живых организмов посредством неоплодотворённых одноклеточных пропагул. См. также партеногенез.Паттерн поведенческий – некий более-менее шаблонный комплекс действий,
Что такое анабиоз?
Что такое анабиоз? Анабиозом называют состояние организма, при котором жизненные процессы (обмен веществ и др.) временно прекращены или настолько замедлены, что отсутствуют все видимые проявления жизни. Анабиоз наблюдается при резком ухудшении некоторых условий
Что означают буквосочетания «кор» и «олол» в названии лекарства?
Что означают буквосочетания «кор» и «олол» в названии лекарства? На основе латинского корня «кор» (сердце) образованы названия многих препаратов для лечения сердечно-сосудистых заболеваний: валокордин, коразол, коринфар, корвалол, кордарон, коргликон. А вот название
Эмбриональная диапауза
Эмбриональная диапауза Имплантация у собак осуществляется на 16–18 день развития зародыша, прикрепление зародышей к матке вдоль рогов происходит достаточно равномерно.В течение этих 16–18 дней происходит синхронизация развития зародышей из яйцеклеток, которые могли
ТЕРМИНЫ-ОРАКУЛЫ
ТЕРМИНЫ-ОРАКУЛЫ Насекомые, живущие единой общиной, — муравьи, осы, пчелы и термиты — всегда вызывали у людей удивление. Это нашло отражение в многочисленных мифах, легендах и преданиях. В Европе особенно таинственным казалось поведение пчел, которых воспринимали как
Комфортное поведение. Сон и покой
Комфортное поведение. Сон и покой Разновидностью манипулирования можно отчасти считать комфортное поведение, служащее уходу за телом животного, с той лишь особенностью, что объектом манипулирования является не посторонний предмет, а именно собственное тело. Но, кроме
Знаешь ли ты эти термины?
Знаешь ли ты эти термины? АвтополиплоидияАллелизм множественныйАллельАллополиплоидияАльтруизмАмплификацияАнализирующее скрещиваниеАнеуплоидияАнтикодонАпоптозАссортативностьАутосомыБивалентВекторГаметаГаплоидный наборГемизиготаГенГенетическая
6.1. Общие понятия, термины, определения
6.1. Общие понятия, термины, определения В экологии принято количество живого вещества всех групп растительных и животных организмов называть биомассой. Она является результирующей величиной всех процессов жизнедеятельности особей видовой популяции – ее