Произведение катетов делить на гипотенузу что это

Высота прямоугольного треугольника

Высота прямоугольного треугольника, проведенная к гипотенузе, может быть найдена тем или иным способом в зависимости от данных в условии задачи.

Произведение катетов делить на гипотенузу что этоДлина высоты прямоугольного треугольника, проведенной к гипотенузе, может быть найдена по формуле

Произведение катетов делить на гипотенузу что это

или, в другой записи,

Произведение катетов делить на гипотенузу что это

где BK и KC — проекции катетов на гипотенузу (отрезки, на которые высота делит гипотенузу).

Высоту, проведенную к гипотенузе, можно найти через площадь прямоугольного треугольника. Если применить формулу для нахождения площади треугольника

Произведение катетов делить на гипотенузу что это

(половина произведения стороны на высоту, проведенную к этой стороне) к гипотенузе и высоте, проведенной к гипотенузе, получим:

Произведение катетов делить на гипотенузу что это

Отсюда можем найти высоту как отношение удвоенной площади треугольника к длине гипотенузы:

Произведение катетов делить на гипотенузу что это

Так как площадь прямоугольного треугольника равна половине произведения катетов:

Произведение катетов делить на гипотенузу что это

Произведение катетов делить на гипотенузу что это

То есть длина высоты, проведенной к гипотенузе, равна отношению произведения катетов к гипотенузе. Если обозначить длины катетов через a и b, длину гипотенузы — через с, формулу можно переписать в виде

Произведение катетов делить на гипотенузу что это

Так как радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы, длину высоты можно выразить через катеты и радиус описанной окружности:

Произведение катетов делить на гипотенузу что это

Поскольку проведенная к гипотенузе высота образует еще два прямоугольных треугольника, ее длину можно найти через соотношения в прямоугольном треугольнике.

Из прямоугольного треугольника ABK

Произведение катетов делить на гипотенузу что это

Произведение катетов делить на гипотенузу что это

Из прямоугольного треугольника ACK

Произведение катетов делить на гипотенузу что это

Произведение катетов делить на гипотенузу что это

Длину высоты прямоугольного треугольника можно выразить через длины катетов. Так как

Произведение катетов делить на гипотенузу что это

по теореме Пифагора

Произведение катетов делить на гипотенузу что это

Произведение катетов делить на гипотенузу что это

Если возвести в квадрат обе части равенства:

Произведение катетов делить на гипотенузу что это

можно получить еще одну формулу для связи высоты прямоугольного треугольника с катетами:

Источник

Свойства высоты прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые ( Содержание скрыть

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Произведение катетов делить на гипотенузу что это

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Произведение катетов делить на гипотенузу что это

3. △ABD ∼ △ADC по двум равным углам: ∠ABD = ∠DAC, ∠BAD = ∠ACD.
Доказательство:BAD = 90° – ∠ABD (ABC). В то же время ∠ACD (ACB) = 90° – ∠ABC. Следовательно, ∠BAD = ∠ACD.
Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

Произведение катетов делить на гипотенузу что это

Произведение катетов делить на гипотенузу что это

2. Через длины сторон треугольника:

Произведение катетов делить на гипотенузу что это

Произведение катетов делить на гипотенузу что это

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :

Произведение катетов делить на гипотенузу что это
Произведение катетов делить на гипотенузу что это

Произведение катетов делить на гипотенузу что это

Примечание: к прямоугольному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Пример задачи

Задача 1
Гипотенуза прямоугольного треугольника поделена высотой, проведенной к ней, на отрезки 5 и 13 см. Найдите длину этой высоты.

Решение
Воспользуемся первой формулой, представленной в Свойстве 4:

Произведение катетов делить на гипотенузу что это

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Найдите длину высоты, проведенной к гипотенузе.

Решение
Для начала найдем длину гипотенузы по теореме Пифагора (пусть катеты треугольника – это “a” и “b”, а гипотенуза – “c”):
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, с = 15 см.

Теперь можно применить вторую формулу из Свойства 4, рассмотренного выше:

Источник

Высота прямоугольного треугольника, проведенная к гипотенузе

Как и в любом треугольнике прямоугольный треугольник имеет три высоты. Две из них совпадают с катетами, а вот третья высота, проведенная к гипотенузе, постоянно будоражит наши умы.

Поэтому представляю вашему вниманию основные формулы для ее нахождения.

Начну с самой важной.

1. Высота, проведенная к гипотенузе равна корню квадратному из произведения проекций катетов на эту гипотенузу.

Произведение катетов делить на гипотенузу что это

2. Высоту, проведенную к гипотенузе, можно найти, разделив удвоенную площадь прямоугольного треугольника на гипотенузу.

Произведение катетов делить на гипотенузу что это

Такая формула получается из классический формулы нахождения площади треугольника: половина произведения основания на высоту, проведенную к этому основанию.

3. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу.

Эта формула получится из второй если заменить площадь на половину произведения катетов.

Произведение катетов делить на гипотенузу что это

Произведение катетов делить на гипотенузу что это

4. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на диаметр описанной вокруг треугольника окружности (или на удвоенный радиус).

Так получается потому, что центр описанной окружности лежит в середине гипотенузы, значит, гипотенуза равна 2R или d.

Произведение катетов делить на гипотенузу что это

5. Высоту, проведенную к гипотенузе, можно найти, используя геометрические определения синуса, тангенса и котангенса.

Произведение катетов делить на гипотенузу что это

Надеюсь, что данная статья оказалась полезной!)

Готовься к экзамену вместе с нами! Заходи на нашу страницу в ВК.

Источник

Высота в прямоугольном треугольнике

Вспомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.

Один из типов экзаменационных задач банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:

Произведение катетов делить на гипотенузу что это

Иными словами, каждый из трех углов треугольника равен одному из углов треугольника (и треугольника ). Треугольники и называются подобными. Давайте нарисуем их рядом друг с другом.

Произведение катетов делить на гипотенузу что это

Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?

Ты нашел то, что искал? Поделись с друзьями!

Произведение катетов делить на гипотенузу что это

(поскольку значение синуса острого угла положительно). Тогда:

Нам известно также, что:

Решая эту систему из двух уравнений, найдем:

Запишем площадь треугольника АВС двумя способами:

Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений.

Источник

Прямоугольный треугольник

Произведение катетов делить на гипотенузу что это

Формулы и свойства прямоугольного треугольника

Произведение катетов делить на гипотенузу что это

ma — медиана, проведенная к стороне a из противолежащего угла (α)

mb — медиана, проведенная к стороне b из противолежащего угла (β)

mc — медиана, проведенная к стороне c из противолежащего угла (γ)

В прямоугольном треугольнике любой из катетов меньше гипотенузы (Формулы 1 и 2). Данное свойство является следствием теоремы Пифагора.

Косинус любого из острых углов меньше единицы (Формулы 3 и 4). Данное свойство следует из предыдущего. Так как любой из катетов меньше гипотенузы, то из соотношение катета к гипотенузе всегда меньше единицы.

Квадрат гипотенузы равен сумме квадратов катетов (теорема Пифагора). (Формула 5). Это свойство постоянно используется при решении задач.

Площадь прямоугольного треугольника равна половине произведения катетов (Формула 6)

Сумма квадратов медиан к катетам, равна пяти квадратам медианы к гипотенузе и пяти квадратам гипотенузы, деленных на четыре (Формула 7). Кроме указанной, есть еще 5 формул, поэтому рекомендуется ознакомиться также и с уроком «Медиана прямоугольного треугольника», в котором более подробно изложены свойства медианы.

Высота прямоугольного треугольника равна произведению катетов, деленному на гипотенузу (Формула 8)

Квадраты катетов обратно пропорциональны квадрату высоты, опущенной на гипотенузу (Формула 9). Данное тождество также является одним из следствий теоремы Пифагора.

Длина гипотенузы равна диаметру (двум радиусам) описанной окружности (Формула 10). Гипотенуза прямоугольного треугольника является диаметром описанной окружности. Это свойство часто используется при решении задач.

Радиус вписанной в прямоугольный треугольник окружности можно найти как половину от выражения, включающего в себя сумму катетов этого треугольника минус длину гипотенузы. Или как произведение катетов, деленное на сумму всех сторон (периметр) данного треугольника. (Формула 11)
Синус угла А (α, альфа) в прямоугольном треугольнике будет равен отношению противолежащего данному углу катета к гипотенузе (по определению синуса). (Формула 12). Данное свойство используется при решении задач. Зная величины сторон, можно найти угол, который они образуют.

Косинус угла А (α, альфа) в прямоугольном треугольнике будет равен отношению прилежащего данному углу катета к гипотенузе (по определению синуса). (Формула 13)

См. также Соотношения между углами и сторонами прямоугольного треугольника изучает Тригонометрия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *