Рис. 1. Условно показана молекула кислорода на рычажных весах (детские качели) при разных температурах окружающей атмосферы. a – из наблюдений; b – по Эйнштейну.
Зададимся вопросом в стиле Якова Перельмана: какой воздух тяжелее холодный или теплый? После этого посмотрим ответы на форуме в интернете (ответы обозначены цифрами): 1) теплый;2) холодный;3) холодный конечно; 4) тёплый воздух поднимается вверх, он легче; 5) холодный, поэтому он внизу всегда; 6) конечно теплый!; 7) тяжелей холодный, он опускается вниз, а теплый поднимается, значит легче; 8) тяжелее влажный воздух!; 9) холодный, вспомни, когда зимой открываешь форточку; 10) это и в садике знают, что тёплый легче, поэтому вверх стремится.
На тяжесть холодного воздуха ставок гораздо больше.
Мы народ северный и нас на таком вопросе не проведешь, открывая зимой форточку, наблюдаем, как холодный воздух буквально врывается в комнату, падает вниз к нашим ногам и расстилается по полу комнаты. А может он хочет нам поклониться за широкое гостеприимство? Не знаю, но это подтверждается визуально, когда холодный воздух, увлекая частицы пара, превращает их в видимый шлейф при конденсации. После чего выносится вердикт: холодный воздух тяжелее теплого, поэтому он устремляется вниз. Очередная зима, подкрепляет наши наблюдения и укрепляет правоту сказанного. Объясняем мы это плотностью – холодный воздух более плотный, теплый более разреженный.
Иногда для объяснения притягивают влажность воздуха. Поскольку, в зимний период на улице влаги больше, то влажный воздух должен весить якобы больше. Воздух – это смесь газов, состоящая на три четверти из азота и почти на четверть из кислорода и некоторого количества водяного пара. Количество остальных газов пренебрежимо мало, их не учитываем. Средняя молекулярная масса воздуха 29, молекулярная масса водяного пара 18. Об этом говорит и, упомянутый выше, Я. Перельман: «При одинаковом давлении и температуре кубометр влажного воздуха не тяжелее, а легче, чем кубометр сухого воздуха» [1].
Для выяснения сути данного явления в бытовых условиях можно пойти в баню, и пока не вспотели, понаблюдать за движением пара. Кто в баню не ходит пусть поставит эксперимент на своей кухне и нагреет кастрюлю с водой. Как только кастрюля закипит, пар с завихрениями устремится вверх, под купол вытяжной вентиляции. В бане этот процесс выражен еще более контрастно, первый ковш воды, брошенный на раскаленные камни, выбрасывает вверх белый шлейф пара. Мы видим восходящий паровой поток, который буквально вонзается в потолок, растекается по нему, стараясь его приподнять, и, постепенно охлаждаясь, начинает оседать, а затем конденсироваться на холодных металлических трубах.
По сравнению с окружающим воздухом пар перегрет, поэтому его молекулы более энергонасыщены.
Можно ли доверять нашим органолептическим органам? Для начала необходимо разобраться, почему холодный воздух уплотняется?
2. Почему плотность холодного воздуха больше чем теплого?
На самом ли деле теплый воздух легче холодного. Давайте проверим это утверждение и взвесим две молекулы кислорода теплую, при температуре +20º С и холодную, при температуре 0º С. Но как это сделать, на каких весах измерить разницу веса между молекулами? Судя по рисунку, автору удалось это сделать с помощью рычажных весов (детской качели).
Трудность заключается еще и в том, что мы не сможем в земных условиях точно оценить вес даже, заключенных в оболочку, достаточно больших одинаковых объемов воздуха. Оценке мешает эффект плавучести (статья «Гравитационная температура»). Остается одно, разобраться с этим явлением с энергетической точки зрения. Если мы возьмем молекулы одного и того же газа, но при разных температурах, то понятно, что молекула, имеющая более высокую температуру, будет более энергонасыщена и будет иметь более высокую скорость перемещения.
А за счет какой энергии вообще молекулы перемещаются? Классическая молекулярно-кинетическая теория на этот вопрос не дает вразумительного ответа. Этот физический процесс был основательно исследован в главе «Броуновское движение». Молекулы двигаются благодаря энергии импульсов придачи «вперед за снарядом». Под действием этих импульсов электромагнитного крафонного (краснофотонного) излучения, молекулы пара стремительно разлетаются в разные стороны, но в большей степени вверх (область пониженного давления), тем самым, разреживая и освобождая пространство, в которое устремляется новые молекулы. Те, в свою очередь, поступают как первые. Тем самым мы видим восходящий поток пара. Этот процесс в динамике идет по нормали до первой преграды – потолка.
Попутно еще один вопрос: за счет чего уплотняется холодный воздух?
Конвективные перемещения осуществляются за счет разности давлений, разности температур и гравитации. Холодный воздух из открытой форточки непрерывным потоком падает на пол нашей комнаты. Да, температура холодного воздуха ниже, чем теплого и что из этого следует? Ранее было выяснено, что гравитация квантуется, т.е. передается импульсами. Количество этих импульсов гравитационного излучения земли и нашего пола распределяется по всей поверхности примерно одинаково. Тогда остается излучение самих молекул воздуха. Молекулы имеют маленькую массу и охотно отзываются на собственный импульс придачи, после чего устремляются в том же направлении отстрела этого импульса. Статистически у теплых молекул частота излучения выше, чем у холодных. Они чаще отстреливают свои импульсы в пространство, где меньше давление, поэтому теплые молекулы летят в сторону потолка, освобождая место холодным. Получается, за счет этого электромагнитное, гравитационное излучение земли подтягивает к полу в большей степени холодный воздух, соответственно, теплый выталкивается вверх. Холодные молекулы имеют меньшую скорость, поэтому находятся в более плотном состоянии. Вот по такой технологии идет конвекция в любой газовой среде.
Теплый воздух в комнате выходит из температурного равновесия и постепенно внедряется в ряды холодного, отдавая часть своей теплоты.
3. Эйнштейн против Клапейрона и Менделеева
Рис. 2. На рисунке условно показано равное количество молекул азота (1) и молекул кислорода (2), находящихся при разных температуре и занимающих не равные объемы.a – при высокой температуре; b – при низкой температуре.
Обычно объясняют, что холодный воздух выталкивает теплый и тот поднимается вверх. На самом деле никто никого не толкает и не выталкивает. Весь воздух подвержен притяжению Земли и эта энергия его подпитывает. В зависимости от энергонасыщенности происходит температурная сегрегация по высоте расположения. Молекулы теплого воздуха имеют большую скорость перемещения, они разлетаются на большие расстояния, происходит больше столкновений между ними и они занимают больший объем (рис. 2а).
А теперь для доказательства равенства масс молекул, находящихся под разным тепловым потенциалом, я призвал на помощь два уравнения из классической физики.
1) уравнение состояния для идеального газа Клапейрона-Менделеева.
Где, m – масса газа, P – давление, V – объем, M – молярная масса, R – универсальная газовая постоянная, Т – температура.
Замечание, сейчас принято обозначать температуру греческой буквой Θ (Тэта). Чтобы не нарушать написание известной формулы оставим символ Т.
Из (2) видно, что при повышении температуры, увеличивается V (при постоянном давлении P). При этом масса газа (воздуха) остается постоянной.
2) Уравнение Эйнштейна. Энергия излучения связана с его массой.
Подставив в формулы (3, 4) реальные значения, можно убедиться без лишних доказательств, что кубовый объем газа, имеющий меньшую энергию Е (температуру и скорость молекул) будет иметь и меньшую массу.
Тогда можно заключить, что холодный воздух легче теплого, и должен подниматься вверх, а он падает вниз. Вот где нелогичная конвекция и Эйнштейн против Клапейрона и Менделеева.
В чем же дело? А дело в серьезном разбирательстве, связанном со знаменитой формулой. Если в расчете использовать формулу (3), то килограммовый куб воздуха будет иметь энергию 9·10 16 Дж. Данная величина приблизительно равна электрической энергии 3∙10 10 кВт∙ч! Такое количество электроэнергии потребляют США за один день! Невероятно, но где энергия? А ее, увы, не видно.
Этому разбирательству посвящена отдельная статья под названием: «Энергия покоя». А сейчас, чтобы выбраться из создавшейся коллизии введем в данное уравнение энергетический коэффициент GE.
T – температура тела в Кельвинах
Tmax – максимально возможная температура вещества в природе.
Используя в расчетах уравнение (7) можно убедиться, что при прочих равных условиях, массы холодного и теплого воздуха будут равны. Такой же расчет дает по формуле (2) Клапейрона-Менделеева и противостояние с Эйнштейном прекращается. И что самое главное, энергия газового куба снижается до удобоваримого значения, на десять порядков! Все расчеты привели меня к заключению, что уравнение Эйнштейна не общее, а частное, для максимального значения температуры при GE=1.
Электромагнитное, крафонное излучение Земли постоянно мониторит пространство и подтягивает атмосферу с паром вниз, но теплый воздух всегда оказываются наверху. Это происходит потому, что холодные молекулы реже отстреливают свои крафоны придачи в окружающее пространство из-за их меньшей энергонасыщенности.
Теплый воздух в комнате находится в термодинамическом равновесии, поэтому его молекулы продолжают хаотично двигаться, постепенно внедряясь в ряды холодного, отдавая часть своей теплоты.
Несмотря на то, что холодный воздух находится всегда внизу, масса теплых и холодных молекул остается одинаковой.
Конвективные перемещения в жидкости можно объяснить аналогичным способом.
Объемная плотность газа существенно зависит от температуры газа.
Как было указано выше, более горячий газ устремляется вверх не из-за его легкости, а по причине поднятия молекул за счет крафонного излучения. По сути, о какой легкости или тяжести мы говорим, каждая молекула находится во взвешенном состоянии, но не в какой-то среде, а фактически, в вакууме. Равные по массе и одинаковой температуре молекулы будут иметь одинаковый объемный вес. Известно, если охладить кубометр воздуха, то получим 1,2 литра в жидком состоянии. Отсюда вопрос: какое вещество занимает 998,8 литра этого объема воздуха, если мы уберем энергию расширения, то есть теплоту?!
Нас окружает большое количество явлений, к которым мы давно привыкли. Причём настолько, что нередко не задаёмся вопросами, почему так, а не иначе, или что это означает. Например, всё знают, что тёплый воздух легче холодного и от этого поднимается вверх. Но что означает “легче”?
То есть простой вроде бы вопрос на самом деле таковым не является. И даже вызывает горячие споры.
Дело в объёме, а не в массе
На самом деле, конечно, говорить о том, что горячий воздух “легче” холодного, несколько некорректно. Дело в том, что по мере повышения температуры газа скорость молекул нарастает. Следовательно, расстояние между ними будет тоже увеличиваться. А это означает, что горячий воздух станет занимать больше пространства.
Таким образом, один и тот же объём газа в нагретом состоянии станет меньше давить на квадратный сантиметр или любую другую единицу поверхности. Этим и объясняется его “лёгкость”. Но за счёт чего такое стало возможным?
От температуры зависит плотность газа. Наверх постоянно будет стремиться тот, у которого плотность меньше. Или, если перефразировать, у кого при равной массе больше объём. Это касается всех тел и распространяется и на газы тоже.
Молярно-кинетическая теория газов
Вопрос с лёгким горячим воздухом хорошо объясняется этой теорией. Среднюю кинетическую энергию молекул определяет температура. Зависимость простая: чем выше температура, тем выше кинетическая энергия молекул газа. А это означает, что молекулы начинают двигаться быстрее. И в результате данного процесса расстояние между ними возрастает. За счёт этого плотность газа и уменьшается, поскольку увеличивается объём.
Однако земная гравитация мешает молекулам газа в процессе разогрева отправляться в путешествие в космос. То есть на воздух действует несколько сил. И в то время как одни “выталкивают” его при нагревании на поверхность, другие притягивают вниз.
Так ли всё очевидно?
Кажется, что для понимания процессов, которые происходят с тёплым и холодным воздухом, достаточно школьного курса знаний. Однако если начать разбираться в происходящем глубже, то возникает немало интересных вопросов. Например, выше говорилось о кинетической энергии у молекул. Но откуда она у них вообще берётся?
Движение молекул связано с энергией импульса, которая заставляет их стремиться за снарядами. Например, если посмотреть на пар, то на него воздействует краснофотонное излучение. Оно импульсами и задаёт движение. В итоге разреженный газ начинает стремиться в область, где давление не такое высокое, как внизу, а плотность меньше. И это движение будет сохраняться до тех пор, пока поток воздуха не встретит преграду или пока он не остынет.
Почему тёплый воздух движется наверх?
Воздух нагревается, расширяется, после чего устремляется наверх. В физике это носит название конвективных перемещений. В реальной жизни на движение воздушных масс влияет не один фактор, а целый ряд. В частности, это разница температур, показателей давления и гравитационная сила.
Допустим, если вы откроете форточку зимой, то оттуда к нам начнёт попадать холодный воздух. Его температура заметно ниже температуры тех масс, которые находятся в помещении. Так что зимой разницу между потоками воздуха можно даже наблюдать: холодный воздух буквально стелется по полу.
Молекулы воздуха обладают излучением. Оно возрастает по мере увеличения температур. В процессе активности молекулы как бы отстреливают импульсы, причём благоприятные условия для такой активности создаются в области сниженного давления. То есть наверху.
В итоге тёплые молекулы воздуха движутся наверх. А их место занимают более холодные. То есть благодаря гравитации холодный воздух будет опускаться вниз. Именно так и работает конвекция.
Зачем эти знания нужны на практике?
Понимание конвекции позволяет создавать системы отопления. Разобраться с микроклиматом в доме без подобных знаний в противном случае бы не получилось. Главное – вспомнить физику.
Бессмысленно продолжать делать то же самое и ждать других результатов (Эйнштейн)
Рис. 1. Условно показана молекула кислорода на рычажных весах (детские качели) при разных температурах окружающей атмосферы. a – из наблюдений; b – по Эйнштейну.
Зададимся вопросом в стиле Якова Перельмана: какой воздух тяжелее холодный или теплый? После этого посмотрим ответы на форуме в интернете (ответы обозначены цифрами): 1) теплый; 2) холодный;3) холодный конечно; 4) тёплый воздух поднимается вверх, он легче; 5) холодный, поэтому он внизу всегда; 6) конечно теплый!; 7) тяжелей холодный, он опускается вниз, а теплый поднимается, значит легче; 8) тяжелее влажный воздух!; 9) холодный, вспомни, когда зимой открываешь форточку; 10) это и в садике знают, что тёплый легче, поэтому вверх стремится.
На тяжесть холодного воздуха ставок гораздо больше.
Мы народ северный и нас на таком вопросе не проведешь, открывая зимой форточку, наблюдаем, как холодный воздух буквально врывается в комнату, падает вниз к нашим ногам и расстилается по полу комнаты.
А может он хочет нам поклониться за широкое гостеприимство? Не знаю, но это подтверждается визуально, когда холодный воздух, увлекая частицы пара, превращает их в видимый шлейф при конденсации. После чего выносится вердикт: холодный воздух тяжелее теплого, поэтому он устремляется вниз.
Очередная зима, подкрепляет наши наблюдения и укрепляет правоту сказанного. Объясняем мы это плотностью – холодный воздух более плотный, теплый более разреженный.
Иногда для объяснения притягивают влажность воздуха. Поскольку, в зимний период на улице влаги больше, то влажный воздух должен весить якобы больше. Воздух – это смесь газов, состоящая на три четверти из азота и почти на четверть из кислорода и некоторого количества водяного пара.
Количество остальных газов пренебрежимо мало, их не учитываем. Средняя молекулярная масса воздуха 29, молекулярная масса водяного пара 18. Об этом говорит и, упомянутый выше, Я.
Перельман: «При одинаковом давлении и температуре кубометр влажного воздуха не тяжелее, а легче, чем кубометр сухого воздуха» [1].
Для выяснения сути данного явления в бытовых условиях можно пойти в баню, и пока не вспотели, понаблюдать за движением пара. Кто в баню не ходит пусть поставит эксперимент на своей кухне и нагреет кастрюлю с водой. Как только кастрюля закипит, пар с завихрениями устремится вверх, под купол вытяжной вентиляции.
В бане этот процесс выражен еще более контрастно, первый ковш воды, брошенный на раскаленные камни, выбрасывает вверх белый шлейф пара.
Мы видим восходящий паровой поток, который буквально вонзается в потолок, растекается по нему, стараясь его приподнять, и, постепенно охлаждаясь, начинает оседать, а затем конденсироваться на холодных металлических трубах.
По сравнению с окружающим воздухом пар перегрет, поэтому его молекулы более энергонасыщены.
Можно ли доверять нашим органолептическим органам? Для начала необходимо разобраться, почему холодный воздух уплотняется?
2. Почему плотность холодного воздуха больше чем теплого?
На самом ли деле теплый воздух легче холодного. Давайте проверим это утверждение и взвесим две молекулы кислорода теплую, при температуре +20º С и холодную, при температуре 0º С. Но как это сделать, на каких весах измерить разницу веса между молекулами? Судя по рисунку, автору удалось это сделать с помощью рычажных весов (детской качели).
Трудность заключается еще и в том, что мы не сможем в земных условиях точно оценить вес даже, заключенных в оболочку, достаточно больших одинаковых объемов воздуха. Оценке мешает эффект плавучести (статья «Гравитационная температура»).
Остается одно, разобраться с этим явлением с энергетической точки зрения.
Если мы возьмем молекулы одного и того же газа, но при разных температурах, то понятно, что молекула, имеющая более высокую температуру, будет более энергонасыщена и будет иметь более высокую скорость перемещения.
А за счет какой энергии вообще молекулы перемещаются? Классическая молекулярно-кинетическая теория на этот вопрос не дает вразумительного ответа. Этот физический процесс был основательно исследован в главе «Броуновское движение». Молекулы двигаются благодаря энергии импульсов придачи «вперед за снарядом».
Под действием этих импульсов электромагнитного крафонного (краснофотонного) излучения, молекулы пара стремительно разлетаются в разные стороны, но в большей степени вверх (область пониженного давления), тем самым, разреживая и освобождая пространство, в которое устремляется новые молекулы. Те, в свою очередь, поступают как первые. Тем самым мы видим восходящий поток пара.
Этот процесс в динамике идет по нормали до первой преграды – потолка.
Попутно еще один вопрос: за счет чего уплотняется холодный воздух?
Конвективные перемещения осуществляются за счет разности давлений, разности температур и гравитации. Холодный воздух из открытой форточки непрерывным потоком падает на пол нашей комнаты.
Да, температура холодного воздуха ниже, чем теплого и что из этого следует? Ранее было выяснено, что гравитация квантуется, т.е. передается импульсами. Количество этих импульсов гравитационного излучения земли и нашего пола распределяется по всей поверхности примерно одинаково.
Тогда остается излучение самих молекул воздуха. Молекулы имеют маленькую массу и охотно отзываются на собственный импульс придачи, после чего устремляются в том же направлении отстрела этого импульса. Статистически у теплых молекул частота излучения выше, чем у холодных.
Они чаще отстреливают свои импульсы в пространство, где меньше давление, поэтому теплые молекулы летят в сторону потолка, освобождая место холодным.
Получается, за счет этого электромагнитное, гравитационное излучение земли подтягивает к полу в большей степени холодный воздух, соответственно, теплый выталкивается вверх. Холодные молекулы имеют меньшую скорость, поэтому находятся в более плотном состоянии. Вот по такой технологии идет конвекция в любой газовой среде.
Теплый воздух в комнате выходит из температурного равновесия и постепенно внедряется в ряды холодного, отдавая часть своей теплоты.
3. Эйнштейн против Клайперона и Менделеева
Рис. 2. На рисунке условно показано равное количество молекул азота (1) и молекул кислорода (2), находящихся при разных температуре и занимающих не равные объемы. a – при высокой температуре; b – при низкой температуре.
Обычно объясняют, что холодный воздух выталкивает теплый и тот поднимается вверх. На самом деле никто никого не толкает и не выталкивает. Весь воздух подвержен притяжению Земли и эта энергия его подпитывает.
В зависимости от энергонасыщенности происходит температурная сегрегация по высоте расположения.
Молекулы теплого воздуха имеют большую скорость перемещения, они разлетаются на большие расстояния, происходит больше столкновений между ними и они занимают больший объем (рис. 2а).
А теперь для доказательства равенства масс молекул, находящихся под разным тепловым потенциалом, я призвал на помощь два уравнения из классической физики.
1) уравнение состояния для идеального газа Клайперона-Менделеева.
Где, m – масса газа, P – давление, V – объем, M – молярная масса, R – универсальная газовая постоянная, Т – температура.
Замечание, сейчас принято обозначать температуру греческой буквой Θ (Тэта). Чтобы не нарушать написание известной формулы оставим символ Т.
Из (2) видно, что при повышении температуры, увеличивается V (при постоянном давлении P). При этом масса газа (воздуха) остается постоянной.
2) Уравнение Эйнштейна. Энергия излучения связана с его массой.
Подставив в формулы (3, 4) реальные значения, можно убедиться без лишних доказательств, что кубовый объем газа, имеющий меньшую энергию Е (температуру и скорость молекул) будет иметь и меньшую массу.
Тогда можно заключить, что холодный воздух легче теплого, и должен подниматься вверх, а он падает вниз. Вот где нелогичная конвекция и Эйнштейн против Клайперона и Менделеева.
В чем же дело? А дело в серьезном разбирательстве, связанном со знаменитой формулой. Если в расчете использовать формулу (3), то килограммовый куб воздуха будет иметь энергию 9·1016 Дж. Данная величина приблизительно равна электрической энергии 3∙1010 кВт∙ч! Такое количество электроэнергии потребляют США за один день! Невероятно, но где энергия? А ее, увы, не видно.
Этому разбирательству посвящена отдельная статья под названием: «Энергия покоя». А сейчас, чтобы выбраться из создавшейся коллизии введем в данное уравнение энергетический коэффициент GE.
T – температура тела в Кельвинах
Tmax – максимально возможная температура вещества в природе.
Используя в расчетах уравнение (7) можно убедиться, что при прочих равных условиях, массы холодного и теплого воздуха будут равны. Такой же расчет дает по формуле (2) Клайперона-Менделеева и противостояние с Эйнштейном прекращается.
И что самое главное, энергия газового куба снижается до удобоваримого значения, на десять порядков! Все расчеты привели меня к заключению, что уравнение Эйнштейна не общее, а частное, для максимального значения температуры при GE=1.
Электромагнитное, крафонное излучение Земли постоянно мониторит пространство и подтягивает атмосферу с паром вниз, но теплый воздух всегда оказываются наверху. Это происходит потому, что холодные молекулы реже отстреливают свои крафоны придачи в окружающее пространство из-за их меньшей энергонасыщенности.
Теплый воздух в комнате находится в термодинамическом равновесии, поэтому его молекулы продолжают хаотично двигаться, постепенно внедряясь в ряды холодного, отдавая часть своей теплоты.
Несмотря на то, что холодный воздух находится всегда внизу, масса теплых и холодных молекул остается одинаковой.
Конвективные перемещения в жидкости можно объяснить аналогичным способом.
Объемная плотность газа существенно зависит от температуры газа.
Как было указано выше, более горячий газ устремляется вверх не из-за его легкости, а по причине поднятия молекул за счет крафонного излучения. По сути, о какой легкости или тяжести мы говорим, каждая молекула находится во взвешенном состоянии, но не в какой-то среде, а фактически, в вакууме.
Равные по массе и одинаковой температуре молекулы будут иметь одинаковый объемный вес. Известно, если охладить кубометр воздуха, то получим 1,2 литра в жидком состоянии.
Как возникает ненастная погода. Фронт в атмосфере
Если иногда громадные потоки теплых и холодных воздушных течений подходят близко друг к другу, тогда на карте погоды между ними можно провести четкую линию раздела, или, как говорят метеорологи, линию фронта.
Вот с такими фронтами непосредственно и связана ненастная погода, обложные дожди или снегопады.
Граница между теплой и холодной воздушными массами представляет собой поверхность. Эта поверхность почти горизонтальная и лишь слегка, совсем незаметно, опускается к линии фронта.
Холодный воздух находится под фронтальной поверхностью; он имеет форму, напоминающую лезвие топора, а теплый воздух расположен выше этой поверхности. Там, где фронтальная поверхность опускается до самой земли, т. е. вдоль «лезвия топора», проходит линия фронта.
Так как воздушные массы все время находятся в движении, то и граница между ними сдвигается то в сторону теплого воздуха, то в сторону холодного.
На любой карте погоды можно подметить одну очень важную и характерную особенность: через центр области пониженного давления обязательно проходит линия фронта, и, наоборот, через центры областей повышенного давления фронты никогда не проходят.
Теплый фронт
Если фронт движется в направлении от теплого воздуха к холодному, т. е. холодный воздух отступает, а теплый надвигается вслед за ним, то такой фронт называют теплым фронтом.
Именно такой теплый фронт и приносит нам чаще всего самые продолжительные дожди.
Когда теплый фронт движется через какую-нибудь местность, то там наступает потепление: на смену холодной воздушной массе приходит теплая масса.
Теплый воздух движется быстрее холодного, догоняет его, и ему приходится как бы «взбираться на спину» отступающего холодного воздуха. А подъем воздуха приводит к его охлаждению; следовательно, в теплом воздухе над фронтальной поверхностью образуются облака.
Теплый воздух взбирается вверх очень медленно и постепенно, поэтому облачность теплого фронта и имеет вид ровной гладкой пелены перисто-слоистых и высокослоистых облаков. Эта пелена тянется вдоль линии фронта широкой полосой в несколько сотен метров ширины и иногда на тысячи километров в длину.
Чем дальше впереди от линии фронта находятся облака, тем выше они над Землей и тем тоньше. Самые высокие облака называют перистыми. Они находятся на высоте 7-9 км и состоят из ледяных кристаллов.
Перисто-слоистые облака тоже состоят из ледяных кристаллов, но расположены они несколько ниже и ближе к фронту. Высокослоистые облака еще ниже — на высоте 2-4 м и на расстоянии 100-400 км от фронта.
У самого фронта расположены слоисто-дождевые облака. Низкие разорванные облака «плохой погоды» несутся над землей на высоте всего 100-200 м.
Они закрывают вершины холмов, верхушки радиомачт и иногда верхние части фабричных труб.
После прохождения фронта ветер меняет свое направление, причем он поворачивается всегда вправо. Если перед фронтом ветер дул с юго-востока, то после прохождения фронта он уже дует с юга; если же ветер был южным, то он становится юго-западным или западным.
Высокие прозрачные облака, движущиеся на 800-900 км впереди линии теплого фронта,— это те высланные вперед «гонцы», которые задолго предупреждают нас о наступлении ненастья. Именно по их появлению можно за 10-14 часов вперед предсказать начало дождя летом или снегопада зимой.
Мы рассмотрели образование осадков, которые обычно создают длительное ненастье.
Холодный фронт
Часто ясный день сменяется бурным ливнем, грозой и шквалом, вслед за которыми наступает похолодание. Такая погода связана с холодным фронтом. Если теплый воздух отступает, а холодный растекается вслед за ним, то такой фронт называется холодным фронтом. Приход этого фронта всегда вызывает похолодание, так как теплая воздушная масса заменяется холодной.
Нижняя часть холодного фронта вследствие трения о земную поверхность движется медленнее верхней и отстает от нее.
Поэтому наверху поверхность холодного фронта «выпячивается» вперед, холодный воздух в «голове» холодного фронта обрушивается вниз, и фронтальная поверхность принимает выпуклую форму катящегося вала.
Этот вал движется быстрее отступающего теплого воздуха, нагоняет его и бурно вытесняет прямо вверх. Образуется вал клубящихся темных туч (кучево-дождевых облаков) с ливнем, грозой и градом (летом) или снежным шквалом и метелью (зимой).
Самые сильные грозы и шквалы всегда бывают связаны с холодным фронтом.
Предсказание погоды
Зная взаимную связь явлений погоды и внимательно наблюдая за ее изменениями, можно предсказать наступление ненастья или улучшение погоды.
Нужно только помнить, что ни один из признаков изменения погоды нельзя использовать отдельно от других явлений погоды.
Надо всегда сначала ясно себе представить все, что происходит в данный момент в атмосфере, и только на основании этого можно предсказывать изменения погоды.
Всякое сильное ухудшение погоды обусловлено приходом циклонов и связанных с ними фронтов, которые сменяют антициклоны, а проследить за их движением можно только по специальным синоптическим картам. Для местного предсказания погоды можно использовать лишь некоторые признаки приближения фронтов и циклонов.
Летом во время хорошей погоды признаком возможного наступления ненастья будет нарушение обычного суточного хода погоды, для которого характерно повышение температуры днем и понижение ее ночью, усиление ветра днем и ослабление его ночью, образование днем кучевых облаков, выпадение ночью росы и образование утренних туманов.
О приближении теплого фронта, а следовательно, и циклона всегда говорит ночное потепление. В циклоне ветры обычно сильнее, чем в антициклоне, поэтому с приближением циклона ветер заметно усиливается.
Слишком резкое по сравнению с прошедшими сутками усиление ветра днем или слишком незначительное его ослабление ночью указывает на приближение циклона. Отсутствие росы и тумана ночью также служит признаком приближения циклона.
На это же указывает иногда и слабое развитие кучевой облачности днем.
Зимой суточный ход явлений погоды выражен слабо и приближающийся циклон обычно дает знать о себе усилением ветра и повышением температуры.
Все эти признаки, даже если они резко выражены и наблюдаются одновременно, все же не дают уверенности в наступлении ненастья.
Самые верные признаки близкого ненастья — это появление на небе перистых и перисто-слоистых облаков, которые сгущаются в определенной — чаще всего в западной — части горизонта.
При этом ветер должен дуть таким образом, что если стать к нему спиной, то сгущение облаков должно оказаться слева и несколько впереди — там, где должно быть низкое давление.
Признаки прекращения ненастья: резкое похолодание во время выпадения дождя и снега; изменение направления ветра на северо-западное или северное; изменение характера осадков; переход равномерного, со сплошной облачностью, дождя в резко меняющиеся по силе ливни, иногда с грозой и градом, сплошного снегопада — в отдельные сильные вспышки пурги.
, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.