Процесс приспособления к чему либо
Приспособленность организмов к среде обитания возникает в ходе эволюции для разрешения ими экологических проблем, имеющих место в определённой среде. Она изменяется, совершенствуется, порой исчезает. Вырабатывание адаптации позволяет достичь соответствия строения, поведения, физиологии существ условиям среды и образу их жизни. Приспособления служат основанием для исчезновения и появления органов, дивергенции и формирования новых биологических видов, усложнения конструкции.
Что такое приспособленность
В биологии под ней понимают спектр характерных черт приспособленности организмов к среде, позволяющих выживать в конкретных условиях и продолжать род.
На адаптированность к возникающим условиям оказывает воздействие эволюция. Но она изменяется, в связи с чем любые приспособительные черты относительны.
Виды приспособленности организмов
Морфологические адаптации
Они заключаются в особенностях строения. У Дарвина излюбленным примером адаптации был дятел, который способен лазать по стволам деревьев и вылавливать насекомых в трещинках.
Разная форма клювов (влияет метод питания).
Строение ног у различных видов крылатых (у водоплавающих они снабжены перепонками для плавания, бегающие виды птиц имеют очень сильные ноги).
Тело акулы в виде торпеды обеспечивает ей высокие гидродинамические характеристики.
Густота шерстяного покрова у животных севера, защищающая от сильного холода (як).
Плоское тело придонных рыб, которое помогает им передвигаться по дну (морские коровки).
Гибкость тела у норных, позволяющее добывать пищу в узких, малых полостях (хорёк).
В тундре и горных регионах растения часто обладают стелющимися формами либо они напоминают подушки, что обеспечивает организмам устойчивость к резким ветряным порывам. В зимний период они с лёгкостью способны укрываться снежным покровом и им не страшен сильнейший мороз.
Отдельным животным присущ яркий окрас (тигр). Подобная окраска похожа на чередование света и тени в окружающей среде и придаёт им малозаметность в зарослях. Покровительственной окраской обладает множество видов насекомых. Незаметны в снегу белые медведи, на фоне пустыни – ящерицы жёлтого окраса.
Исходя из условий освещения могут изменять окрас хамелеоны.
Предостерегающая окраска. Обычно подобный окрас свойственен жалящим насекомым.
Предупреждающая окраска как подражание неродственным видам (многие неопасные змеи сильно схожи с ядовитыми).
Маскировка – похожесть формы тела на объекты природы, дающая возможность спасаться от хищников. Например, почти нельзя различить в водорослях рыбу-иглу.
Физиологические адаптации
Они способствуют незамедлительной реакции живого организма на действие негативного фактора среды.
Возможность поддерживать относительно постоянную температуру тела позволила теплокровным организмам занять экологические ниши, которые недоступны для обитателей тропиков, Заполярья, пустыни. Такая способность – результат теплопродукции и теплоотдачи.
Особенная белково-липидная структура существ, обитающих при очень низких либо высоких температурах, позволяет им жить в условиях с подобными температурными режимами.
Многие организмы могут выделять разные вещества, служащие для нападения и защиты. Например, основной особенностью крапивы является её жгучесть. Это механизм защиты от травоядных. Сюда же относятся пахучие жидкости клопов, яды скорпионов, пауков, змей.
Излучение является основным методом тепловой отдачи у террариумных животных (змеи). Ультрафиолетовые лучи также являются мощным дезинфицирующим фактором.
Инфракрасное зрение необходимо совам и оленям для ночной охоты или поиска пищи.
Организмы, живущие в средах с крайне высоким уровнем ионизирующего излучения, приобрели радиорезистентность (экстремофилы).
В жару главным методом отведения излишней теплоэнергии служит испарение жидкости. У самцов некоторых видов добавочно предусмотрено её испарение со слизистой полового члена (верблюды, слоны, ослы). При некомфортном для организма повышении температуры окружающей среды, у животных наблюдается одышка.
При кратковременном влиянии пониженных температур на животных, для которых мороз – не типичная среда (песчанки), их дыхание учащается из-за усиленного обмена веществ и теплопродукции. Но при долгом нахождении в подобных условиях у них происходит постепенное замедление дыхания.
Относительный характер приспособленности
Признаки определяются конкретными условиями среды. Так, на суше рыба не способна к дыханию, так как не происходит поступление кислорода в жабры. Зелёный окрас насекомых служит спасением от птиц и животных лишь при их нахождении на зелёных частях растения.
Слаборазвитые ноги и удлинённые крылья ласточки хотя и очень помогают ей при полёте, но будут существенным недостатком при передвижении птицы по земле.
Адаптации, защищающие от одного вида, не смогут спасти от иного. К примеру, панцирь степной черепахи спасает от множества хищников, но не защитит её от некоторых хищных птиц, которые сбрасывают животное с какой-либо высоты. Колючки ежа не смогут спасти его от хищников, если те бросят его в воду. Ядовитые змеи беззащитны перед мангустами.
Белую куропатку, которую сложно заметить на белом снегу, поможет выявить тень. Организмы с новыми признаками, действующими в конкретном промежутке времени, могут легко погибнуть, выйдя за диапазон. Продолжают жить лишь особи, приспособившиеся к изменённой среде при естественном отборе.
Процессы приспособления и компенсации
Приспособление (адапта́ция) к меняющимся условиям существования является наиболее общим свойством живых организмов. Все патологические процессы, по существу, можно разделить на две группы: (1) процессы повреждения (альтеративные процессы) и (2) процессы приспособления (адаптивные процессы).
Содержание
Механизмы приспособления
К механизмам, обеспечивающим приспособление, относятся специальные защитные системы, регуляция функций организма и избегающее поведение.
I. Специальные защитные системы, препятствующие наиболее разрушительным внешним воздействиям
II. Механизмы регуляции всех функций организма.
III. Избегающее поведение (его формирует ноцицептивная система).
Стадии адаптогенеза
Выделяют три стадии в развитии адаптивного процесса:
Формы адаптации
Приспособительные реакции подразделяют на (1) ортоадаптивные, (2) дизадаптивные и (3) компенсаторные.
I. Ортоадаптация (адекватная адаптация) — приспособление организма, соразмерное силе и характеру адаптогена.
II. Дизадаптация (патологическая адаптация) — неадекватная приспособительная реакция
III. Компенсация (компенсаторные, или эксквизитные, реакции).
Дезадаптация (срыв адаптации) является вариантом анадаптивных состояний (приобретённая анадаптация). Дезадаптация представляет собой достижение предела адаптации для данного организма.
Исходами дезадаптации являются:
Аналогичные дезадаптации и реадаптации состояния в случае компенсаторных процессов обозначаются терминами «декомпенсация» и «рекомпенсация» соответственно.
Компенсаторные процессы
Морфология приспособительных процессов
В отечественной патологической анатомии среди приспособительных процессов, помимо воспаления, иммунного ответа и тромбоза, традиционно рассматривают объёмные процессы (атрофию и гипертрофию), регенерацию, дисплазию, организацию и стресс-синдром.
Объёмные процессы
К объёмным процессам относят атрофию («негативный объёмный процесс») и гипертрофию («позитивный объёмный процесс»). Своеобразным вариантом гипертрофии является гиперплазия.
Гипертрофия и гиперплазия
Гипертрофи́я — увеличение объёма какой-либо биологической структуры (органа, ткани, клетки, органеллы). Исключением является организм в целом: не принято говорить о гипертрофии всего тела человека. Гипертрофия может быть врождённым процессом. Гиперплази́я — гипертрофия ткани за счёт увеличения количества образующих её клеток, т.е. в результате их активного деления. Гиперплазия — один из вариантов разрастания тканей (другой вариант — опухоль). В отличие от гиперплазии, опухолевый рост не является приспособительным процессом. Гипертрофия не всегда относится к патологическим процессам, в ряде случаев (нейрогуморальная гипертрофия) она носит физиологический характер.
Варианты гипертрофии классифицируют следующим образом:
I. Приспособительные (адаптивные) варианты
II. Компенсаторные варианты
III. Врождённая гипертрофия.
Нейрогуморальная гипертрофия — гипертрофия, развивающаяся под влиянием гормонов, стимулирующих деление клеток. Выделяют (1) физиологические и (2) патологические варианты нейрогуморальной гипертрофии. Примером физиологической нейрогуморальной гипертрофии является увеличение матки при беременности и молочных желёз при лактации. К патологической нейрогуморальной гипертрофии относятся гиперплазия эндометрия, нодулярная гиперплазия простаты, увеличение органов при синдромах гиперпродукции соматотропного гормона (гигантизме и акромегалии) и т.п.
Гипертрофические разрастания — разрастания тканей при нарушениях крово- и лимфообращения (фиброз), а также на фоне хронического воспаления (фиброэпителиальные и гиперпластические полипы). [Аденоматозные полипы, в отличие от гиперпластических и фиброэпителиальных, являются доброкачественными опухолями, разновидностью аденом.]
Рабочая гипертрофия — гипертрофия гиперфункционирующего органа. Типичным примером рабочей гипертрофии служит гипертрофия миокарда левого желудочка при длительной артериальной гипертензии.
Викарная гипертрофия — гипертрофия одного из парных органов при отсутствии (аплазия, хирургическое удаление), недоразвитии (врождённой гипоплазии) или приобретённой гипофункции другого. Наиболее характерна викарная гипертрофия почки. Викарную гипертрофию можно рассматривать как разновидность рабочей гипертрофии.
Регенераторная гипертрофия — гипертрофия паренхиматозных клеток органа вокруг рубца при субституции. Так, при инфаркте миокарда по периферии сформированного пост-инфарктного рубца сохранные кардиомиоциты существенно увеличиваются, тем самым частично компенсируя функцию погибших клеток. Регенераторная гипертрофия также является своеобразным вариантом рабочей гипертрофии.
Врождённая гипертрофия — один из видов пороков развития органов (например, врождённая гипертрофия больших слюнных желёз).
Атрофия
Атрофи́я — уменьшение объёма какой-либо биологической структуры (органа, ткани, клетки, органеллы) или организма в целом. Для того, чтобы произошло уменьшение объёма структуры, она должна быть соответствующим образом развита, поэтому атрофию необходимо отличать от врождённой гипоплазии (недоразвития органа). Следовательно, атрофия всегда является приобретённым процессом.
Атрофию подразделяют на местную и общую, физиологическую и патологическую.
I. Общая физиологическая атрофия.
II. Местная физиологическая атрофия (инволюция).
III. Общая патологическая атрофия (кахексия).
IV. Местная патологическая атрофия
Общая физиологическая атрофия развивается в старости: уменьшаются отдельные органы и организм в целом.
Инволюция («обратное развитие органов») также относится к атрофическим процессам физиологического характера, например, возрастная инволюция тимуса, пост-гравидарная инволюция эндометрия и т.п.
Кахексия (истощение, маразм) развивается при длительном полном голодании (алиментарная кахексия), хронических инфекционных заболеваниях (например, при туберкулёзе), злокачественных опухолях («раковая кахексия»), при тяжёлой гипофункции аденогипофиза («гипофизарная кахексия»), гипоталамуса («церебральная кахексия»). Для истощения характерна бурая атрофия миокарда и печени.
Дисфункциональная атрофия — атрофия гипофункционирующего органа (например, атрофические процессы в скелетных мышцах при длительной иммобилизации конечности).
Прессогенная атрофия — атрофия, вызванная длительным сдавлением органа или его части. Типичными примерами прессогенной атрофии являются атрофия мозга при гидроцефалии и атрофия почки при гидронефрозе. В первом случае ткань головного мозга сдавлена блокированным в желудочках ликвором, во втором — на ткань почки оказывает давление моча, переполняющая чашечно-лоханочную систему органа при нарушении её оттока.
Нейротическая атрофия — атрофия денервированной ткани. Правильно называть данный процесс «нейролитической артрофией», однако слог «-ли-» по какой-то причине выпал и термин стали использовать в усечённом варианте. Нейротическую атрофию можно рассматривать как разновидность дисфункциональной атрофии, т.к. функция денервированной ткани снижается или полностью выпадает.
Атрофия при хроническом нарушении кровообращения (хронической ишемии и хроническом застойном полнокровии) проявляется уменьшением объёма паренхимы органа, в то время как строма может подвергаться гипертрофии за счёт фиброза.
Атрофия при действии химических и физических факторов. Различные факторы химической и физической природы способны вызывать атрофический процесс. Так, ионизирующее излучение приводит к атрофии ткани красного костного мозга (радиогенная атрофия миелоидной ткани), длительное применение в больших дозах глюкокортикоидных гормонов способствует развитию атрофии пучковой зоны коры надпочечников и т.п.
Псевдогипертрофия — атрофия паренхимы при одновременной гипертрофии стромы органа. Данный процесс относится к вариантам атрофии, т.к. при этом функция органа снижается. Гипертрофия стромы может развиваться за счёт фиброза (например, при гипертрофическом циррозе печени) или липоматоза (например, так называемое вакатное ожирение скелетных мышц).
Организация
Организацией в отечественной патологической анатомии называют четыре формы фиброза:
Дисплазия
Дисплази́я — нарушение дифференцировки (созревания) тканей и клеток.
Классификация
Различают дисплазию тканей и дисплазию клеток.
Варианты врождённой тканевой дисплазии
II. Дисплазия клеток
Тканевая дисплазия
Тканевая дисплазия — нарушение нормального соотношения элементов в ткани или появление структур, не встречающихся в норме.
Тканевая дисплазия может быть (1) врождённой или (2) развивается в постнатальном онтогенезе. Типичным примером постнатальной тканевой дисплазии является доброкачественная дисплазия молочной железы (фиброзно-кистозная болезнь, мастопатия), при которой в ткани молочной железы увеличивается пропорция эпителиальных клеток («пролиферативная форма») или стромы («непролиферативная форма»). При дисплазии тимуса обычно увеличено количество эпителиальных клеток и снижено число тимоцитов.
Врождённая тканевая дисплазия проявляется тремя типами изменений: (1) персистенцией эмбриональных структур, формированием (2) гамартий и (3) хористий. Эмбриональные структуры (карман Ратке, жаберные щели, хорда и т.п.) в определённые сроки антенатального онтогенеза должны подвергаться инволюции. Если этого не происходит, их существование затягивается (эмбриональные структуры персистируют), т.е. в ткани остаются элементы, которых уже быть не должно. Гама́ртией называется избыточно развитый нормальный компонент ткани (например, кровеносные сосуды в ткани врождённых гемангиом, меланоциты в невусах). Хори́стия (врождённая гетеротопи́я) — появление в созревшей ткани нехарактерных для неё структур (например, ткани слюнных желёз в челюстных костях или панкреатической ткани в стенке желудка). Персистирующие эмбриональные структуры, гамартии и хористии могут служить источником развития опухолей (прогономы, гамартомы, хористомы), в том числе злокачественных.
Клеточная дисплазия
Дисплазия клеток — предраковый процесс, характеризующийся появлением признаков клеточного атипизма.
Выраженность клеточной дисплазии различная. Ранее выделяли три степени дисплазии клеток (лёгкая, умеренная и тяжёлая), в настоящее время часто ограничиваются двумя крайними степенями (low grade и high grade). Клеточная дисплазия особенно детально изучена для эпителиоцитов разных органов. В последние два десятилетия термин «клеточная дисплазия» (также как и термин «карцинома in situ») в патологоанатомической и онкологической практике заменён термином «интраэпителиальная неоплазия». При этом в рубрику «тяжёлой интраэпителиальной неоплазии» (III степени) включена тяжёлая дисплазия клеток (дисплазия III степени) и карцинома in situ. Тяжёлая форма клеточной дисплазии относится к облигатному предраку.
Регенерация
Регенера́ция — обновление и восстановление тканей.
Классификация
Формы регенерации классифицируют следующим образом:
I. Характер процесса
Формы патологической регенерации:
II. Особенности восстановления клеток
Физиологическая регенерация — обновление тканей. Физиологическая регенерация протекает постоянно во всех тканях организма, но с разной скоростью. Наиболее быстро обновляется миелоидная и лимфоидная ткань, а также эпителиальная выстилка желудка и кишечника. Очень медленное обновление происходит в скелетных (костной и хрящевой) тканях.
Регенерацию повреждённых тканей (т.е. их восстановление) подразделяют на репаративную и патологическую. Репаративная регенерация (репарация) — восстановление повреждённых тканей, при котором процесс регенерации протекает нормально, хотя и быстрее физиологической регенерации. Различают две формы репарации: реституцию и субституцию. Реституция — полное восстановление повреждённой ткани. Образовавшаяся ткань идентична преформированной ткани. Субституция — замещение повреждённой ткани рубцовой (грубоволокнистой) тканью.
Патологическая регенерация — восстановление повреждённых тканей, при котором ход регенерации нарушен. В зависимости от характера нарушения регенераторного процесса (избыточная регенерация, недостаточная регенерация или образование на месте одной другой, родственной ей ткани) выделяют три формы патологической регенерации: гиперрегенерацию, гипорегенерацию и метаплазию. Гиперрегенерация — образование излишней массы регенерирующей ткани (например, гипертрофический рубец). Гипорегенерация — вялая регенерация, при которой необходимого количества регенерирующей ткани не образуется (например, гипорегенерация тканей в трофических язвах кожи). Метаплазия рассмотрена отдельно.
Внутриклеточная регенерация — обновление и восстановление ультраструктур клетки. Условием внутриклеточной регенерации является обратимость повреждения (паранекротический процесс). В состоянии некробиоза (некрофанероза) внутриклеточная регенерация не возможна. Клеточная регенерация — регенерация ткани за счёт деления и последующего созревания клеток. Условием клеточной регенерации является способность клеток регенерирующей ткани к делению. У взрослого человека способность к активному делению теряют такие клетки, как кардиомиоциты и нейроны. В ходе клеточной регенерации выделяют две фазы: (1) фазу пролиферации, (2) фазу дифференцировки клеток.
Метаплазия
Метаплази́я — замещение одной ткани другой, родственной тканью. Метапластический процесс ограничен рамками одного зародышевого листка: одна эпителиальная ткань меняет другую эпителиальную ткань, один тип соединительной ткани замещается другим типом соединительной ткани. Случаи перехода эпителиальной ткани в соединительную, мышечную или нервную не известны. Возможность метаплазии обусловлена наличием клеток-предшественников, общих для нескольких типов ткани.
Наиболее часто метаплазия встречается в эпителиальных и соединительных тканях:
I. Метаплазия эпителиальных тканей
II. Метаплазия соединительных тканей
Самым распространённым вариантом метаплазии является плоскоклеточная метаплазия, при которой на месте однослойного эпителия образуется многослойный плоский эпителий. Так, при хроническом бронхите курильщиков развивается плоскоклеточная метаплазия слизистой оболочки бронхов. Дисплазия такого эпителия может завершиться возникновением плоскоклеточной карциномы лёгкого. Более того, все случаи основного морфологического типа рака лёгкого — плоскоклеточной карциномы — представляют собой результат малигнизации клеток в очагах плоскоклеточной метаплазии бронхов.
Прозоплазия — процесс, обратный плоскоклеточной метаплазии: на месте многослойного плоского эпителия образуется однослойный. Типичным примером прозоплазии служит эндоцервикоз (псевдоэрозия шейки матки), в очагах которой сквамозный эпителий эктоцервикса может трансформироваться в однослойный. Это происходит благодаря камбиальным клеткам эндоцервикального эпителия (их называют резервными), способными к двойной дифференцировке.
Среди форм метаплазии соединительных тканей наиболее часто встречается метаплазия рубцовой (грубоволокнистой) ткани в костную. Например, в зажившем очаге первичного туберкулёза в верхушке лёгкого (очаге Гона) нередко обнаруживается губчатая костная ткань.
Термин «метаплазия» в ряде случаев используется не корректно. Так, «миелоидная метаплазия» (экстрамедуллярный гемопоэз) собственно метаплазией не является, при этом происходит размножение кроветворных клеток в селезёнке, лимфоузлах, в жировой ткани за пределами костного мозга, а не превращение тканей селезёнки, лимфатических узлов или белой жировой ткани в миелоидную, как считали ранее. «Кишечная метаплазия» («энтеролизация») слизистой оболочки желудка (появление в ней слизистых клеток кишечного типа) также является не точным обозначением процесса, т.к. действительной замены желудочного эпителия кишечным в данном случае не происходит. То же можно сказать и о «желудочной метаплазии» («гастролизации») слизистой оболочки кишечника.
Регенерация отдельных видов тканей
Регенерация костной ткани. Регенерирующие ткани, расположенные в области костных отломков, формируют сначала первичную мозоль, затем — окончательную костную мозоль. При неосложнённом переломе регенерацию кости называют первичным костным сращением, при осложнённом — вторичным костным сращением. Первичная мозоль при первичном костном сращении проходит две морфологические стадии: (1) соединительнотканную и (2) костную, в то время как при вторичном сращении первичная мозоль является исключительно костно-хрящевой, что может привести к образованию ложного сустава.
Регенерация мышечных тканей. Обширные повреждения гладкомышечной ткани регенерируют с образованием рубца (субституция). При её незначительном повреждении деление лейомиоцитов приводит к полному закрытию дефекта (реституция). Регенерация скелетной мышечной ткани связана с активностью камбиальных клеток, расположенных под сарколеммой миона (миосателлитоцитов). Клетки-сателлиты при этом делятся и сливаются между собой, образуя в конечном счёте новый мион. В миокарде на месте погибших кардиомиоцитов образуется только рубец (субституция).
Регенерация сосудов. При повреждении стенки крупного сосуда регенерация протекает по типу субституции. Капилляры регенерируют (1) почкованием и (2) аутогенным путём. Почкование характеризуется ответвлением нового капилляра от образованного ранее. Аутогенный механизм заключается в появлении обособленных пролифератов эндотелиальных клеток, формирующих отдельные сосуды, которые затем объединяются между собой.
Регенерация волокнистой ткани. Волокнистая ткань при повреждении регенерирует через стадию грануляционной ткани. Грануляционная ткань ярко-красного цвета, очень мягкая, в дне кожной раны она имеет характерную мелкозернистую поверхность, образованную приподнимающимися капиллярными петлями (отсюда её название: от лат. granula — зёрнышко). При микроскопическом исследовании в грануляционной ткани обнаруживаются многочисленные полнокровные капилляры, окружённые клетками воспалительного инфильтрата. Разрастание грануляционной ткани лежит в основе одной из форм продуктивного воспаления — гранулирующего воспаления. При реституции грануляционная ткань созревает в рыхлую или плотную неоформленную волокнистую ткань, аналогичную преформированной; при субституции — в грубоволокнистую (рубцовую) ткань.
Заживление ран. Выделяют четыре варианта заживления ран:
Стресс-синдром
Стресс-синдром — комплекс приспособительных изменений, направленных на мобилизацию энергетических ресурсов организма. Он развивается при физических и психологических нагрузках, а также при различных заболеваниях.
Различают два варианта стресс-синдрома: (1) эустресс — адекватный (физиологический) стресс и (2) дистресс — неадекватный (патологический) стресс.
Стресс-реакция протекает в две стадии — острую и хроническую. Острая стадия обеспечивается в основном катехоламинами (мозговым веществом надпочечников, симпатическими параганглиями), хроническая стадия — глюкокортикоидными гормонами (пучковой зоной коры надпочечников). Поэтому типичными морфологическими проявлениями дистресс-синдрома являются изменения надпочечников (гиперплазия коры и мозгового вещества, при особенно длительном стрессе формируется узелковая гиперплазия коры или аденома коры надпочечников) и аденогипофиза (очаговая или диффузная гиперплазия кортикотропоцитов). Вследствие вторичного гиперкортицизма при дистресс-синдроме формируются различные нарушения в органах и тканях. Особенно ярким среди них является атрофия лимфоидной ткани, обусловливающая иммунодефицитное состояние больных. Глюкокортикоиды в высокой концентрации вызывают апоптоз лимфоцитов, поэтому различные органы иммунной системы уменьшаются (акцидентальная трансформация тимуса, субатрофия лимфатических узлов и белой пульпы селезёнки).