Подкалиберная пуля что это
Тем не менее, существует несколько путей повышения бронепробиваемости пули: использование подкалиберных пуль и конических стволов.
Подкалиберные пули
Активные исследования возможности применения подкалиберных пуль (оперённых подкалиберных пуль, ОПП) в стрелковом оружии проводились ещё с середины XX века. До этого более востребованным и перспективным направлением считалось создание бронебойных оперённых подкалиберных снарядов (БОПС), что, собственно, подтвердилось их созданием и успешной эксплуатацией по настоящее время.
Эскизный проект был в кратчайшие сроки разработан Д. И. Ширяевым. Впрочем, теоретические изыскания экспериментально не подтвердились. Реальный баллистический коэффициент стреловидных пуль оказался в два раза хуже расчётного, напресованный поддон срывался с пули, производство патронов с ОПП требовало трудоёмкой токарной, фрезерной, слесарной обработки и последующей ручной сборки.
В 1962 году были проведены испытания на убойное действие стреловидных пуль, которое, как оказалось, уступало не только требованиям военных к перспективным боеприпасам, но и существующим штатным патронам.
В 1964 году работы по стреловидным пулям были возобновлены И. П. Касьяновым и В. А. Петровым, которыми было выполнено эскизное проектирование винтовочно-пулемётного патрона калибра 10/4,5 мм с начальной скоростью ОПП 1300 м/с. С 1965 года ответственным исполнителем по перспективному патрону был назначен молодой конструкторов Владислав Дворянинов.
В процессе проектирования нового патрона были реализованы решения, повышающие убойное действие: лыска в передней части ОПП для обеспечения опрокидывающего момента при попадании в плотные ткани и поперечная проточка, по которой происходил изгиб стрелы под действием возникающего опрокидывающего момента.
Наиболее сложной задачей стало повышение кучности стрельбы подкалиберными оперённым пулями до уровня кучности пуль, выпускаемых из нарезных стволов. Требовалось устранить влияние секторов поддонов на ОПП в момент их отделении после вылета из ствола. В 1981 году испытания опытных 10/4,5-мм патронов с ОПП в ОТК ЦНИИТОЧМАШ показали кучность 88-89 мм при требованиях не более 90 мм.
Необходимо отдельно выделить, что трудоёмкость изготовления опытного патрона с ОПП всего в 1,8 раза превышала трудоёмкость изготовления штатного 7,62-мм винтовочного патрона, а ресурс гладкостенных пулемётных стволов при стрельбе этим патроном превышал 32 тыс. выстрелов. Для сравнения: ресурс ствола автомата АК-74 калибра 5,45х39 мм составляет 10000 выстрелов, пулемёта ПКМ калибра 7,62х54R 25000 выстрелов.
Впрочем, развал СССР подвёл черту как над темой по патронам с ОПП, так и с темой по патрону 6х49 мм.
Конический ствол
В статье «Калибр 9 мм и останавливающее действие. Почему 7,62х25 ТТ заменили на 9х18 мм ПМ?» упоминалась «пуля Герлиха» как пример создания малокалиберного патрона с предельными поражающими параметрами.
В одном из экспериментальных образцов системы Германа Герлиха диаметр пули составлял 6,35 мм, масса пули 6,35 г, при этом начальная скорость пули достигала 1740—1760 м/с, дульная энергия – 9840 Дж. На расстоянии 50 м пуля Герлиха проламывала в стальном броневом листе толщиной 12 мм дыру диаметром 15 мм, а в более толстой броне делала воронку в 15 мм глубины и диаметром 25 мм. Обычная пуля винтовки Маузера калибра 7,92 мм оставляла на такой броне лишь небольшое углубление в 2–3 мм.
Кучность системы Герлиха также значительно превосходила обычные армейские винтовки: на дистанции 100 метров 5 пуль массой 6,6 г укладывались в круг диаметром 1,7 см, а при стрельбе на 1000 метров 5 пуль массой 11,7 г ложились в круг диаметром 26,6 см. Благодаря высокой скорости пули на неё практически не оказывали воздействие ветер, влажность, температура воздуха. Настильная траектория полёта упрощала прицеливание.
Технологии перспективной автоматической винтовки (автомата)
Здесь важны несколько определяющих факторов:
Автоматика прототипа винтовки, с подвижным в вертикальной плоскости патронником, создаваемой компанией Textron в рамках программы NGSW под телескопический патрон
Корпус гильзы, скорее всего, будет изготовлен из полимера, это позволит сократить массу патрона, сохранив её на уровне малоимпульсных патронов 5,45х39 мм, следовательно, не допустить уменьшения боекомплекта бойцов.
Распространение и совершенствование компьютеров, а также специализированного программного обеспечения, может привести к появлению подкалиберных боеприпасов, существенно отличающихся по компоновке от тех, что были разработаны в советский период.
Варьируя массу ОПП в диапазоне 2,5-4,5 грамма и скорость ОПП в диапазоне 1250-1750 м/с, можно получить начальную энергию в районе 3000-7000 Дж. Для трёхпульных патронов начальная энергия соответственно составит 1500-2000 Дж на один поражающий элемент, при массе одного элемента 1,5 грамма. Исходя из приведённой выше таблицы по сравнению энергетики и силе отдачи различных боеприпасов, можно ожидать отдачи в диапазоне от уровня патрона 7,62х39 мм до патрона 7,62х54R. При этом может быть выпущена линейка боеприпасов с различными типами снаряжения, предназначенных для боя в различных тактических ситуациях.
Например, в случае, если бой ведётся на открытой местности, с преимущественным поражением целей на большой дистанции, то используются однопульные патроны с энергетикой порядка 6000-7000 Дж, более эффективные при стрельбе одиночным огнём. В случае, если идёт бой в городской застройке, где требуется пробитие большого числа преград (дувалов, относительно тонких стен зданий, зарослей растительности), то используются однопульные патроны с энергетикой 3000-4500 Дж, более эффективные при стрельбе очередями. Если же пробитие преград не требуется, но необходимо обеспечить максимальную плотность огня на ближней дистанции, то используются трёхпульные боеприпасы.
Скорости ОПП до 1360 м/с были получены ещё на этапе разработки этой тематики Владиславом Дворяниновым, во времена СССР. Значит, сочетание новых порохов и конусовидного ствола может позволить достичь скоростей ООП порядка 2000 м/с. При такой начальной скорости ОПП, между выстрелов и попаданием в цель на расстоянии 500 метров пройдёт примерно 0,3 секунды, что существенно упростит стрельбу и снизит воздействие внешних факторов на ОПП.
Изготовление сердечника ОПП из сплава на основе карбида вольфрама в сочетании с высокой скоростью и малым диаметром ОПП позволит обеспечить пробитие всех существующих и перспективных СИБ.
Для снижения трения и уменьшения износа ствола поддон для ОПП может быть выполнен из современных полимерных материалов, например, тех, что применяются для изготовления ведущего пояска в новых российских снарядах для 30-мм автоматических пушек.
Предварительно заготовка ствола может быть сформирована 3D печатью, с последующей механической обработкой на высокоточных станках.
Ученые Рейнско-Вестфальского технического университета Ахена и Института лазерных технологий сообщества Фраунгофера (Германия) приступили к исследованиям лазерной порошковой 3D-печати твердыми сплавами из карбида вольфрама и кобальта. Для этого используется модернизированный вариант лазерного 3D-принтера, дополненного излучателями в ближнем инфракрасном спектре мощностью до 12 кВт, установленными над рабочей областью и прогревающими спекаемые слои. Излучатели поднимают температуру верхнего слоя расходного материала выше 800ºС, после чего в дело вступают спекающие лазеры.
Один из предполагаемых сценариев применения такого оборудования – интеграция охлаждающих каналов прямо в изготавливаемые инструменты и детали. Производство подобных структур обычным спеканием выходит или очень дорого, или вообще технически невозможно. Изготовление таких изделий по технологии 3D-печати методом селективного лазерного спекания позволяет оснастить их внутренними полостями сложной формы.
Применение 3D печати карбидом вольфрама и сталью/титаном позволит сформировать внутренние полости по всей длине ствола, что в свою очередь обеспечит его эффективное охлаждение, например, продувкой воздухом по всей длине, или даже аналогом тепловых трубок, используемых в современной электронике.
В первую очередь это может быть глушитель – дульный тормоз компенсатор (ДТК) закрытого типа, подобный тем, что предполагается использовать в оружии, разрабатываемом по программе NGSW.
Также могут быть реализованы схемы автоматики с накоплением (смещением) импульса отдачи, обеспечивающие точную стрельбу короткими очередями с высоким темпом, или иные продвинутые системы амортизации/поглощения отдачи.
Интересной для рассмотрения является, предложенная Алексеем Тарасенко, схема с вибрационным поглощением отдачи.
Изготовление пластиковых пуль на 3D принтере
Также не стоит беспокоиться о нехватки вольфрама для этих целей – его запасы достаточно велики и в России, и более чем велики в соседнем Китае, с котором у нас пока достаточно ровные партнёрские отношения.
Тем не менее, существует несколько путей повышения бронепробиваемости пули: использование подкалиберных пуль и конических стволов.
Подкалиберные пули
Активные исследования возможности применения подкалиберных пуль (оперённых подкалиберных пуль, ОПП) в стрелковом оружии проводились ещё с середины XX века. До этого более востребованным и перспективным направлением считалось создание бронебойных оперённых подкалиберных снарядов (БОПС), что, собственно, подтвердилось их созданием и успешной эксплуатацией по настоящее время.
Эскизный проект был в кратчайшие сроки разработан Д. И. Ширяевым. Впрочем, теоретические изыскания экспериментально не подтвердились. Реальный баллистический коэффициент стреловидных пуль оказался в два раза хуже расчётного, напресованный поддон срывался с пули, производство патронов с ОПП требовало трудоёмкой токарной, фрезерной, слесарной обработки и последующей ручной сборки.
В 1962 году были проведены испытания на убойное действие стреловидных пуль, которое, как оказалось, уступало не только требованиям военных к перспективным боеприпасам, но и существующим штатным патронам.
В 1964 году работы по стреловидным пулям были возобновлены И. П. Касьяновым и В. А. Петровым, которыми было выполнено эскизное проектирование винтовочно-пулемётного патрона калибра 10/4,5 мм с начальной скоростью ОПП 1300 м/с. С 1965 года ответственным исполнителем по перспективному патрону был назначен молодой конструкторов Владислав Дворянинов.
В процессе проектирования нового патрона были реализованы решения, повышающие убойное действие: лыска в передней части ОПП для обеспечения опрокидывающего момента при попадании в плотные ткани и поперечная проточка, по которой происходил изгиб стрелы под действием возникающего опрокидывающего момента.
Наиболее сложной задачей стало повышение кучности стрельбы подкалиберными оперённым пулями до уровня кучности пуль, выпускаемых из нарезных стволов. Требовалось устранить влияние секторов поддонов на ОПП в момент их отделении после вылета из ствола. В 1981 году испытания опытных 10/4,5-мм патронов с ОПП в ОТК ЦНИИТОЧМАШ показали кучность 88-89 мм при требованиях не более 90 мм.
Необходимо отдельно выделить, что трудоёмкость изготовления опытного патрона с ОПП всего в 1,8 раза превышала трудоёмкость изготовления штатного 7,62-мм винтовочного патрона, а ресурс гладкостенных пулемётных стволов при стрельбе этим патроном превышал 32 тыс. выстрелов. Для сравнения: ресурс ствола автомата АК-74 калибра 5,45х39 мм составляет 10000 выстрелов, пулемёта ПКМ калибра 7,62х54R 25000 выстрелов.
Впрочем, развал СССР подвёл черту как над темой по патронам с ОПП, так и с темой по патрону 6х49 мм.
Конический ствол
В статье «Калибр 9 мм и останавливающее действие. Почему 7,62х25 ТТ заменили на 9х18 мм ПМ?» упоминалась «пуля Герлиха» как пример создания малокалиберного патрона с предельными поражающими параметрами.
В одном из экспериментальных образцов системы Германа Герлиха диаметр пули составлял 6,35 мм, масса пули 6,35 г, при этом начальная скорость пули достигала 1740—1760 м/с, дульная энергия – 9840 Дж. На расстоянии 50 м пуля Герлиха проламывала в стальном броневом листе толщиной 12 мм дыру диаметром 15 мм, а в более толстой броне делала воронку в 15 мм глубины и диаметром 25 мм. Обычная пуля винтовки Маузера калибра 7,92 мм оставляла на такой броне лишь небольшое углубление в 2–3 мм.
Кучность системы Герлиха также значительно превосходила обычные армейские винтовки: на дистанции 100 метров 5 пуль массой 6,6 г укладывались в круг диаметром 1,7 см, а при стрельбе на 1000 метров 5 пуль массой 11,7 г ложились в круг диаметром 26,6 см. Благодаря высокой скорости пули на неё практически не оказывали воздействие ветер, влажность, температура воздуха. Настильная траектория полёта упрощала прицеливание.
Технологии перспективной автоматической винтовки (автомата)
Здесь важны несколько определяющих факторов:
Автоматика прототипа винтовки, с подвижным в вертикальной плоскости патронником, создаваемой компанией Textron в рамках программы NGSW под телескопический патрон
Корпус гильзы, скорее всего, будет изготовлен из полимера, это позволит сократить массу патрона, сохранив её на уровне малоимпульсных патронов 5,45х39 мм, следовательно, не допустить уменьшения боекомплекта бойцов.
Распространение и совершенствование компьютеров, а также специализированного программного обеспечения, может привести к появлению подкалиберных боеприпасов, существенно отличающихся по компоновке от тех, что были разработаны в советский период.
Варьируя массу ОПП в диапазоне 2,5-4,5 грамма и скорость ОПП в диапазоне 1250-1750 м/с, можно получить начальную энергию в районе 3000-7000 Дж. Для трёхпульных патронов начальная энергия соответственно составит 1500-2000 Дж на один поражающий элемент, при массе одного элемента 1,5 грамма. Исходя из приведённой выше таблицы по сравнению энергетики и силе отдачи различных боеприпасов, можно ожидать отдачи в диапазоне от уровня патрона 7,62х39 мм до патрона 7,62х54R. При этом может быть выпущена линейка боеприпасов с различными типами снаряжения, предназначенных для боя в различных тактических ситуациях.
Например, в случае, если бой ведётся на открытой местности, с преимущественным поражением целей на большой дистанции, то используются однопульные патроны с энергетикой порядка 6000-7000 Дж, более эффективные при стрельбе одиночным огнём. В случае, если идёт бой в городской застройке, где требуется пробитие большого числа преград (дувалов, относительно тонких стен зданий, зарослей растительности), то используются однопульные патроны с энергетикой 3000-4500 Дж, более эффективные при стрельбе очередями. Если же пробитие преград не требуется, но необходимо обеспечить максимальную плотность огня на ближней дистанции, то используются трёхпульные боеприпасы.
Скорости ОПП до 1360 м/с были получены ещё на этапе разработки этой тематики Владиславом Дворяниновым, во времена СССР. Значит, сочетание новых порохов и конусовидного ствола может позволить достичь скоростей ООП порядка 2000 м/с. При такой начальной скорости ОПП, между выстрелов и попаданием в цель на расстоянии 500 метров пройдёт примерно 0,3 секунды, что существенно упростит стрельбу и снизит воздействие внешних факторов на ОПП.
Изготовление сердечника ОПП из сплава на основе карбида вольфрама в сочетании с высокой скоростью и малым диаметром ОПП позволит обеспечить пробитие всех существующих и перспективных СИБ.
Для снижения трения и уменьшения износа ствола поддон для ОПП может быть выполнен из современных полимерных материалов, например, тех, что применяются для изготовления ведущего пояска в новых российских снарядах для 30-мм автоматических пушек.
Предварительно заготовка ствола может быть сформирована 3D печатью, с последующей механической обработкой на высокоточных станках.
Ученые Рейнско-Вестфальского технического университета Ахена и Института лазерных технологий сообщества Фраунгофера (Германия) приступили к исследованиям лазерной порошковой 3D-печати твердыми сплавами из карбида вольфрама и кобальта. Для этого используется модернизированный вариант лазерного 3D-принтера, дополненного излучателями в ближнем инфракрасном спектре мощностью до 12 кВт, установленными над рабочей областью и прогревающими спекаемые слои. Излучатели поднимают температуру верхнего слоя расходного материала выше 800ºС, после чего в дело вступают спекающие лазеры.
Один из предполагаемых сценариев применения такого оборудования – интеграция охлаждающих каналов прямо в изготавливаемые инструменты и детали. Производство подобных структур обычным спеканием выходит или очень дорого, или вообще технически невозможно. Изготовление таких изделий по технологии 3D-печати методом селективного лазерного спекания позволяет оснастить их внутренними полостями сложной формы.
Применение 3D печати карбидом вольфрама и сталью/титаном позволит сформировать внутренние полости по всей длине ствола, что в свою очередь обеспечит его эффективное охлаждение, например, продувкой воздухом по всей длине, или даже аналогом тепловых трубок, используемых в современной электронике.
В первую очередь это может быть глушитель – дульный тормоз компенсатор (ДТК) закрытого типа, подобный тем, что предполагается использовать в оружии, разрабатываемом по программе NGSW.
Также могут быть реализованы схемы автоматики с накоплением (смещением) импульса отдачи, обеспечивающие точную стрельбу короткими очередями с высоким темпом, или иные продвинутые системы амортизации/поглощения отдачи.
Интересной для рассмотрения является, предложенная Алексеем Тарасенко, схема с вибрационным поглощением отдачи.
Изготовление пластиковых пуль на 3D принтере
Также не стоит беспокоиться о нехватки вольфрама для этих целей – его запасы достаточно велики и в России, и более чем велики в соседнем Китае, с котором у нас пока достаточно ровные партнёрские отношения.
Кроме того, классическая оживальная оболочечная пуля является крайне неэффективным носителем бронебойного сердечника, поскольку требует использования свинцовой рубашки для прохождения по нарезам канала ствола без их разрушения при контакте с твердым сплавом сердечника. В результате масса собственно сердечника снижается до минимума. Например, пуля патрона 7Н24М калибра 5,45х39 мм с биметаллической оболочкой, свинцовой рубашкой и бронебойным сердечником из сплава ВК8 весит 4,1 грамма, из них вес сердечника составляет всего лишь 1,8 грамма. Кроме того, при столкновении с пластиной СИБЗ часть кинетической энергии пули тратится на смятие биметаллической оболочки, её пробитие бронебойным сердечником и отрыв свинцовой рубашки
В ходе экспериментов был разработан усовершенствованный вариант патрона 5,77х57В ХМ645, в составе которого использовался составной четырехсегментный тянущий поддон из стеклопластика с тефлоновым покрытием, удерживающийся на пуле в стволе за счет сил трения и распадавшийся на сегменты под воздействием напора воздуха после вылета пули из ствола. Длина патрона составляла 63 мм, длина стреловидной пули — 57 мм, вес пули – 0,74 грамма, поддона — 0,6 грамма, начальная скорость пули — 1400 м/с
Проведенные в рамках программ SALVO и SPIW опытные стрельбы с использованием подкалиберных стреловидных пуль сверхмалой массы позволили выявить неустранимые недостатки подобных пуль – увеличенный боковой снос под воздействием ветра и существенное отклонение от заданной траектории при стрельбе в дождь.
Двухсекционный поддон изготовлялся из алюминиевого сплава, поэтому при разлете после покидания ствола представлял собой определенную опасность для соседних стрелков. Кроме того, алюминий интенсивно налипал на поверхность канала ствола, что требовало химической чистки ствола через каждые 100-200 выстрелов. Но самым отрицательным свойством стреловидных пуль оказалось их низкое убойное действие по живой силе – высокоскоростные пули отлично пробивали броню и как иголки проходили насквозь через мягкие ткани, не вызывая шокового гидроудара и не образуя раневого канала большого диаметра.
В связи с указанными обстоятельствами в 1965 году под руководством Владислава Дворянинова была начата разработка нового патрона калибра 10/4,5х54 мм со стреловидной пулей измененной конструкции с увеличенным до 4,5 грамма весом. В ходе разработки был использован полимерный материал для изготовления поддона, не загрязняющий канал ствола во время выстрела, применено хвостовое сужение древка (как в американских аналогах) для повышения баллистического коэффициента, а также образованы поперечный пропил древка в районе гребенки и лыска на острие пули с целью соответственно конструктивного ослабления пули для разлома на две части и опрокидывания пули в процессе пробития мягких тканей
Указанные технические решения позволили повысить убойное действие стреловидных пуль, но одновременно снизили степень пробиваемость средств индивидуальной броневой защиты пехотинцев, поскольку пуля про прохождении твердой преграды испытывает в том числе изгибные напряжения (возрастающие при увеличении угла встречи пули с преградой), которые ведут к разрушению древка пули, дважды ослабленному (гребенкой и пропилом) в самом критическом сечении, непосредственно примыкающем к острию. Выигрыш в убойном действии и проигрыш в пробивном действии не позволили принять на вооружение подкалиберные стреловидные пули конструкции Дворянинова с соавторами.
Изучение процесса обтекания различных тел в аэродинамической трубе при сверхзвуковом обтекании воздухом выявило, что стреловидные пули любой конструкции имеют неоптимальную аэродинамическую форму – они генерируют сразу пять фронтов ударной волны:
— головной фронт;
— фронт в месте перехода острия в древко;
— фронт на передних кромках оперения;
— фронт на задних кромках оперения;
— фронт в месте хвостового сужения древка.
Для сравнения – калиберная пуля оживальной формы на сверхзвуковой скорости генерирует только три фронта ударной волны:
— головной фронт;
— фронт в месте перехода острия в цилиндрическую часть;
— хвостовой фронт.
Наиболее оптимальной с точки зрения аэродинамики сверхзвукового полета является коническая форма пули без перелома образующей поверхности и без хвостового оперения, которая генерирует только два фронта ударной волны: головной и хвостовой. При этом угол раскрытия головного фронта конической пули кратно меньше угла раскрытия головного фронта стреловидной пули по причине меньшего угла раскрытия острия первой по сравнению с углом раскрытия конуса второй. Кроме того, стреловидная пуля, выстреливаемая из гладкого ствола и раскручиваемая в полете (с целью компенсации дефектов изготовления) за счет скосов хвостового оперения, отличается еще и повышенным торможением за счет отбора части кинетической энергии для раскрутки пули.
Коническая пуля, выстреливаемая из ствола Ланкастер, обладает улучшенным баллистическим коэффициентом по сравнению как с оживальной так и стреловидной пулями по следующим обстоятельствам:
— наименьшее количество фронтов ударной волны, генерируемых при сверхзвуковом полете;
— отсутствие потерь кинетической энергии на раскрутку пули за счет набегающего потока воздуха.
Коническая пуля с внутренней полостью в хвостовой части обладает также повышенной пробивной способностью – в процессе прохождения твердой преграды хвостовая часть сминается внутрь и диаметр основания конуса уменьшается до диаметра пули в сечении начала полости. Поперечная нагрузка пули возрастает практически вдвое. При этом заостренность сохранившейся конической поверхности пули остается большей, чем у оживальной или стреловидной пули равной длины. Отсутствие гребенки и поперечных пропилов на поверхности конической пули дополнительно увеличивают её пробиваемость в сравнении со стреловидной пулей конструкции Дворянинова с соавторами.
При этом коническая пуля с внутренней полостью в хвостовой части обладает высоким убойным действием, поскольку:
— она находится на грани устойчивости из-за пологого шага винтовой нарезки канала ствола Ланкастера;
— после пробития бронепреграды её устойчивость снижается за счет сминания хвостовой части и смещения центра давления за центр тяжести.
Потери кинетической энергии на пробитие бронепреграды у конической пули с внутренней полостью находятся на уровне стреловидной и оживальной пуль: у первой энергия тратится на сминание корпуса в районе полости, у второй – на срез хвостового оперения, у третьей – на сминание и отрыв оболочки и рубашки от сердечника.
Тело конической пули функционально соответствует сердечнику оболочечной пули, свинцовая рубашка отсутствует, вместо оболочки из тяжелой и дорогой латуни используется поддон из легкого и дешевого пластика. С другой стороны, коническая пуля наиболее рационально использует прочностные характеристики своего конструкционного материала по сравнению со стреловидной пулей, искусственно ослабленной в месте гребенки и поперечного пропила. Поэтому масса конической пули может быть существенно минимизирована по сравнению с оживальной и стреловидной пулей при равной пробиваемости. Это дает возможность сделать экономически обоснованный выбор конструкционного материала конической пули в пользу металлического вольфрамового сплава, обладающего наибольшей плотностью.
В следующей таблице приводится сравнительная оценка различных типов патронов и пуль стрелкового оружия:
Источник: youtu.beГеометрические характеристики различных типов конических пуль (длина, угол раскрытия конуса, степень закругленности/биконусности головной оконечности, наличие на острие контактной площадки для дробления бронепреграды или экспансивной полости для убойности стрельбы по крупному зверю, глубины и толщины стенок хвостовой полости) с учетом заданных скоростей полета и поражаемых целей можно определить на основе моделирования прохождения пулями воздушной, гелевой или твердой сред с использованием отечественного программного продукта FlowVision.