Почему синтез легких ядер энергетически более выгоден чем реакция деления тяжелых
Ответы на вопросы «Физика атомного ядра. § 87. Термоядерный синтез»
1. Почему синтез легких ядер энергетически более выгоден, чем реакция деления тяжелых?
2. Почему реакции слияния легких ядер могут протекать лишь при температурах порядка миллионов градусов? Приведите оценку такой температуры.
Для преодоления кулоновского отталкивания ядра должны обладать большой кинетической энергией. Давайте ее оценим.
Пусть ядра дейтерия и трития сблизились на
Средняя кинетическая энергия равна
Получаем, что температура больше или равна
3. Почему реакции слияния легких ядер называют термоядерными? Какую ядерную реакцию называют термоядерным синтезом?
Такие реакции называют термоядерными, потому что могут протекать только при температурах порядка сотен миллионов градусов.
4. В чем преимущества управляемого термоядерного синтеза по сравнению с управляемым делением ядер, осуществляемым в ядерном реакторе?
В том, что в результате не образуются радиоактивные отходы, то есть нет риска загрязнения окружающей среды.
5. Почему при высоких температурах только магнитное поле может удерживать плазму в замкнутом объеме?
Потому что такие температуры не выдерживает ни одна оболочка, и удержать движущуюся плазму в замкнутом объеме можно только с помощью магнитного поля.
Почему синтез легких ядер энергетически более выгоден чем реакция деления тяжелых
1. почему синтез легких ядер энергетически более выгоден, чем реакция деления тяжелых?
легкие элементы обладают минимальной энергией связи, и при синтезе выделяющаяся энергия оказывается наибольшей.
2. почему реакции слияния легких ядер могут протекать лишь при температурах порядка миллионов градусов? приведите оценку такой температуры.
для преодоления кулоновского отталкивания ядра должны обладать большой кинетической энергией. давайте ее оценим.
пусть ядра дейтерия и трития сблизились на
средняя кинетическая энергия равна
получаем, что температура больше или равна
3. почему реакции слияния легких ядер называют термоядерными? какую ядерную реакцию называют термоядерным синтезом?
потому что такие температуры не выдерживает ни одна оболочка, и удержать движущуюся плазму в замкнутом объеме можно только с помощью магнитного поля.
Задача из главы Физика атомного ядра по предмету Физика из задачника Физика 11, Касьянов (11 класс)
Почему синтез легких ядер энергетически более выгоден чем реакция деления тяжелых
1. Какая реакция называется термоядерной?
Термоядерной называется реакция слияния лёгких ядер (таких как водород, гелий и др.), происходящая при температурах от десятков до сотен миллионов градусов.
2. Почему протекание термоядерных реакций возможно только при очень высоких температурах?
Создание высокой температуры необходимо для придания ядрам достаточно большой кинетической энергии.
Только при этом условии ядра смогут преодолеть силы электрического отталкивания и сблизиться настолько, чтобы попасть в зону действия ядерных сил.
На таких малых расстояниях силы ядерного притяжения значительно превосходят силы электрического отталкивания, благодаря чему возможен синтез (слияние) ядер.
3. Какая реакция энергетически более выгодна (в расчете на один нуклон): синтез легких ядер или деление тяжелых?
При делении тяжёлых ядер может выделяться энергия.
В случае с лёгкими ядрами энергия может выделяться при обратном процессе — при их синтезе.
Причём реакция синтеза лёгких ядер энергетически более выгодна, чем реакция деления тяжёлых, если сравнивать выделившуюся энергию, приходящуюся на один нуклон.
4. Приведите пример термоядерной реакции.
Примером термоядерной реакции может служить слияние изотопов водорода (дейтерия и трития), в результате чего образуется гелий и излучается нейтрон:
Это первая термоядерная реакция, которую учёным удалось осуществить.
Она была реализована в термоядерной бомбе и носила неуправляемый (взрывной) характер.
5. В чем заключается одна из основных трудностей при осуществлении термоядерных реакций?
6. Какова роль термоядерных реакций в существовании жизни на Земле?
В результате термоядерных реакций, протекающих на Солнце, выделяется энергия, необходимая для жизни на Земле.
7. Какие гипотезы об источниках энергии Солнца вы знаете?
На счёт того, что является «топливом», за счёт которого на Солнце вырабатывается огромное количество энергии в течение столь длительного времени, существовали разные гипотезы:
а) Энергия на Солнце выделяется в результате химической реакции горения.
Но в этом случае, Солнце могло бы просуществовать всего несколько тысяч лет, что противоречит действительности.
б) В середине 19 в. считали, что увеличение внутренней энергии и соответствующее повышение температуры Солнца происходит за счёт уменьшения его потенциальной энергии при гравитационном сжатии.
Она тоже оказалась несостоятельной, так как в этом случае срок жизни Солнца увеличивается до миллионов лет, но не до миллиардов.
8. Что является источником энергии Солнца по современным представлениям?
Предположение о том, что выделение энергии на Солнце происходит в результате протекания на нём термоядерных реакций, было высказано в 1939 г. американским физиком Хансом Бете.
Им был предложен водородный цикл, т. е. цепочка из трёх термоядерных реакций, приводящая к образованию гелия из водорода:
— частица, называемая «нейтрино», что в переводе с итальянского означает «маленький нейтрон».
Чтобы получились два ядра , необходимые для третьей реакции, первые две должны произойти дважды.
9. На какой период должно хватить запаса водорода на Солнце по подсчетам ученых?
В соответствии с формулой Е = mс 2 с уменьшением внутренней энергии тела уменьшается и его масса.
Масса Солнца ежесекундно уменьшается на несколько миллионов тонн.
Но, несмотря на потери, запасов водорода на Солнце должно хватить ещё на 5-6 миллиардов лет.
Деление и синтез ядер.
Делением ядер называется процесс, при котором из одного атомного ядра образуется 2 (иногда 3) ядра-осколка, которые являются близкими по массе.
Этот процесс является выгодным для всех β-стабильных ядер с массовым числом А > 100.
Деление ядер урана было выявлено в 1939 году Ганом и Штрасманом, однозначно доказавшие, что при бомбардировке нейтронами ядер урана U образуются радиоактивные ядра с массами и зарядами, приблизительно в 2 раза меньшими массы и заряда ядра урана. В том же году Л. Мейтнером и О. Фришером был введен термин «деление ядер» и было отмечено, что при этом процессе выделяется огромная энергия, а Ф. Жолио-Кюри и Э. Ферми одновременно выяснили, что при делении испускаются несколько нейтронов (нейтроны деления). Это стало основой для выдвижения идеи самоподдерживающейся цепной реакции деления и использования деления ядер как источника энергии. Основой современной ядерной энергетики является деление ядер 235 U и 239 Pu под действием нейтронов.
Деление ядра может происходить благодаря тому, что масса покоя тяжелого ядра оказывается большей суммы масс покоя осколков, которые возникают в процессе деления.
Из графика видно, что этот процесс оказывается выгодным с энергетической точки зрения.
Механизм деления ядра можно объяснить на основе капельной модели, согласно которой сгусток нуклонов напоминает капельку заряженной жидкости. Ядро удерживают от распада ядерные силы притяжения, большие, чем силы кулоновского отталкивания, которые действуют между протонами и стремящиеся разорвать ядро.
Ядро 235 U имеет форму шара. После поглощения нейтрона оно возбуждается и деформируется, приобретая вытянутую форму (на рисунке б), и растягивается до тех пор, пока силы отталкивания между половинками вытянутого ядра не станут больше сил притяжения, действующих в перешейке (на рисунке в). После этого ядро разрывается на две части (на рисунке г). Осколки под действием кулоновских сил отталкивания разлетаются со скоростью, равной 1/30 скорости света.
Испускание нейтронов в процессе деления, о котором мы говорили выше, объясняется тем, что относительное число нейтронов (по отношению к числу протонов) в ядре увеличивается с возрастанием атомного номера, и для образовавшихся при делении осколков число нейтронов становится большим, чем это возможно для ядер атомов с меньшими номерами.
Деление зачастую происходит на осколки неравной массы. Эти осколки являются радиоактивными. После серии β-распадов в итоге образуются стабильные ионы.
Кроме вынужденного, бывает и спонтанное деление ядер урана, которое было открыто в 1940 году советскими физиками Г. Н. Флеровым и К. А. Петржаком. Период полураспада для спонтанного деления соответствует 10 16 годам, что в 2 млн. раз больше периода полураспада при α-распаде урана.
Синтез ядер происходит в термоядерных реакциях. Термоядерные реакции — это реакции слияния легких ядер при очень высокой температуре. Энергия, которая выделяется при слиянии (синтезе), будет максимальной при синтезе легких элементов, которые обладают наименьшей энергией связи. При соединении двух легких ядер, например, дейтерия и трития, образуется более тяжелое ядро гелия с большей энергией связи:
При таком процессе ядерного синтеза происходит выделение значительной энергии (17,6 Мэв), равная разности энергий связи тяжелого ядра и двух легких ядер . Образующийся при реакциях нейтрон приобретает 70% этой энергии. Сравнение энергии, которая приходится на один нуклон в реакциях ядерного деления (0,9 Мэв) и синтеза (17,6 Мэв), показывает, что реакция синтеза легких ядер энергетически является более выгодной, чем реакция деления тяжелых.
Термоядерный синтез — реакция, в которой при высокой температуре, большей 10 7 К, из легких ядер синтезируются более тяжелые ядра.
Термоядерный синтез — источник энергии всех звезд, в том числе, и Солнца.
Основным процессом, при котором происходит освобождение термоядерной энергии в звездах, является превращение водорода в гелий. За счет дефекта массы в этой реакции масса Солнца уменьшается каждую секунду на 4 млн тонн.
Большую кинетическую энергию, которая нужна для термоядерного синтеза, ядра водорода получают в результате сильного гравитационного притяжения к центру звезды. После этого при слиянии ядер гелия образуются и более тяжелые элементы.
Термоядерные реакции играют одну из главных ролей в эволюции химического состава вещества во Вселенной. Все эти реакции происходят с выделением энергии, которая излучается звездами в виде света на протяжении миллиардов лет.
Осуществление управляемого термоядерного синтеза предоставило бы человечеству новый, практически неисчерпаемый источник энергии. И дейтерий, и тритий, нужные для его осуществления , вполне доступны. Первый содержится в воде морей и океанов (в количестве, достаточном для использования в течение миллиона лет), второй может быть получен в ядерном реакторе при облучении жидкого лития (запасы которого огромны) нейтронами:
Одним из важнейших преимуществ управляемого термоядерного синтеза является отсутствие радиоактивных отходов при его осуществлении (в отличие от реакций деления тяжелых ядер урана).
Главным препятствием на пути осуществления управляемого термоядерного синтеза является невозможность удержания высокотемпературной плазмы с помощью сильных магнитных полей в течение 0,1-1 с. Однако существует уверенность в том, что рано или поздно термоядерные реакторы будут созданы.
Пока же получилось произвести только неуправляемую реакцию синтеза взрывного типа в водородной бомбе.
Термоядерный синтез на пальцах: от азов до практики
Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Тема действительно важная, ведь этот процесс является одним из ключевых источников энергии в современной Вселенной (благодаря нему, например, светит наше Солнце) и, возможно, в будущем станет почти неисчерпаемым источником энергии для Человечества, то есть для нас с вами.
Самая знаменитая формула на свете
Если вы интересуетесь физикой, то, думаю, хоть раз в жизни видели эту формулу:
Обычно её принято расшифровывать как формулу энергии, которой обладает каждый физический объект вне зависимости от прочих условий просто потому, что он имеет массу. То есть, даже тело, находящееся в состоянии покоя вне каких-либо полей и имеющее температуру, равную абсолютному нулю, всё равно обладает некоей энергией, то есть масса является «скрытой» энергией сама по себе. И эту энергию можно высвободить при определённых условиях.
Например, при столкновении частицы с её античастицей (скажем, электрона и позитрона) они взаимно уничтожаются с выделением энергии. То есть, их масса полностью переходит в энергию, и величина выделившейся энергии в точности определяется вышеупомянутой формулой, где под массой имеется в виду суммарная масса позитрона и электрона.
Но верно и обратное: не только масса способна превращаться в энергию, но и энергия способна превращаться в массу – или по крайней мере всё будет выглядеть так, что тело приобрело дополнительную массу в результате наделения его энергией.
Например, если мы разгоним частицу в ускорителе, то с точки зрения внешнего наблюдателя она начнёт вести себя так, как будто её масса выросла. Более яркий пример – фотоны, или кванты, т.е. мельчайшие порции, электромагнитного излучения. Согласно современным представлениям (с существенной точностью подтверждённым экспериментами) они вообще не имеют массы. Однако они обладают энергией, и поэтому в реальности ведут себя так, как будто масса у них есть.
Правда, в современной физике, дабы избежать путаницы, от термина «релятивистская масса» постепенно отказываются и в научной литературе его употреблять не принято. Это связано с некоторыми терминологическими тонкостями, способными привести к путанице в научных дискуссиях, однако нам, рассуждающим об этих вопросах весьма поверхностно и «на пальцах» подобное простительно. Поэтому мы можем говорить о полной эквивалентности энергии и массы: масса это энергия, а энергия это масса с точностью до множителя, равного квадрату скорости света.
И более того: в подавляющем большинстве случаев, когда мы говорим о массе, на самом деле мы имеем в виду выглядящую как массу энергию. Объясню, что я имею в виду.
Несуществующая масса
Окружающие нас тела состоят из молекул, молекулы состоят из атомов, а почти вся масса атомов сосредоточена в атомных ядрах. Атомные ядра, в свою очередь, состоят из протонов и нейтронов, то есть, получается, что масса окружающих нас тел в значительной степени определяется исключительно тем, какую массу имеют составляющие их протоны и нейтроны (с некоторыми оговорками, о которых речь пойдёт ниже).
Протоны и нейтроны, в свою очередь, состоят из кварков: в каждом из них их по три. Так вот: если мы просуммируем массу кварков, составляющих, например, протон, то окажется, что их суммарная масса составляет лишь около 1/10 от массы протона. Откуда же берутся остальные 9/10, ведь внутри протона кроме кварков других массивных, т.е. имеющих массу, частиц нет?
Всё дело в том, что кварки внутри протона или нейтрона находятся в поле ядерного взаимодействия, которое называется сильным взаимодействием. Это одна из фундаментальных физических сил, известных нам на сегодняшний день, наряду с силой тяжести, электромагнитной силой и ещё одним видом взаимодействия, именуемого слабым: в повседневной жизни мы с ним не сталкиваемся, в нашем тексте о нём речи также не будет, так что пока отложим его в сторону.
Мы знаем, что тело, помещённое в некоторое поле, в результате получает определённую энергию. Например, камень, поднятый над землёй, начинает обладать потенциальной энергией, пропорциональной его массе, ускорению свободного падения (то есть характеристике гравитационного поля Земли) и высоте. Будет обладать потенциальной энергией и заряженное тело, помещённое в электрическое поле.
Точно также и кварки внутри протона и нейтрона обладают определённой (и весьма значительной!) энергией, обусловленной их участием в сильном взаимодействии друг с другом.
Но так как эта энергия как бы «скрыта» внутри протона или нейтрона, то «снаружи» мы её не видим – за исключением наблюдаемого увеличения массы протона или нейтрона в результате эквивалентности массы и энергии.
Зафиксируем: 9/10 массы протонов и электронов – это на самом деле «законсервированная» в них энергия. И эта энергия может быть высвобождена, что и происходит в результате процессов, называемых ядерными реакциями.
Пойдём дальше, и соединим протоны и нейтроны в более сложные структуры – атомные ядра. Например, одно из простейших сложных ядер – это ядро атома дейтерия, состоящее из одного протона и одного нейтрона. Дейтерий – старший брат обычного водорода, ядро которого по сути представляет собой одиночный протон.
Так вот, масса протона составляет примерно 1,0073 т.н. атомной единицы массы, или а.е.м (1/12 массы атома углерода). Масса протона составляет 1,0087 а.е.м. Чему же будет равна масса ядра дейтерия? По идее, 1,0073 + 1,0087 = 2,016 а.е.м, не так ли?
А вот и не угадали. На самом деле масса ядра дейтерия – 2,0136 а.е.м, то есть примерно на 0,0024 меньше, чем должна быть.
То есть, сложив 2 и 2 (протон и нейтрон) мы получили не 4, как должны были бы, а 3 с чем-то. Мистика? Ничуть, если вспомнить, что на самом деле мы имеем дело не только и не столько с массой, сколько в виде «замаскированной под массу» энергией связи частиц внутри протона и нейтрона. А в физике ситуации, когда энергия связи сложной системы оказывается меньше энергии связи её элементов, нередки, и мы наблюдаем подобное чуть ли не каждый день.
Классическим примером является поведение мелких капель воды на оконном стекле или капель жира на поверхности супа. Вы, думаю, видели, как такие мелкие капельки сливаются в более крупные. В целом любые жидкие капли проявляют склонность к такому слиянию. Причина – более крупные капли обладают меньшей энергией, а точнее, меньшей энергией поверхностного натяжения.
Действительно, энергия поверхностного натяжения пропорциональна площади поверхности. А площадь поверхности двух отдельных капель до слияния оказывается большей, чем площадь поверхности «суммарной» капли после их слияния.
При этом надо помнить, что энергия поверхностного натяжения – это, в конечном счёте, энергия взаимодействия молекул внутри жидкости (которая, кстати, имеет электрическую природу, но об этом тоже в другой раз). И вот оказывается, что объект с большим числом частиц (большим объёмом, т.е. в данном случае большей массой) обладает меньшей энергией.
Куда же девается «лишняя» масса протонов и нейтронов, оказывающаяся «ненужной» в их новом связанном состоянии, характеризующимся более низкой энергией (массой)? А она высвобождается в виде чистой энергии – в основном тепловой (т.е. кинетической энергии движения частиц, например, тех же атомов и/или других частиц, получающихся в ходе ядерной реакции). При этом понятно, что количество высвобождающейся энергии можно определить всё по той самой формуле Эйнштейна про «эмцэ в квадртате», где в качестве массы будет стоять разница массы компонентов и массы получившейся из них системы: в нашем случае, протона, нейтрона и составленного из них ядра дейтерия.
В русскоязычной физической литературе эту разницу принято называть дефектом массы (имея в виду, что масса итогового ядра меньше суммы масс компонентов), в англоязычной же говорят об избытке массы (mass excess), имея в виду, что исходные компоненты по сумме тяжелее, чем получившееся из них ядро.
Зафиксируем: в результате соединения протонов и нейтронов в ядра часть их массы, обусловленной энергией связи составляющих их кварков оказывается «лишней» и высвобождается.
Больше – значит… легче?
Дефект массы сохраняется и для более сложных протон-нейтронных систем, и более того. Если мы будем «собирать» более сложные ядра не из отдельных протонов и нейтронов, а из других, более простых ядер (как это происходит на практике), то тоже будем наблюдать, что итоговое ядро будет иметь меньшую массу, чем сумма масс ядер, из которых мы его составили.
Например, если мы «склеим» три ядра атома гелия (точнее, гелия-4, в котором два протона и два нейтрона, масса 4,0026 а.е.м), то получим ядро атома углерода-12 (6 протонов, шесть нейтронов) с массой 12 а.е.м. ровно. Соответственно, при таком синтезе «лишней» окажется масса исходных ядер гелия в 0,007 а.е.м., которая выделится в виде энергии.
Эта тенденция характера для всех лёгких атомов: чем больше количество протонов и нейтронов в атоме, тем меньшая масса приходится на каждый протон и нейтрон. А значит, при слиянии более простых атомов в более сложные будет выделяться энергия. Именно этот процесс называется ядерным (термоядерным) синтезом.
Стоит добавить, что принцип «чем больше, тем легче» работает только для лёгких атомов – а именно, для элементов, чьи порядковые номера в таблице Менделеева (т.е. количество протонов в ядре) меньше чем 56, т.е. меньше чем железа. При синтезе более тяжёлых ядер энергия уже не выделяется, а поглощается, так как результат реакции оказывается тяжелее компонентов.
А начиная со свинца (атомный номер 82, т.е. 82 протона в ядре) ядра «включается» обратный процесс: энергетически выгодным (то есть, приводящим к уменьшению общей энергии системы) является процесс распада сложного атома на более простые компоненты: например, висмут-209 (83 протона, 126 нейтронов) «выплёвывает» ядро атома гелия-4 (2 протона, 2 нейтрона), превращаясь в таллий-205 (81 протон, 124 нейтрона). При этом масса гелия-4 (4,0026 аем) и таллия-205 (204,9744 а.е.м) в сумме оказывается меньше массы исходного висмута-209 (208,9804 а.е.м) на 0,003 а.е.м. Избыточная масса при распаде тяжёлых элементов выделяется в виде энергии весьма похоже на то, как это происходит при синтезе лёгких.
Последний вариант превращения массы в энергию мы уже освоили и используем в атомных реакторах, радиоизотопных электрогенераторах и других устройствах. Однако эта технология обладает рядом недостатков: для реакторов необходимо достаточно редкое и дорогое топливо, запасы которого к тому же ограничены; кроме того, побочным продуктом реакции являются высокорадиоактивные отходы, обращение с которыми представляет известную трудность.
Ядерный синтез перспективнее, однако освоить его сложнее: если тяжёлые радиоактивные ядра в принципе распадаются сами по себе, и нам остаётся лишь собирать выделившуюся энергию. Но для того, чтобы заставить склеиться лёгкие ядра, надо приложить немало сложностей.
Вопреки кулону
Вернёмся к нашему примеру с каплями на стекле (или, скажем, на поверхности супа): мы видим, что они достаточно легко сливаются без всяких усилий с нашей стороны, так как природа склонна переводить системы в состояние с минимальной энергией. Но если мы придадим нашим каплям некий одноимённый электрический заряд, то мы увидим, что сливаться капли перестали. Причина понятна: сила электростатического отталкивания препятствует их достаточному сближению.
Так вот: наши атомные «капельки»-ядра как раз имеют положительный заряд, так как состоят из нейтральных нейтронов и положительно заряженных протонов. В результате силы электростатического отталкивания также препятствуют их слиянию.
Физики говорят, что электрические силы создают между атомами потенциальный барьер, который ещё называют кулоновским. Для того, чтобы атомы могли преодолеть этот барьер и столкнуться, запустив процесс ядерного синтеза, они, во-первых, должны находиться достаточно близко друг к другу, а во-вторых иметь достаточную скорость. На языке параметров вещества это означает, что для запуска термоядерного синтеза вещество должно находиться под большим давлением и иметь высокую температуру.
Причём высокую – это мягко сказано: речь идёт о миллионах и даже десятках миллионов градусов. Для сравнения, самый жаростойкий материал, сегодня известный человечеству, а именно особый вид карбонитрида гафния (Hf-CN) имеет температуру плавления порядка 4000 градусов. Увы, это примерно в две тысячи раз меньше, чем нужно.
В принципе, мы уже умеем запускать термоядерные реакции в земных условиях – собственно, именно это происходит в термоядерных бомбах. Но там экстремальные давления и температуры возникают в эпицентре ядерного взрыва: огромная энергия выделяется за доли секунды, что отлично подходит для произведения чудовищных разрушений.
Но мирно собрать и использовать выделившуюся таким образом энергию сложновато: в термоядерном реакторе, в отличие от бомбы, энергия должна выделяться постепенно, небольшими порциями, то есть, быть устойчивой.
Устойчивые термоядерные реакции вполне прекрасно идут, например, в недрах звёзд, в том числе нашего Солнца – именно благодаря выделяющейся в результате этих реакций энергии оно и светит. Однако там экстремальные условия (температура и давление) возникли в результате гравитационного сжатия колоссальных масс вещества. Гравитация системы также обеспечивает устойчивость реакции.
Солнечная топка
В Солнце основым видом термоядерной реакции является многоступенчатое превращение водорода в гелий.
Сначала два атома водорода – по сути, обычные протоны – сливаются в нестабильную систему под названием дипротон, т.е. пару протонов, он же изотоп гелий-2. Этот изотоп крайне нестабилен и распадается в среднем через миллиардную долю секунды. Но иногда за это время один из протонов может спонтанно превратиться в нейтрон, и тогда дипротон превратится в стабильный тяжёлый водород – дейтерий (1 протон, 1 нейтрон).
Впоследствии дейтерий поглощает ещё один протон, превращаясь в стабильный изотоп гелий-3 (2 протона, 1 нейтрон). Затем два ядра гелия-3 сталкиваются, в результате чего образуется «нормальный» гелий-4 (два протона, два нейтрона), а два «лишних» протона улетают прочь.
На каждом из этих этапов выделяется энергия, благодаря которой, повторимся, и светит Солнце.
Однако на Земле осуществить подобный цикл невозможно по ряду причин.
Превращение дипротона в дейтерий – процесс вероятностный, причём вероятность того, что это случится, на самом деле невелика с учётом малого времени жизни дипротона. Для того, чтобы такая реакция шла и давала выход энергии, нужны колоссальные массы вещества. Но это полбеды, можно было бы работать, скажем, с уже готовым дейтерием (он в достаточных количествах содержится в любом количестве водорода, например, того, который можно получить из простой воды). К сожалению, это не единственная сложность.
Например, можно вместо гравитации использовать для обжатия и нагрева термоядерного топлива электромагнитные поля.
Например, можно поместить топливо в специальную конструкцию в виде полого тора (проще говоря, бублика) покрытую проводящей обмоткой. Если через эту обмотку пропускать электрический ток, то возникнет магнитное поле, которое сдавливать плазму, обжимая её от краёв канала к центру и удерживая в своеобразной магнитной ловушке без непосредственного контакта материалов реактора с раскалённым веществом.
В результате – в теории – можно в земных условиях реализовать температуры и давления, характерные для звёздных недр и запустить термоядерный синтез. Именно такие конструкции «бубликовидных» реакторов сегодня являются мейнстримом термоядерных исследований. Хотя существуют и другие перспективные схемы компоновки реакторов.
На практике же реализовать всё это достаточно сложно, ведь находящееся в столь экстремальном состоянии вещество обладает особенностями поведения, в которых мы пока что недостаточно хорошо разбираемся. И сейчас тысячи учёных по всему миру усиленно работают над тем, чтобы приручить электромагнитные поля и раскалённое вещество, заставив их подчиняться нашей воле.
На пути к искусственному Солнцу
В настоящий момент мы уже научились инициировать «медленную» реакцию в смеси вышеупомянутого дейтерия (1 протон, 1 нейтрон) с тритием (1 протон, 2 нейтрона, т.н. сверхтяжёлый водород).
В результате такой реакции образуется ядро гелия (2 протона, 2 нейтрона). Но в исходных ядрах два протона и три нейтрона, то есть, образуется «лишний» нейтрон, который улетает прочь. А это плохо.
Во-первых, с собой этот нейтрон уносит значительную (80 %) часть энергии, вырабатываемой при реакции синтеза, что сильно уменьшает её КПД.
Во-вторых, нейтронный поток негативно влияет на конструктивные свойства сооружений реактора, разрушая их. То есть, необходимо придумать и использовать какие-то «нейтронно-устойчивые» материалы.
Наконец, в-третьих, тритий очень дорог: его стоимость – 30 тысяч долларов за грамм. При сжигании в реакторе 1 грамма дейтериево-тритиевой смеси выделится энергия, эквивалентная сжиганию примерно 20 тонн угля стоимостью примерно в 2 тысячи долларов. И это без учёта того факта, что в дейтериево-тритиевой схеме мы сможем собрать лишь небольшую часть выделившейся энергии. Поэтому дейтериево-тритиевое топливо вряд ли пригодно для использования в качестве практического источника энергии, и работающие на нём реакторы имеют прежде всего научное значение: в их можно изучить и освоить технологии «управления» раскалённым газом (плазмой), полноценное овладение которыми откроет путь к использованию других видов топлива и реакций.
Например, если бы удалось создать условия, в которых сможет протекать более требовательная к ним реакция между атомами только дейтерия (без трития), то это уже вывело бы перспективы термоядерной энергетики на совершенно новый уровень. Увы, пока мы их запускать не умеем.
Ещё более интересны так называемые безнейтронные схемы: реакции, не приводящие к возникновению «паразитного» нейтронного потока. Например, использование из дейтерия и гелия-3 (2 протона, 1 нейтрон), дающие на выходе «полноценный» гелий-4 (2 протона, 2 нейтрона) и «лишний» протон.
К сожалению, гелий-3 на Земле практически не встречается, и его надо либо получать искусственно (возможно, но дорого, хотя и дешевле трития), либо можно привезти с Луны, где его по идее много. Какой путь окажется дешевле –пока неясно (космические технологии тоже не стоят на месте!), но сначала нужно научиться нормально работать с раскалённой плазмой.
Именно для этого, к слову, строят крупнейший в истории термоядерный реактор ITR во Франции: в строительстве принимают участие Россия, Казахстан, США, ЕС, Китай, Индия, Япония и Южная Корея – уже сам состав участников свидетельствует о масштабе проекта. ITR вряд ли будет давать «коммерческую» энергию, но позволит отработать все необходимые для этого технологии для применения в будущем.
Существует и альтернативный подход: так называемые импульсные термоядерные реакторы, в которых не предполагается поддерживать постоянные условия солнечного ядра, а создавать их на краткое время – достаточное, впрочем, для того, чтобы какая-то часть термоядерного топлива успела прореагировать. В таких реакторах небольшие объёмы топлива быстро «сплющиваются» мощными лазерами или потоками заряженных частиц высоких энергий.
Импульсные реакторы являются конкуретами проектов вроде ITR – какая из конструкций первой «придёт к финишу» покажет время.