регулируемые факторы жизни растений
Основы агрономии
Факторы жизни растений
Растения в течение всей своей жизни постоянно находятся во взаимодействии с внешней средой. Требования растений к факторам жизни определяются наследственностью растений, и они различны не только для каждого вида, но и для каждого сорта той или иной культуры.
Это связанно с тем, что каждому растению нужны конкретные, изменяющиеся во времени количества лучистой энергии, температура среды, вода, разнообразные растворенные химические элементы, газовый состав почвенного и атмосферного воздуха, свойства среды обитания.
Вот почему глубокое знание этих требований дает возможность правильно устанавливать структуру посевных площадей, чередование культур, размещение севооборотов.
Рассмотрим влияние основных факторов и условий на рост и развитие растений.
Основным источником света для растений является солнечная радиация. Хотя этот источник находится вне влияния человека, степень использования световой энергии солнца для фотосинтеза зависит от уровня агротехники: способов посева (направление рядков с севера на юг или с востока на запад), дифференцированных норм высева, обработки почвы и др.
Свет, т. е. оптическое излучение солнца в виде электромагнитных волн определенной длины, включающее видимое человеческим глазом инфракрасное и ультрафиолетовое излучение, оказывает большое влияние на рост и развитие растений. Прежде всего, свет – источник энергии для фотосинтеза.
Помимо этого, свет оказывает прямое влияние на развитие растений. Без него растения не зацветают и не плодоносят. При недостатке света зерновые, например, плохо кустятся, стебли вытягиваются, растения полегают, зерно получается щуплым, с низким содержанием белка. Свет влияет на качество продукции и других растений: сахарная свекла при хорошем освещении накапливает больше сахара, картофель – крахмала, подсолнечник – жира. Растения реагируют на смену дня и ночи, на изменение интенсивности освещения. Эту реакцию называют фотопериодизмом.
Для нормального развития одних растений нужен длинный световой день, что наблюдается в южных широтах. Так, озимая рожь, овес, пшеница запаздывают с цветением в условиях короткого дня. Другие растения (рис, хлопчатник, сорго, просо, табак) лучше развиваются в широтах с коротким световым днем.
В практике земледелия используют приемы, позволяющие улучшить освещенность растений. К ним относятся правильное ориентирование рядов посевов по отношению к странам света. Например, посев зерновых рядками в меридиональном направлении по сравнению с широтным дает прибавку урожая до 2. 3 ц/га за счет лучшего освещения растений утром и вечером и затенения их друг другом в жаркие полуденные часы.
Необходимо создать правильную густоту стояния растений при посеве, более равномерно распределять их по площади, уничтожать сорные растения, затеняющие культурные. Своевременное прореживание растений и уничтожение сорняков улучшают освещенность растений. Как правило, более ранние сроки посева и посадки способствуют усилению фотосинтетической деятельности и повышению урожая. В условиях длительного лета применяют пожнивные и поукосные посевы, позволяющие полнее использовать солнечную радиацию.
Тепло
Тепло в жизни растений, наряду со светом представляет основной фактор жизни растений и необходимое условие для биологических, химических и физических процессов в почве. Каждое растение на различных фазах и стадиях развития предъявляет определенные, но неодинаковые требования к теплу, изучение которых составляет одну из задач физиологии растений и научного земледелия. Тепло в жизни растений влияет на скорость развития в каждой стадии роста. В задачу земледелия входит также изучение теплового режима почвы и способов его регулирования.
Все процессы, происходящие в растении (прорастание семян, рост, плодообразование, фотосинтез), наилучшим образом протекают при определенной оптимальной температуре. При отклонении ее в ту или иную сторону эти процессы тормозятся, что приводит к снижению урожая. Для каждой фазы развития существуют минимальные и максимальные температуры, при которых физиологические процессы останавливаются, и растения даже могут погибнуть.
По отношению к теплу растения подразделяют на холодостойкие, семена которых прорастают при температуре почвы 2 – 5 ˚С, и за весь вегетационный период им нужна сумма активных (более 10 ˚С) среднесуточных температур воздуха 1200 – 1800 ˚С, и теплолюбивые, семена которых прорастают при температуре почвы 8 –12 ˚С и нуждаются в сумме активных среднесуточных температур воздуха 3000 – 4000 ˚С.
Для многолетних и озимых сельскохозяйственных растений нужна определенная температура почвы в зимний период.
Воздух
Воздух в жизни растений (атмосферный и почвенный) необходим как источник кислорода для дыхания растений и почвенных микроорганизмов, а также как источник углерода, который растение усваивает в процессе фотосинтеза. Кроме того, Воздух в жизни растений необходим для микробиологических процессов в почве, в результате которых органическое вещество почвы разлагается аэробными микроорганизмами с образованием растворимых минеральных соединений азота, фосфора, калия и других элементов питания растений.
Растению необходим углекислый газ, используемый им при фотосинтезе, и кислород – в процессе дыхания, т. е. в процессе окисления, связанном с выделением энергии для других физиологических процессов. Углекислый газ растения поглощает из приземных слоев атмосферы, состав которой человек практически изменить не может.
Кислород растение получает из воздуха и из почвы. Кислородное питание может быть нарушено при затоплении растений или при обильных снегопадах и не промёрзшей почве, когда растения продолжают вегетировать.
Растения чувствительны к составу почвенного воздуха, в частности к содержанию в нем кислорода. Он, прежде всего, необходим для прорастания семян и потребляется корнями растений. Особенно требовательны к кислороду корнеплоды и клубнеплоды, масличные и бобовые культуры. Менее требовательны – зерновые, некоторые из них снабжают корни кислородом, запасенным в воздухоносных полостях стеблей. Эти полости особенно развиты у риса, который может расти на почве, затопленной водой, а также у кукурузы.
Кислород, а также азот нужен многим микроорганизмам, принимающим активное участие в формировании плодородия почвы.
Количество и состав почвенного воздуха можно регулировать, изменяя содержание влаги в почве с помощью орошения или осушения, соответствующей обработке почвы (рыхлением или прикатыванием). Внесение органических удобрений (навоза, компостов, торфа) приводит к увеличению концентрации углекислого газа в почве и уменьшению кислорода. В почвах, содержащих много гумуса, формируется благоприятная структура, что улучшает их воздушный режим.
Вода в жизни растений и питательные вещества, за исключением углекислоты, поступающей как из почвы, так и из атмосферы, представляют почвенные факторы жизни растений. Поэтому воду и питательные вещества называют элементами плодородия почвы.
Значение воды в жизни растений определяется целым рядом ее свойств. Среди них необходимо отметить способность ее быть растворителем и средой, в которой совершается передвижение веществ и их обмен. В растительном организме воды содержится от 70 до 95 %. С поступлением и передвижением ее в растениях связаны все жизненные процессы. При наличии воды и других факторов семена набухают и прорастают, растут ткани, поступают в растения и передвигаются в них питательные элементы, осуществляется фотосинтез и синтезируется органическое вещество.
Элементы питания растений
В обмене веществ между растениями и окружающей средой важнейшим условием является корневое питание. В состав сухой массы растений входит несколько десятков элементов питания, однако некоторые из них абсолютно необходимы для всех растений. Это макроэлементы – углерод, кислород, водород, азот, фосфор, калий, кальций, магний, железо, сера и микроэлементы – бор, марганец, медь, цинк, молибден, кобальт и др.
Первые четыре макроэлемента (углевод, кислород, водород, азот) входят в состав органической массы растений и называют органогенами, остальные – зольными элементами.
Углевод, кислород и водород, на долю которых приходится около 93 – 94% сухой массы растений, усваиваются растением из воздуха в процессе фотосинтеза, а азот и все зольные элементы растения берут из почвы.
Каждый элемент питания имеет определенное значение в жизни растений.
Углерод, кислород, водород и азот – важнейшие составные части органических веществ – углеводов, белков и жиров.
Азот входит в состав белков, которые являются основой жизни, и влияет главным образом на ростовые процессы. При недостатке азота рост и развитие растений сильно замедляются, растение имеет мало листьев и бледную окраску. Избыток азота значительно увеличивает рост растений, затягивая их созревание.
Фосфор особенно необходим на ранних этапах развития растений и в период плодоношения. Он способствует лучшему развитию семян, плодов и ускорению созревания культур.
Калий накапливается преимущественно в молодых частях растений, играет важную роль в накоплении углеводов, повышает устойчивость растений к заболеваниям. Вместе с фосфором он увеличивает зимостойкость озимых культур.
Кальций способствует развитию мощной корневой системы у растений, уменьшает вредное влияние ионов водорода и алюминия.
Сера, магний, железо участвуют в окислительных процессах. Сера входит в состав белка, магний – хлорофилла, железо – необходимый элемент при образовании хлорофилла, хотя и не входит в его состав.
Микроэлементы входят в состав ферментов, гормонов, витаминов. Они влияют на процессы обмена веществ в растениях и выполняют ряд других специфических функций.
Обобщение многовекового опыта выращивания сельскохозяйственных культур привело к формированию законов земледелия.
Земные и космические факторы жизни растений, способы их регулирования.
Тема № 30. « Факторы жизни растений и законы земледелия».
1.Земные и космические факторы жизни растений, способы их регулирования.
2. Законы земледелия.
Земные и космические факторы жизни растений, способы их регулирования.
Факторы жизни растений, без которых невозможна их жизнедеятельность подразделяются на земные и космические.
Космические факторы жизни растений практически не регулируются в земледелии. К ним относятся:
Культурные растения предъявляют различные требования к продолжительности и интенсивности освещения. Одни требуют более длительного освещения – это культуры длинного дня (пшеница, рожь, овес, ячмень). Другие ускоряют плодоношение при менее продолжительном освещении – это культуры короткого дня (просо, кукуруза, гречиха).
Хотя свет не относится к факторам, регулируемым земледелием, однако существуют приемы позволяющие более полно использовать солнечное излучение:
1) направление рядков с севера на юг (увеличивает урожайность на 2-3 ц/га по сравнению с размещением с запада на восток). 2) норма высева. 3) способы посева (узкорядный, широкорядный, гнездовой). 4) своевременное прореживание. 5) борьба с вредителями, болезнями, сорняками. 6) искусственная освещенность.
2. Тепло. Главный источник тепла – солнечная радиация. Из всего количества тепла почва поглощает 43 % и излучает примерно 24 %. Лишь 1 % этой энергии участвует в процессе фотосинтеза. В течение вегетационного периода растений, на территории Республики Беларусь на 1 см 2 поверхности почвы приходится за 1 сутки 1 ккал. тепла.
Растения предъявляют различные требования к теплу. По этому показателю они подразделяются на6
а) теплолюбивые (семена прорастают при температуре +8-12 0 С и требуют суммы активных температур 3000-4000 0 С)
б) холодостойкие (семена прорастают при температуре +2-5 0 С и требуют суммы активных температур 1200-1800 0 С).
Незначительному регулированию подлежит лишь температурный режим почвы: 1) увеличение влажности (полив) способствует снижению температуры. 2) снегозадержание. 3) использование навоза, компостов. 4) мульчирование. 5) искусственный обогрев. 6) теплицы, парники.
Земные факторы жизни растений регулируются и благодаря им можно создавать оптимальные условия для роста и развития растений.
1. Вода. В большинстве зеленых и свежеубранных растений содержится 75-90 % воды. Например, в семенах содержится 7-15 %, в стеблях до 50%, листьях, корнях, клубнях до 75-93 %.
Поступающая вместе с питательными веществами вода в растении используется не полностью. Установлено, что из 1000 частей воды прошедшей через растение только 1,5-2,0 части расходуются на питание, остальная испаряется через листья. Растительная клетка должна быть постоянно насыщена водой. С током воды поступают в растения и передвигаются питательные вещества. Вода участвует в фотосинтезе и других процессах, поддерживает температуру в растении (не дает перегреваться растениям).
Количество воды (в г.), расходуемой растением на образование 1 г. сухого вещества называется транспирационным коэффициентом. Величина ТК зависит от вида растений и условий их возделывания. У большинства сельскохозяйственных культур он колеблется от 300 до 500 (зерновые), у некоторых возрастает до 800 и 1000 (овощные, травы). Источником воды в неполивных условиях являются осадки и грунтовые воды.
Регулировать водный режим возможно путем осушительно-осушительных мелиоративных мероприятий:
1. осушением заболоченных земель.
2. воздействие на микроклимат древесных насаждений и искусственных водоемов.
3. накопление, сохранение и рациональное использование влаги в почве.
2. Воздух. Он необходим как источник кислорода для дыхания растений и почвенных м/о, а также как источник углекислого газа, используемого в процессе фотосинтеза. Воздух служит для растений и источником азота.
Оптимальное содержание в пахотном слое воздуха – для зерновых 15-20 %, для пропашных 20-30 %, для многолетних трав 17-21 %. Благоприятное для растений содержание кислорода в почвенном воздухе 7-12 %, углекислого газа, примерно, 1 %.
Количество и состав почвенного воздуха можно регулировать, изменяя содержание влаги в почве путем ее рыхления или уплотнения. Состав почвенного воздуха регулируют внесением органических удобрений, что приводит к повышению концентрации углекислого газа и снижению концентрации кислорода. Наилучший воздушный режим для большинства сельскохозяйственных культур: примерно 25 % воздуха от общего объема почвы.
3. Питательные вещества. В процессе роста и развития растения потребляют из почвы разные элементы питания, которые по количеству их потребления разделяются на макро- и микроэлементы.
К макроэлементамотносится углерод, кислород, водород, азот, фосфор, калий, кальций, магний, железо, сера. Микроэлементы: бор, марганец, медь, цинк, молибден, кобальт. Макроэлементы требуются в больших количествах, микроэлементы – в меньших. Углерод, кислород и водород растения потребляют из воздуха, остальные элементы – из почвы.
Недостаток элементов питания восполняют внесением органических и минеральных удобрений, возделыванием бобовых культур.
Законы земледелия.
Воздействие всех факторов на жизнь растений – явление сложное и многообразное, поэтому всегда оно являлось объектом пристального изучения. В результате чего, появилась возможность сформулировать ряд закономерностей действия факторов, как законы земледелия. Законы земледелия – выражение законов природы, проявляющихся в результате деятельности человека по возделыванию с.-х. культур. Они раскрывают существующие связи растений с условиями внешней среды и определяют пути развития земледелия.
1. Закон равнозначимости и незаменимости факторов жизни растений. Согласно ему, для нормальной жизнедеятельности растений должен быть обеспечен приток всех факторов как земных, так и космических. Проявление этого закона носит абсолютный и относительный характер. Абсолютное значение выражается в том, что в каком бы количестве факторов не нуждалось растение, отсутствие любого приводит к снижению урожайности или гибели. Однако, в конкретных производственных условиях, этот закон приобретает относительное значение. Т.к. затраты на обеспечение растений различными факторами не одинаковы.
2. Закон минимума. Сформулирован в 1840 году Юстусом Либихом. Закон гласит «Продуктивность поля находится в прямой зависимости от необходимой составной части пищи растений, содержащейся в почве в самом минимальном количестве». Он считал, что рост урожая прямо пропорционален увеличению количества фактора, находящегося в минимуме.
Наглядно этот закон выражается в виде «Бочки Добенека», клепки которой условно обозначают различные факторы жизни. Пунктирной линией показан максимально возможный урожай при оптимальном наличии всех факторов. Однако фактический урожай определяется высотой самой низкой клепки, или количеством фактора, находящегося в минимуме. Если заменить данную клепку, то уровень фактора будет определять другая клепка, которая окажется минимальной по высоте и т.д.
Поэтому, учитывая действие закона минимума, необходимо в первую очередь проводить мероприятия, которые будут воздействовать на фактор, находящийся в данный момент в относительном минимуме (например снабжать растения влагой при ее недостатке). В то же время необходимо учитывать другие факторы, которые могут оказаться в минимуме после удовлетворения потребности растений в первом факторе и предусмотреть мероприятия, направленные на регулирование факторов, которые находятся во втором и последующих минимумах.
Значительно позже, на основании опытов, проведенных Майером, Гильригелем и другими учеными, Сакс сформулировал закон минимума, оптимума и максимума. Он гласит так «Величина урожая определяется фактором, находящимся в минимуме. Наибольший урожай осуществим при оптимальном наличии фактора. При минимальном и максимальном наличии фактора урожай невозможен». Смысл состоит в том, что наибольший урожай может быть получен при оптимальном количестве фактора: уменьшение или увеличение его ведет к снижению урожая. Это хорошо прослеживается на примере любого фактора.
3. Закон совокупного действия факторов жизни растений. Все факторы жизни растений действуют не изолированно друг от друга, а в тесном взаимодействии. Установлено, что в соответствии с эти законом действие отдельного фактора, находящегося в минимуме тем интенсивнее, чем больше других факторов есть в оптимуме.
В производственных условиях с изменением воздействия на растения одного из факторов неизбежно нарушается возможность в условиях продуктивного использования других. Исходя из этого закона все мероприятия, направленные на повышение эффективности использования земли необходимо осуществлять комплексно. Комплекс условий должен представлять единое целое, т.к. воздействие на один из элементов непрерывно повлечет за собой необходимость воздействия и на все остальные.
4. Закон плодосмена. Сущность его заключается в том, что более высокие урожаи получаются при чередовании культур в пространстве и во времени, чем при бессменных посевах. В основе этого закона лежит закон единства и взаимосвязи растительных организмов и условий среды. Необходимость чередования культур на полях обуславливается тем, что культуры по разному оказывают влияние на: 1) свойства почвы и окружающую среду; 2) агрофизические свойства почвы, водный, воздушный, тепловой и пищевые режимы; 3) на почвенную микрофлору и интенсивность развития отдельных групп м/о. На основе этого закона разрабатываются принципы построения севооборотов.
5. Закон возврата питательных веществ. Сформулирован в 1840 г. Либихом. Суть закона: «Основное начало земледелия состоит в том, чтобы почва получила обратно все у нее взятое. Это неизменный закон природы». Тимирязев назвал этот закон величайшим приобретением науки. При систематическом отчуждении урожая с поля и без возврата использованных урожаев элементов питания и энергии теряется почвенное плодородие. Согласно этого закона при нарушении баланса усвояемых питательных веществ в почве в результате их потерь или вследствие выноса с урожаем его необходимо восстанавливать путем внесения удобрений.
6. Закон прогрессивного роста эффективного плодородия почв. Суть его в непрерывности увеличения продуктивности почв при одновременном повышении их плодородия, росте продукции растениеводства с единицы площади с наименьшими затратами. Одним из непременных условий эффективного действия этого закона является строгое соблюдение других законов земледелия, особенно закона возврата питательных веществ.
Таким образом, руководствуясь законами земледелия, необходимо практически применять систему агротехнических мероприятий с учетом требований растений к конкретным условиям среды.
1.Назовите факторы жизни растений.
2. Способы регулирования света?
3. Способы регулирования тепла?
4. Способы регулирования водного режима почвы?
5.В чем сутьзакона равнозначимости и незаменимости факторов жизни растений.
7. Что означает закон совокупного действия всех факторов жизни растений?
8. Как звучит закон возврата?
9. Какие еще законы земледелия вы знаете?
Алгоритм выполнения задания:
1. В рабочей тетради записать дату занятия, тему занятия, план занятия.
2. Внимательно изучить содержание вопросов темы.
3. Составить краткий конспект темы по вопросам плана.
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Home » Земледелие » Факторы жизни растений
Популярные статьи
Приложения для Android
Факторы жизни растений
Факторы жизни растений — условия внешней среды, необходимые для роста и развития растений.
К факторам жизни растений относятся свет, воздух, вода, тепло и питательные вещества. Оптимальное соотношение перечисленных факторов позволяет полностью удовлетворить потребности растений, что обеспечивает хороший рост, развитие и плодоношение. Несоответствие условий потребностям может приводить к задержке в росте и гибели растений.
Факторы жизни растений делят на:
Состав почвы и её роль в жизни растений
Почва представляет собой гомогенную систему, состоящую из трех фаз: твердой, жидкой и газообразной.
Твердая фаза состоит из минеральной и органической части и представляет скелет почвы. Она включает твердые частицы, между которыми находятся свободные пустоты — поры, заполненные водой или воздухом.
Соотношение твердой, жидкой и газообразной фаз определяет режим обеспеченности растений земными факторами жизни. Для разных типов почв оно различно, а его изменение позволяет регулировать условия жизни растений. Оптимальным принято считать соотношение 2:1:1, то есть твердой фазы — 50%, жидкой и газообразной — по 25%.
Создавание и поддержание оптимального соотношения объемов фаз почвы достигается рядом приемов обработки почвы, мелиорацией, внесением удобрений, благодаря чему улучшается водный, тепловой, воздушный, питательный режимы, создавая тем самым благоприятные условия роста и развития растений.
Сравнительные объемы компонентов почвы в пахотном слое
Требования растений к свету
Световая энергия используется растениями для фотосинтеза, её количество лимитирует скорость процесса. Интенсивность и спектральный состав света влияют на рост и развитие растений. Недостаток приводит к замедлению фотосинтетических процессов, что приводит к голоданию, задержке в росте и гибели растений. Избыток световой энергии — к угнетению и ожогам.
Световую энергию растения получают от Солнца, в некоторых случаях применяют искусственное освещение, например при досвечивании рассады, в теплицах и т.п.
Солнечный свет включает ультрафиолетовый спектр, который оказывает бактерицидное действие на микроорганизмы.
Требования растений к теплу
Как отмечал К.А. Тимирязев в жизни растений ведущую роль занимает температурный фактор. Сельскохозяйственная наука к настоящему моменту накопила достаточно сведений о потребности культур в тепле.
Условной единицей измерения количества тепла является сумма активных температур, то есть более 10 °С, за период вегетации. Потребность растений в тепле колеблется в зависимости от вида и сорта, а также периода вегетации.
Определение требований к теплу дает возможность оценить условия возделывания культур в конкретной зоне. Теплообеспеченность имеет особое значение в период прорастания семян. Поэтому знание этих факторов позволяет определить точные сроки посева, выстроить систему обработки почвы и истребительные мероприятия по борьбе с сорной растительность.
Требования к теплу определяют устойчивость растений к заморозкам, условиям зимовки и жароустойчивости.
Требования растений к влаге
Вода — ключевой фактор жизни растений. Без неё не начинаются ростовые процессы в семенах, она участвует в синтезе органических веществ, является средой для превращения питательных веществ и биохимических реакций.
Оптимальная влажность почвы в корнеобитаемом слое, при которой обеспечиваются наилучшие условия роста, находится в пределах 65-90% наименьшей влагоемкости.
Транспирационный коэффициент — количество воды, расходуемое растением на создание единицы сухого вещества. Является одним из показателей влагопотребления.
Потребность во влаге может колебаться в зависимости от фаз развития растения. Критическая фаза роста — фаза развития, при которой влагопотребление максимально.
Суммарное водопотребление — количество воды, расходуемое растениями на 1 гектаре, выраженное в м 3 или мм.
Коэффициент водопотребления — расход воды растениями на создание 1 т урожая. Имеет важное значение при расчете возможной урожайности.
Требования растений к элементам питания
Растения для своего роста, развития и формирования урожая используют органические и минеральные вещества, в процессы фотосинтеза которые трансформируются в сложные органические соединения.
В элементном составе растения содержат углерод, кислород, водород, азот и многие другие элементы. На долю углерода, кислорода и водорода суммарно приходится 94% сухого вещества, по элементно: на долю углерод — 45%, кислорода — 42%, водорода — 7%. Остальные 6% сухой массы состоят из азота и минеральных элементов.
Основным питательным веществом является углекислый газ CO2. Ежегодно растения поглощают из атмосферного воздуха около 20 млрд т углерода.
На сегодняшний день накоплены большие знания о питании растений. Практически все химические элементы были найдены в различных растительных частях, доказано участие 27 элементов в биохимических процессах, 15 из них являются необходимыми для роста и развития.
Человек, в результате применения удобрений, агротехнологий, мелиорации, различных видов и сортов, оказывает значительное воздействие на состав и почвенные процессы.
В экстенсивном земледелии единственным источником минеральных веществ для растений был естественный их запас в почве. При истощении естественного плодородия люди исключали эти земли из обработки и осваивали новые. Оставленные участки восстанавливали плодородие за счет природных процессов длительное время. Наиболее яркими примерами такого подхода являются переложная и залежная системы земледелия.
Трансформационная способность почвы, то есть способность снабжать растения элементами питания и водой, внесенных извне, в интенсивных системах земледелия играет важную роль. Однако и этой способности бывает недостаточно, в условиях современного интенсивного земледелия. Кроме того, к почве предъявляются повышенные требования к фитосанитарному состоянию и агротехнологические свойства. В следствии чего, требуется улучшение всего комплекса свойств почвы, за счет использования новейших технологий для расширенного воспроизводства плодородия. Возможность решения этой задачи заложена природой самой почвы, как возобновляемого ресурса. Но неправильное применение почвы способно приводит к потере плодородия.
Регулирование факторов жизни растений
Благодаря накопленному опыту возделывания культурных растений, человек научился посредством агротехнических приемов регулировать поступление факторов жизни. Растения также обладают способностью влиять на условия произрастания, как за счет физиологических процессов, так и воздействия на внешнюю среду. Например, отмершие части растений накапливают в почве органическое вещество, что изменяет водный, питательный и другие почвенные режимы.
Основной задачей земледелия является создание оптимальных условий жизнедеятельности растений за счет регулирования количества поступающего тепла, света, питательных веществ и воды. Для решения этих задач разработаны или разрабатываются агротехнические приемы, а также ведутся исследования по изучению потребностей растений, которые во многом зависит от множества различных условий.
Создание оптимальных условий для роста и развития растений связано:
Регулирование космических факторов жизни растений в земледелии весьма затруднительно, однако, не является непреодолимой задаче. Земные факторы, напротив, удается регулировать, создавая оптимальные условия для развития растений.
Космические факторы, как более глобальные, определяются поступлением световой энергии Солнца, частично трансформирующейся в тепловую. Именно она, в решающей степени определяет климатические и зональные зональные особенности местности, что обусловливает возможности произрастания тех или иных видов растений. Кроме того, климат является одним из факторов почвообразования, то есть косвенно воздействующий на произрастание растений. Почвенно-климатические условия в определяют специализацию земледелия, местный характер производства, то есть состав сельскохозяйственных культур, биологические свойства которых наиболее полно отвечают условиям и обеспечивают получение высоких стабильных урожаев требуемого качества.