Пропионат натрия и вода электролиз что получится

Электролиз

Процесс электролиза заключается в перемещении катионов (положительно заряженных ионов) к катоду (заряжен отрицательно), и отрицательно заряженных ионов (анионов) к аноду (заряжен положительно).

Пропионат натрия и вода электролиз что получится

Итак, анионы и катионы устремляются соответственно к аноду и катоду. Здесь и происходит химическая реакция. Чтобы успешно решать задания по этой теме и писать реакции, необходимо разделять процессы на катоде и аноде. Именно так и будет построена эта статья.

Катод

Чтобы установить, какая реакция идет на катоде, прежде всего, нужно определиться с активностью металла: его положением в электрохимическом ряду напряжений металлов.

Пропионат натрия и вода электролиз что получится

Пропионат натрия и вода электролиз что получится

Примеры решения

В процессе тренировки вам могут попадаться металлы, которые пропущены в ряду активности. На этапе обучения вы можете пользоваться расширенным рядом активности металлов.

Пропионат натрия и вода электролиз что получится

Теперь вы точно будете знать, что выделяется на катоде 😉

Итак, потренируемся. Выясним, что образуется на катоде и аноде при электролизе растворов AgCl, Cu(NO3)2, AlBr3, NaF, FeI2, CH3COOLi.

Пропионат натрия и вода электролиз что получится

Иногда в заданиях требуется записать реакцию электролиза. Сообщаю: если вы понимаете, что образуется на катоде, а что на аноде, то написать реакцию не составляет никакого труда. Возьмем, например, электролиз NaCl и запишем реакцию:

NaCl + H2O → H2 + Cl2 + NaOH (обычно в продуктах оставляют именно запись «NaOH», не подвергая его дальнейшему электролизу)

Запишем реакцию электролиза для CuSO4:

Медь относится к малоактивным металлам, поэтому сама в чистом виде выделяется на катоде. Анион кислородсодержащий, поэтому в реакции выделяется кислород. Сульфат-ион никуда не исчезает, он соединяется с водородом воды и превращается в серую кислоту.

Электролиз расплавов

Все, что мы обсуждали до этого момента, касалось электролиза растворов, где растворителем является вода.

Но как быть с активными металлами: Na, K, Li? Ведь при электролизе их растворов они не выделяются на катоде в чистом виде, вместо них восстанавливаются молекулы воды и выделяется водород. Тут нам как раз пригодятся расплавы, которые не содержат воды.

Пропионат натрия и вода электролиз что получится

В безводных расплавах реакции записываются еще проще: вещества распадаются на составные части:

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Задание 20. Электролиз

Поступи в вуз мечты с нашей Мастер-Группой 2022.
Ни одного отрицательного отзыва, средний балл — 82.

Подробнее о МГ-2022 →

Электролизразложение вещества под действием электрического тока. Для проведения электролиза два электрода опускаются в раствор электролита, чтобы замкнуть электрическую цепь, по которой пускается электрический ток

Пропионат натрия и вода электролиз что получится

Электролит — вещество, раствор которого проводит электрический ток

Анодположительно заряженный электрод. Катодотрицательно заряженный электрод

Сначала разберем электролиз растворов. Обычно в задании на электролиз фигурируют соли, поэтому основной упор будем делать на них. Соль состоит из катиона металла и кислотного остатка. Электролиз солей аммония (NH₄⁺) в ЕГЭ не встречается

Процессы на катоде

Металлы различны по своей активности. Выделяют 3 группы металлов: неактивные, металлы средней активности и активные

Пропионат натрия и вода электролиз что получится

Неактивные металлы — металлы правее водорода в ряду активности металлов. Граница между металлами средней активности и активными металлами уже не такая фиксированная. Конкретно в задании на электролиз активными металлами считаются металлы левее алюминия включительно. Соответственно, металлы средней активности находятся между активными и неактивными

Продукты, образующиеся на катоде, зависят от активности металла

Катод заряжен отрицательно из-за наличия на нем избытка электронов. Поэтому при взаимодействии катионов с катодом они получают от него электроны. Процессы, происходящие на катоде можно записать в виде полуреакций

Процессы на аноде

Продукты, образующиеся на аноде, зависят от типа кислотного остатка

Процессы, происходящие на аноде можно записать в виде полуреакций

Мы разобрали, что образуется на катоде и аноде. Еще один момент — что остается в растворе, но это интуитивно понятно исходя из полуреакций выше. Вот несколько примеров

Пропионат натрия и вода электролиз что получится

Электролиз не солей

Электролизу можно подвергать не только соли, но и другие электролиты — кислоты или гидроксиды

При электролизе кислот на аноде будут идти те же процессы, что и при электролизе солей, а на катоде будет: H⁺ + e⁻ → H₂

Соли органических кислот

Если в задании фигурирует анион органической кислоты, то на катоде будут идти стандартные процессы, а на аноде органический анион с общей структурой R-COO⁻ перейдет в R-R и CO₂

Растворимый анод

Существует 2 типа анода: растворимый и нерастворимый

То есть, в дополнение к стандартным продуктам электролиза нужно добавить то, что получается при растворении растворимого анода

Электролиз расплавов солей

Расплав — расплавленное вещество. Так как в расплаве нет воды, то на катоде всегда будет выделяться металл вне зависимости от его активности. Для анионов бескислородных кислот продукты на аноде будут как и при электролизе растворов, но есть 2 момента:

В растворе анион F⁻ давал на аноде O₂. В расплаве же анион F⁻ будет давать на аноде F₂

Пропионат натрия и вода электролиз что получится

Если электролизу подвергаются соли кислородсодержащих кислот, то с ними все немного сложнее, но они на ЕГЭ не встречаются

Получить тест по теме в ЛС →

Примерное время выполнения: 15 минут.

Полноценный тест с автоматической проверкой. Мы используем сервис «РЕШУ ЕГЭ» как самый удобный в коммуникации между учителем и учеником. На сервисе возможна авторизация через ВК.

Источник

Электролиз

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

Пропионат натрия и вода электролиз что получится

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Пропионат натрия и вода электролиз что получится

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

2H2O +2ē → H2 + 2OH —

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Fe 2+ + 2ē → Fe 0

2 H + 2O +2ē → H2 0 + 2OH —

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

2H + + 2ē → H2 0

Анодные процессы

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода:

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl → 2 Na 0 + Cl2 0

Пропионат натрия и вода электролиз что получится

Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0

Пропионат натрия и вода электролиз что получится

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+

Источник

1.4.9. Электролиз расплавов и растворов (солей, щелочей, кислот).

Что такое электролиз? Для более простого понимания ответа на этот вопрос давайте представим себе любой источник постоянного тока. У каждого источника постоянного тока всегда можно найти положительный и отрицательный полюс:

Пропионат натрия и вода электролиз что получится

Подсоединим к нему две химически стойких электропроводящих пластины, которые назовем электродами. Пластину, присоединенную к положительному полюсу назовем анодом, а к отрицательному катодом:

Пропионат натрия и вода электролиз что получится

Далее, представьте, что у вас есть возможность опустить эти два электрода в расплав хлорида натрия:

Пропионат натрия и вода электролиз что получится

Хлорид натрия является электролитом, при его расплавлении происходит диссоциация на катионы натрия и хлорид-ионы:

Поскольку каждый атом хлора имеет по неспаренному электрону, одиночное существование их невыгодно и атомы хлора объединяются в молекулу из двух атомов хлора:

Таким образом, суммарно, процесс, протекающий на аноде, правильнее записать так:

Катод: Na + + 1e − = Na 0

Анод: 2Cl − − 2e − = Cl2

Подведем электронный баланс:

2Cl − − 2e − = Cl2 |∙1 + + 2e − + 2Cl − − 2e − = 2Na 0 + Cl2

Сократим два электрона аналогично тому, как это делается в алгебре получим ионное уравнение электролиза:

2Na + + 2Cl − = 2Na 0 + Cl2

далее, объединив ионы Na + и Cl − получим, уравнение электролиза расплава хлорида натрия:

Рассмотренный выше случай является с теоретической точки зрения наиболее простым, поскольку в расплаве хлорида натрия из положительно заряженных ионов были только ионы натрия, а из отрицательных – только анионы хлора.

А, что будет, например, если вместо расплава хлорида натрия ток пропустить через его водный раствор? Диссоциация хлорида натрия наблюдается и в этом случае, но становится невозможным образование металлического натрия в водном растворе. Ведь мы знаем, что натрий – представитель щелочных металлов – крайне активный металл, реагирующий с водой очень бурно. Если натрий не способен восстановиться в таких условиях, что же тогда будет восстанавливаться на катоде?

Давайте вспомним строение молекулы воды. Она представляет собой диполь, то есть у нее есть отрицательный и положительный полюсы:

Пропионат натрия и вода электролиз что получится

Именно благодаря этому свойству, она способна «облеплять» как поверхность катода, так и поверхность анода:

Пропионат натрия и вода электролиз что получится

При этом могут происходить процессы:

Таким образом, получается, что если мы рассмотрим раствор любого электролита, то мы увидим, что катионы и анионы, образующиеся при диссоциации электролита, конкурируют с молекулами воды за восстановление на катоде и окисление на аноде.

Так какие же процессы будут происходить на катоде и на аноде? Разрядка ионов, образовавшихся при диссоциации электролита или окисление/восстановление молекул воды? Или, возможно, будут происходить все указанные процессы одновременно?

В зависимости от типа электролита при электролизе его водного раствора возможны самые разные ситуации. Например, катионы щелочных, щелочноземельных металлов, алюминия и магния просто не способны восстановиться в водной среде, так как при их восстановлении должны были бы получаться соответственно щелочные, щелочноземельные металлы, алюминий или магний т.е. металлы, реагирующие с водой.

В таком случае является возможным только восстановление молекул воды на катоде.

Запомнить то, какой процесс будет протекать на катоде при электролизе раствора какого-либо электролита можно, следуя следующим принципам:

1) Если электролит состоит из катиона металла, который в свободном состоянии в обычных условиях реагирует с водой, на катоде идет процесс:

Это касается металлов, находящихся в начале ряда активности по Al включительно.

2) Если электролит состоит из катиона металла, который в свободном виде не реагирует с водой, но реагирует с кислотами неокислителями, идут сразу два процесса, как восстановления катионов металла, так и молекул воды:

К таким металлам относятся металлы, находящиеся между Al и Н в ряду активности.

3) Если электролит состоит из катионов водорода (кислота) или катионов металлов, не реагирующих с кислотами неокислителями — восстанавливаются только катионы электролита:

2Н + + 2е − = Н2 – в случае кислоты

Me n + + ne = Me 0 – в случае соли

На аноде тем временем ситуация следующая:

1) Если электролит содержит анионы бескислородных кислотных остатков (кроме F − ), то на аноде идет процесс их окисления, молекулы воды не окисляются. Например:

Фторид-ионы не окисляются на аноде поскольку фтор не способен образоваться в водном растворе (реагирует с водой)

2) Если в состав электролита входят гидроксид-ионы (щелочи) они окисляются вместо молекул воды:

3) В случае того, если электролит содержит кислородсодержащий кислотный остаток (кроме остатков органических кислот) или фторид-ион (F − ) на аноде идет процесс окисления молекул воды:

4) В случае кислотного остатка карбоновой кислоты на аноде идет процесс:

2RCOO − − 2e − = R-R + 2CO2

Давайте потренируемся записывать уравнения электролиза для различных ситуаций:

Пример №1

Напишите уравнения процессов протекающих на катоде и аноде при электролизе расплава хлорида цинка, а также общее уравнение электролиза.

При расплавлении хлорида цинка происходит его диссоциация:

Далее следует обратить внимание на то, что электролизу подвергается именно расплав хлорида цинка, а не водный раствор. Другими словами, без вариантов, на катоде может происходить только восстановление катионов цинка, а на аноде окисление хлорид-ионов т.к. отсутствуют молекулы воды:

Катод: Zn 2+ + 2e − = Zn 0 |∙1

Анод: 2Cl − − 2e − = Cl2 |∙1

Пример №2

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора хлорида цинка, а также общее уравнение электролиза.

Так как в данном случае, электролизу подвергается водный раствор, то в электролизе, теоретически, могут принимать участие молекулы воды. Так как цинк расположен в ряду активности между Al и Н то это значит, что на катоде будет происходить как восстановление катионов цинка, так и молекул воды.

Хлорид-ион является кислотным остатком бескислородной кислоты HCl, поэтому в конкуренции за окисление на аноде хлорид-ионы «выигрывают» у молекул воды:

В данном конкретном случае нельзя записать суммарное уравнение электролиза, поскольку неизвестно соотношение между выделяющимися на катоде водородом и цинком.

Пример №3

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора нитрата меди, а также общее уравнение электролиза.

Нитрат меди в растворе находится в продиссоциированном состоянии:

Медь находится в ряду активности правее водорода, то есть на катоде восстанавливаться будут катионы меди:

Нитрат-ион NO3 − — кислородсодержащий кислотный остаток, это значит, что в окислении на аноде нитрат ионы «проигрывают» в конкуренции молекулам воды:

Катод: Cu 2+ + 2e − = Cu 0 |∙2

2Cu 2+ + 2H2O = 2Cu 0 + O2 + 4H +

Полученное в результате сложения уравнение является ионным уравнением электролиза. Чтобы получить полное молекулярное уравнение электролиза нужно добавить по 4 нитрат иона в левую и правую часть полученного ионного уравнения в качестве противоионов. Тогда мы получим:

Пример №4

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора ацетата калия, а также общее уравнение электролиза.

Решение:

Ацетат калия в водном растворе диссоциирует на катионы калия и ацетат-ионы:

Калий является щелочным металлом, т.е. находится в ряду электрохимическом ряду напряжений в самом начале. Это значит, что его катионы не способны разряжаться на катоде. Вместо них восстанавливаться будут молекулы воды:

Как уже было сказано выше, кислотные остатки карбоновых кислот «выигрывают» в конкуренции за окисление у молекул воды на аноде:

Таким образом, подведя электронный баланс и сложив два уравнения полуреакций на катоде и аноде получаем:

Катод: 2H2O + 2e − = 2OH − + H2 |∙1

Мы получили полное уравнение электролиза в ионном виде. Добавив по два иона калия в левую и правую часть уравнения и сложив с противоионами мы получаем полное уравнение электролиза в молекулярном виде:

Пример №5

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора серной кислоты, а также общее уравнение электролиза.

Серная кислота диссоциирует на катионы водорода и сульфат-ионы:

Катод: 2Н + + 2e − = H2 |∙2

Сократив ионы водорода в левой и правой и левой части уравнения получим уравнение электролиза водного раствора серной кислоты:

Как можно видеть, электролиз водного раствора серной кислоты сводится к электролизу воды.

Пример №6

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора гидроксида натрия, а также общее уравнение электролиза.

Диссоциация гидроксида натрия:

На катоде будут восстанавливаться только молекулы воды, так как натрий – высокоактивный металл, на аноде только гидроксид-ионы:

Катод: 2H2O + 2e − = 2OH − + H2 |∙2

Сократим две молекулы воды слева и справа и 4 гидроксид-иона и приходим к тому, что, как и в случае серной кислоты электролиз водного раствора гидроксида натрия сводится к электролизу воды:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *