Произведение матриц это что

Произведение двух матриц: формула, решения, свойства

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Произведение матриц: определение, формула, способ нахождения

Определение. Произведением двух матриц А и В называется матрица С, элемент которой, находящийся на пересечении i-й строки и j-го столбца, равен сумме произведений элементов i-й строки матрицы А на соответствующие (по порядку) элементы j-го столбца матрицы В.

Из этого определения следует формула элемента матрицы C:

Произведение матриц это что

Произведение матрицы А на матрицу В обозначается АВ.

Пример 1. Найти произведение двух матриц А и B, если

Произведение матриц это что,

Произведение матриц это что.

Решение. Удобно нахождение произведения двух матриц А и В записывать так, как на рис.2:

Произведение матриц это что

В результате получаем элементы произведения матриц:

Произведение матриц это что

Произведение матриц это что

Произведение матриц это что

Произведение матриц это что

Произведение матриц это что

Произведение матриц это что

Теперь у нас есть всё, чтобы записать произведение двух матриц:

Произведение матриц это что.

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Эту важную особенность будет легче запомнить, если почаще пользоваться следующими памятками:

Произведение матриц это что

Произведение матриц это что

Имеет место ещё одна важная особенность произведения матриц относительно числа строк и столбцов:

Пример 2. Найти число строк и столбцов матрицы C, которая является произведением двух матриц A и B следующих размерностей:

Примеры нахождения произведения матриц различной размерности

Пример 3. Найти произведение матриц A и B, если:

Произведение матриц это что.

Вычисляем элементы матрицы C = AB.

Произведение матриц это что

Найденное произведение матриц: Произведение матриц это что.

Пример 4. Найти произведение матриц Произведение матриц это чтои Произведение матриц это что.

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Пример 5. Найти произведение матриц A и B, если:

Произведение матриц это что.

Вычисляем элементы матрицы C = AB.

Произведение матриц это что

Произведение матриц запишется в виде матрицы-столбца: Произведение матриц это что.

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Пример 6. Найти произведение матриц A и B, если:

Произведение матриц это что.

Вычисляем элементы матрицы C = AB.

Произведение матриц это что

Найденное произведение матриц: Произведение матриц это что.

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Пример 7. Найти произведение матриц A и B, если:

Произведение матриц это что.

Вычисляем элемент матрицы C = AB.

Произведение матриц это что

Произведение матриц является матрицей из одного элемента: Произведение матриц это что.

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Программная реализация произведения двух матриц на С++ разобрана в соответствующей статье в блоке «Компьютеры и программирование».

Возведение матрицы в степень

Возведение матрицы в степень определяется как умножение матрицы на ту же самую матрицу. Так как произведение матриц существует только тогда, когда число столбцов первой матрицы совпадает с числом строк второй матрицы, то возводить в степень можно только квадратные матрицы. n-ая степень матрицы путём умножения матрицы на саму себя n раз:

Произведение матриц это что

Произведение матриц это что

Произведение матриц это что

Найти произведение матриц самостоятельно, а затем посмотреть решение

Пример 9. Дана матрица Произведение матриц это что

Найти произведение данной матрицы и транспонированной матрицы Произведение матриц это что, произведение транспонированной матрицы Произведение матриц это чтои данной матрицы.

Свойства произведения двух матриц

Иными словами, роль единичной матрицы при умножении матриц такая же, как и единицы при умножении чисел.

Пример 10. Убедиться в справедливости свойства 1, найдя произведения матрицы

Произведение матриц это что

на единичную матрицу справа и слева.

Произведение матриц это что
единичная матрица третьего порядка. Найдём элементы произведения С = АЕ :

Произведение матриц это что

Произведение матриц это что

Произведение матриц это что
Произведение матриц это что
Произведение матриц это что
Произведение матриц это что

Произведение матриц это что

Произведение матриц это что

Произведение матриц это что

Произведение матриц это что

Произведение матриц это что
Произведение матриц это что
Произведение матриц это что

Произведение матриц это что

Произведение матриц это что

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Свойство 2. Произведение матрицы А на нуль-матрицу является нуль-матрицей. Это свойство очевидно, так как все элементы нуль-матрицы равны нулю.

Свойство 3. Произведение матриц некоммутативно:
Произведение матриц это что.

Для этого достаточно показать, что равенство АВ = ВА не выполняется для каких-либо двух матриц.

Пример 11. Найти произведения матриц АВ и ВА, если

Произведение матриц это что,

Произведение матриц это что,

и убедиться в том, что эти произведения не равны друг другу:

Произведение матриц это что.

Произведение матриц это что

Произведение матриц это что

И действительно, найденные произведения не равны:
Произведение матриц это что.

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Произведение матриц это что.

Источник

Математика для чайников. Матрицы и основные действия над ними

Произведение матриц это что

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A, матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n, где m – количество строк, а n – количество столбцов.

Произведение матриц это что

Что можно делать с матрицами? Складывать/вычитать, умножать на число, умножать между собой, транспонировать. Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы. Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Произведение матриц это что

Вычитание выполняется по аналогии, только с противоположным знаком.

Умножение матрицы на число

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Произведение матриц это что

Операция умножения матриц

Произведение матриц это что

И пример с реальными числами. Умножим матрицы:

Произведение матриц это что

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Произведение матриц это что

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Источник

Матричное умножение. Медленное достижение мифической цели

В недавней работе был установлен новый рекорд скорости по умножению двух матриц. Она также знаменует и конец эпохи для метода, который ученые применяли для исследований на протяжении десятилетий.

Произведение матриц это что
Математики стремятся к достижению мифической цели — второй степени (exponent two), то есть к умножению пары матриц n х n всего за n 2 шагов. Исследователи подбираются все ближе к своей цели, но получится ли у них когда-нибудь достичь ее?

Для специалистов в области Computer Science и математиков сама идея о «второй степени» связана с представлениями о совершенном мире.

«Трудно разграничить научное мышление и беспочвенные мечтания», — признается Крис Уманс из Калифорнийского технологического института. «Я хочу, чтобы степень была равна двум, потому что это красиво».

С точки зрения необходимого количества шагов «вторая степень» — это идеальная скорость выполнения одной из самых фундаментальных математических операций — матричного умножения. Если вторая степень достижима, то матричное умножение получится выполнять максимально быстро, насколько это физически возможно. Если это не так, то мы застряли в мире, который не соответствует нашим мечтам.

Матрицы представляют собой массивы чисел. Когда две матрицы согласованы (число столбцов в первом сомножителе равно числу строк во втором), их можно перемножить, чтобы получить третью. Например, если вы начнете с пары матриц 2 х 2, их произведение также будет матрицей 2 х 2, содержащей четыре элемента. В более общем смысле, произведение пары матриц размером n х n представляет собой другую матрицу размером n х n с n 2 элементами.

И хотя никто точно не знает, можно ли этого достичь, исследователи продолжают продвигаться в этом направлении.

Статья, опубликованная в октябре, подбирается к цели еще ближе и описывает самый быстрый на данный момент метод умножения двух матриц. Результат, который получили Джош Алман, докторант Гарвардского университета, и Вирджиния Василевска Уильямс из Массачусетского технологического института, уменьшает степень предыдущего лучшего показателя примерно на одну стотысячную. Это действительно большое достижение в данной области, добытое кропотливым трудом.

Чтобы получше разобраться в этом процессе и понять, как его можно усовершенствовать, давайте начнем с пары матриц 2 х 2, A и B. При вычислении каждого элемента их произведения вы используете соответствующую строку из A и соответствующий столбец из B. Чтобы получить верхний правый элемент, умножьте первое число в первой строке A на первое число во втором столбце B, затем умножьте второе число в первой строке A на второе число во втором столбце B и сложите эти два произведения.

Произведение матриц это что
Самуэль Веласко / Quanta Magazine

Эта операция известна как получение «скалярного произведения» строки со столбцом (иногда называется «внутренним произведением»). Чтобы вычислить другие элементы в произведении матриц, повторите процедуру с соответствующими строками и столбцами.

В целом, классический метод умножения матриц 2 х 2 состоит из восьми умножений и нескольких сложений. Как правило, этот способ умножения двух матриц размера n х n требует n 3 умножений.

Произведение матриц это что

С увеличением размера матриц количество умножений, необходимых для нахождения их произведения, растет намного быстрее, чем количество сложений. Чтобы найти произведение матриц 2 х 2 требуется всего восемь промежуточных умножений, а чтобы найти произведение матриц 4 х 4 их требуется уже 64. Однако количество сложений, необходимых для получения суммы этих матриц, не так значительно отличается. Обычно количество сложений равно количеству элементов в матрице, то есть четыре для матриц 2 х 2 и 16 для матриц 4 х 4. Эта разница между сложением и умножением позволяет понять, почему исследователи измеряют скорость умножения матриц исключительно с точки зрения количества требуемых умножений.

«Умножения — это наше всё, — утверждает Уманс, — Показатель степени в итоге полностью зависит только от количества умножений. Сложения в некотором смысле исчезают».

На протяжении веков люди считали, что n 3 — это самый быстрый способ умножения матриц. По имеющимся сведениям, в 1969 году Фолькер Штрассен намеревался доказать, что невозможно умножить матрицы 2 х 2, используя менее восьми умножений. Видимо, он все-таки не смог найти доказательства, а через некоторое время и понял почему: на самом деле, существует способ сделать это с помощью семи умножений!

Штрассен придумал сложный набор соотношений, которые позволили заменить одно из этих восьми умножений 14 дополнительными сложениями. Может показаться, что разница совершенно незначительна, но она оправдывает себя, так как умножение вносит больший вклад, чем сложение. Найдя способ избавиться от одного умножения для маленьких матриц 2 х 2, Штрассен открыл возможность, которую он мог использовать при умножении бOльших матриц.

«Это крошечное изменение приводит к огромным улучшениям в работе с большими матрицами», — говорит Уильямс.

Произведение матриц это что

Произведение матриц это что
Вирджиния Василевска Уильямс из Массачусетского технологического института и Джош Алман из Гарвардского университета открыли самый быстрый способ перемножения двух матриц за n 2.3728596 шагов. Джаред Чарни; Ричард Т.К. Хоук

Предположим, вы хотите перемножить пару матриц 8 х 8. Один из способов сделать это — разбить каждую большую матрицу на четыре матрицы размером 4 х 4 так, чтобы каждая имела по четыре элемента. Поскольку элементы матрицы также могут являться матрицами, вы можете считать исходные матрицы парой матриц 2 х 2, каждый из четырех элементов которых сам по себе является матрицей 4 х 4. Посредством некоторых манипуляций каждая из этих матриц размером 4 х 4 может быть разбита на четыре матрицы размером 2 х 2.

Смысл этого многократного разбиения больших матриц на более мелкие заключается в том, что можно снова и снова применять алгоритм Штрассена к меньшим матрицам и с помощью его метода сокращать количество шагов на каждом этапе. В целом алгоритм Штрассена увеличил скорость умножения матриц с n 3 до n 2.81 мультипликативных шагов.

Следующий важный шаг в развитии идеи произошел в конце 1970-х, когда появился принципиально новый подход к решению этой задачи. Он подразумевает перевод матричного умножения в другую вычислительную задачу линейной алгебры с использованием объектов, называемых тензорами. Тензоры, используемые в этой задаче, представляют собой трехмерные массивы чисел, состоящие из множества различных частей, каждая из которых выглядит как небольшая задача на умножение матриц.

Умножение матриц и эта задача, связанная с тензорами, в определенном смысле эквивалентны друг другу, но для решения последней исследователи уже имели более быстрые процедуры. Таким образом, перед ними встала задача определить «обменный курс» между ними: Матрицы какого размера можно перемножить при тех же вычислительных затратах, которые требуются для решения тензорной задачи?

«Это очень распространенная в теоретической информатике концепция: преобразовывать задачи и проводить аналогию между ними, чтобы показать, что они одинаково простые или сложные», — сказал Алман.

В 1981 году Арнольд Шёнхаге использовал этот подход, чтобы доказать, что умножение матриц возможно выполнить за n 2.522 шагов. Позднее Штрассен назвал этот подход «лазерным методом» (laser method).

За последние несколько десятилетий каждое улучшение в процессе умножения матриц происходило за счет усовершенствования лазерного метода, поскольку исследователи находили все более эффективные способы трансформации задачи. В своем новом доказательстве Алман и Уильямс стирают различие между 2 задачами и показывают, что уменьшить число умножений возможно. «В целом Джош и Вирджиния нашли способ применить машинные вычисления в рамках лазерного метода и получили лучшие на настоящий момент результаты», — сказал Генри Кон из Microsoft Research.

Но, несмотря на все эти гонки и победы, становится ясно, что в случае с этим подходом действует закон убывающей доходности, или убывающей отдачи. Скорее всего, усовершенствование Алмана и Уильямс почти полностью исчерпало возможности лазерного метода, но так и не позволило достичь конечной теоретической цели.

«Маловероятно, что получится приблизиться ко второй степени, используя это семейство методов», — отметил Уманс.

Для этого потребуется открытие новых методов и стойкая вера в то, что это вообще возможно.
Уильямс вспоминает один из разговоров со Штрассеном об этом: «Я спросила его, считает ли он, что возможно получить вторую степень для матричного умножения, и он ответил: «Нет, нет, нет, никогда!».

Источник

Умножение матриц: примеры, алгоритм действий, свойства произведения

Произведение двух матриц

Произведение матриц (С= АВ) — операция только для согласованных матриц А и В, у которых число столбцов матрицы А равно числу строк матрицы В:

C ⏟ m × n = A ⏟ m × p × B ⏟ p × n

Вычислим произведения АВ=ВА:

Решение, используя правило умножения матриц:

А ⏟ 2 × 3 × В ⏟ 3 × 2 = 1 2 1 0 1 2 × 1 0 0 1 1 1 = 1 × 1 + 2 × 0 + 1 × 1 1 × 0 + 2 × 1 + 1 × 1 0 × 1 + 1 × 0 + 2 × 1 0 × 0 + 1 × 1 + 2 × 1 = = 2 3 2 3 ⏟ 2 × 2

В ⏟ 3 × 2 × А ⏟ 2 × 3 = 1 0 0 1 1 1 × 1 2 1 0 1 2 = 1 × 1 + 0 × 0 1 × 2 + 0 × 1 1 × 1 + 0 × 2 0 × 1 + 1 × 0 0 × 2 + 1 × 1 0 × 1 + 1 × 2 1 × 1 + 1 × 0 1 × 2 + 1 × 1 1 × 1 + 1 × 2 = 1 2 1 0 1 2 1 3 3 ⏟ 3 × 3

Свойства умножения матриц

Свойства умножения матриц:

Проверяем свойство №1: ( А В ) С = А ( В С ) :

Проверяем свойство №2: А ( В + С ) = А В + А С :

Произведение трех матриц

Произведение трех матриц А В С вычисляют 2-мя способами:

Перемножить матрицы 2-мя способами:

Алгоритм действий:

Используем формулу А В С = ( А В ) С :

Умножение матрицы на число

Произведение матрицы А на число k — это матрица В = А k того же размера, которая получена из исходной умножением на заданное число всех ее элементов:

Свойства умножения матрицы на число:

Найдем произведение матрицы А = 4 2 9 0 на 5.

5 А = 5 4 2 9 0 5 × 4 5 × 2 5 × 9 5 × 0 = 20 10 45 0

Умножение матрицы на вектор

Чтобы найти произведение матрицы и вектора, необходимо умножать по правилу «строка на столбец»:

А В = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а m 1 а m 2 ⋯ а m n b 1 b 2 ⋯ b 1 n = a 11 × b 1 + a 12 × b 2 + ⋯ + a 1 n × b n a 21 × b 1 + a 22 × b 2 + ⋯ + a 2 n × b n ⋯ ⋯ ⋯ ⋯ a m 1 × b 1 + a m 2 × b 2 + ⋯ + a m n × b n = c 1 c 2 ⋯ c 1 m

А В = а а ⋯ а b b ⋯ b = a 1 × b 1 a 1 × b 2 ⋯ a 1 × b n a 2 × b 1 a 2 × b 2 ⋯ a 2 × b n ⋯ ⋯ ⋯ ⋯ a n × b 1 a n × b 2 ⋯ a n × b n = c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋯ ⋯ ⋯ ⋯ c n 1 c n 2 ⋯ c n n

Найдем произведение матрицы А и вектора-столбца В :

Найдем произведение матрицы А и вектора-строку В :

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *