Проект steam что это
Что такое STEM образование, и почему компании ценят таких специалистов
Что такое STEM образование
STEM (Science, Technology, Engineering, Mathematics) образование — это модель, объединяющая естественные науки и инженерные предметы в единую систему.
В ее основе интегративный подход: биологию, физику, химию и математику преподают не по отдельности, а в связи друг с другом для решения реальных технологических задач. Такой подход учит рассматривать проблемы в целом, а не в разрезе одной области науки или технологии.
Об эксперте: Денис Кузьмин — директор Физтех-школы биологической и медицинской физики МФТИ. Партнер Мета-университета. Это университет, который создаёт совместные магистерские программы ведущих университетов России и компаний, заказывающих подготовку кадров.
Второй краеугольный камень STEM — проектная форма научной работы студентов. Такой формат объединяет дипломный проект со стажировкой в технологической компании. Студенты получают опыт, максимально приближенный к будущей профессии. При этом работают над сложным технологическим проектом в команде, развивая свои «гибкие» навыки.
STEM образование помогает готовить ценные кадры для полноценной работы в технологических компаниях сразу после выпуска из университета.
Почему сейчас растет спрос на STEM образование
Акроним STEM ввели сотрудники Национального научного фонда США, чтобы обозначить новую образовательную парадигму в 2001 году. С ее помощью планировали обеспечить Соединенные Штаты высококвалифицированными техническими специалистами для развития науки и промышленности.
Сегодня STEM специалисты — самые востребованные люди на мировом рынке труда. По прогнозам аналитиков Бюро статистики труда США, в ближайшие десять лет потребность в STEM кадрах опередит другие специальности на 76%. Только для американского рынка потребуется около 10 млн человек, при этом дефицит кадров сохраняется, несмотря на рост темпов обучения.
По мнению президента Microsoft Брэда Смита, наступил «кризис гениев» — время, когда технологическим компаниям не хватает квалифицированных STEM специалистов. Чтобы подготовить подходящих работников, Microsoft подталкивает США инвестировать в развитие STEM образования в стране.
В России потребность в STEM образовании также растет. На российском рынке труда нужны 222 тыс. работников в области цифровых технологий. К 2024 году их число вырастет до 300 тыс.
Применение цифровых технологий и анализа данных может принести пользу любому бизнесу, независимо от сферы деятельности. При этом обработка, казалось, бы сторонней информации может решить довольно сложные задачи. Отличный пример — банковская сфера. Крупные банки собирают и обрабатывают любую информацию о потенциальных клиентах: от социальных сетей до геолокации. Они активно применяют методы искусственного интеллекта и машинного обучения, чтобы прогнозировать и автоматизировать бизнес-процессы.
Преимущества и программа STEM образования
Повышение STEM грамотности поможет любому специалисту оставаться востребованным на рынке высококвалифицированного труда.
Познакомиться со STEM можно на открытых образовательных онлайн-площадках. Например, на Coursera, EdX, Udemy публикуют курсы разной длительности и сложности от ведущих мировых университетов. За дополнительную плату можно получить электронный сертификат о прохождении курса. Такой сертификат можно прикрепить к профилю LinkedIn, его котируют большинство крупных компаний.
Более серьезную STEM подготовку можно получить на корпоративных образовательных программах технических университетов. Это совместные программы университета и индустриального партнера. Партнер оплачивает обучение студентов, помогает составлять учебный план и отбирать кандидатов. При этом студенты работают над дипломным проектом у индустриального партнера, решая реальную технологическую задачу компании. Например, Гонконгский университет науки и технологии (HKUST) объединяет программу трех факультетов вуза: науки, инженерии и бизнес-менеджмент с поддержкой технологической компании.
Такой подход помогает всем участникам программы. Студенты получают актуальное образование и возможность трудоустройства сразу после выпуска. Компании решают кадровый вопрос и часть стратегических задач. Университеты получают дополнительное финансирование и индустриальную экспертизу для образовательных программ.
Корпоративные образовательные программы в России организует Московский Физико-Технический Институт. STEM подход к обучению — интегративный характер образования и тесное взаимодействие с индустрией — закладывали в МФТИ с момента его основания. Институт запустил совместную магистратуру «Сколково» и МТС «Цифровые технологии в бизнесе» и программы с российскими и международными компаниями: Яндекс, Сбербанк, ABBYY по направлениям AI & Machine Learning, Data Science, Mobile & Web Development, Bioinformatics.
Будущее STEM образования
Среди перспектив развития STEM образования — три основных направления: персонализация образования, фокус на проектном мышлении и командной работе, смешанный формат обучения.
Персонализация образования. Большинство ведущих мировых университетов персонализируют образовательные программы — студенты обязательно посещают только несколько основных предметов, а остальные выбирают сами. С одной стороны, такой подход раскрывает потенциал каждого студента, с другой — помогает подстроиться под запросы потенциальных работодателей.
Фокус образования на проектном мышлении и командной работе. Простые инженеры не интересны современному бизнесу. Ему нужны инженеры с проектным видением, которые умеют работать в команде и руководить коллективом. Развитие этих навыков остается за бизнес-образованием, но в отличие от STEM, популярность MBA в последнее время падает. Чтобы удовлетворить запрос бизнеса на современных инженерных специалистов, STEM образование неизбежно внедрит развитие «гибких» навыков в свою программу.
Переход на смешанный формат обучения. Пандемия COVID-19 наглядно показала важность и перспективы грамотной организации онлайн-образования. Используя полученные наработки, целесообразно перевести образовательные программы высшего образования в смешанный формат: офлайн плюс онлайн.
Такой подход поможет студентам свободнее планировать свой график и меньше зависеть от предоставления общежитий. Университетам — привлечь преподавателей мирового уровня, которые не могут преподавать очно. В смешанном формате университеты смогут оптимизировать на преподавателей и аудитории и повысить общую эффективность.
В долгосрочной перспективе STEM должна стать не только частью образовательных программ университетов, но и школ. Это поможет выстроить единую систему подготовки, повысить эффективность всей системы образования, конкурентоспособность отечественной науки и промышленности на мировой арене.
STEM- и STEAM-образование: от дошкольника до выпускника ВУЗа
Юрий Пахомов
STEM-подход — один из прорывных инструментов трансформации образования. Множество государственных и частных учебных учреждений берут эту концепцию на вооружение, а сама она соответствует образовательным стандартам, принятым в России в 2012 году. STEAM — естественное развитие STEM-подхода, сочетающее технологии и гуманитарные дисциплины. На этих идеях основывается и педагогическая философия LEGO Education, и, чтобы эти аббревиатуры, которые можно часто встретить в наших материалах, были понятны каждому читателю, подробно рассказываем об истории, принципах и решениях STEM- и STEAM-образования в России и зарубежом.
1. Что такое STEM-образование
Аббревиатура STEM (Science, Technology, Engineering and Mathematics) — расшифровывается как Наука, Технологии, Инженерия, Математика и обозначает практико-ориентированный подход к построению содержания образования и организации учебного процесса.
В основе STEM-подхода лежат четыре принципа:
1. Проектная форма организации образовательного процесса, в ходе которого дети объединяются в группы для совместного решения учебных задач;
2. Практический характер учебных задач, результат решения которых может быть использован для нужд семьи, класса, школы, ВУЗа, предприятия, города и т. п.;
3. Межпредметный характер обучения: учебные задачи конструируются таким образом, что для их решения необходимо использование знаний сразу нескольких учебных дисциплин;
4. Охват дисциплин, которые являются ключевыми для подготовки инженера или специалиста по прикладным научным исследованиям: предметы естественнонаучного цикла (физика, химия, биология), современные технологии и инженерные дисциплины.
Главная цель STEM-подхода — преодолеть свойственную традиционному образованию оторванность от решения практических задач и выстроить понятные ученикам связи между учебными дисциплинами.
2. Историческая справка
Впервые идея и аббревиатура STEM были предложены в 2001 году учеными Национального научного фонда США как ориентир для обновления системы подготовки современных инженеров и исследователей в ВУЗах. Идея была поддержана правительством, общественными организациями и многими корпорациями США, в том числе такими технологическими лидерами как Intel и Xerox. В результате принципы STEM стали активно применять для формирования образовательных программ многих американских университетов.
Сегодня в системе высшего образования США насчитываются сотни инженерных и научных специальностей, программы подготовки по которым построены в соответствии с концепцией STEM. При этом дипломная работа студента объединяется со стажировкой в технологической компании и участием в сложных технологических проектах бок о бок с профессионалами. За счет этого технологические компании получают квалифицированных специалистов сразу после выпуска из университета.
Впоследствии STEM-подход был подхвачен многими странами мира. В настоящее время подготовка STEM-специалистов ведется в ВУЗах Франции, Великобритании, Австралии, Израиля, Китая, Канады, Турции и ряда других стран.
Одновременно с расширением географии STEM происходило распространение элементов STEM-подхода вниз по образовательной пирамиде, как на школьное, так и на дошкольное образование. Во многих странах начали активно создаваться учебные курсы и пособия для межпредметных исследований и конструирования в детских группах. Ощутив реальные результаты STEM-подхода в высшем образовании, правительство США через образовательные стандарты утвердило STEM-обучение как базовый метод преподавания в школах. Австралия, Канада и Сингапур сделали это еще раньше.
В рамках детского STEM-образования робототехника оказалась той областью, где наиболее удачно пересеклись запросы экономики на развитие высокотехнологичных отраслей и естественный интерес детей к конструированию. Как следствие, сегодня воспитатели и учителя по всему миру активно используют в своей работе наборы для конструирования и программирования роботов.
3. STEM в России
В России активное привлечение учеников к инженерному делу и роботостроению происходит на протяжении последних 5 лет.
В 2014 году в послании Федеральному собранию Президент РФ впервые указал на необходимость вывести инженерное образование в стране на мировой уровень. Робототехнические комплексы были внесены в число приоритетных направлений развития науки, технологий и техники в России, и вскоре начала складываться сеть инженерно-технических центров: кванториумы, фаблабы при ВУЗах, ЦМИТы и центр «Сириус». В школах стали появляться спецклассы, оборудованные всем необходимым для создания программируемых роботов.
Сегодня в технопарках, при ВУЗах или в рамках Центров технической поддержки образования открывается все больше STEM-центров, которые помогают старшеклассникам осваивать новые технологии и мотивируют на продолжение образования в научно-технической сфере. Магистерские программы STEM-подготовки учителей появляются в российских университетах, быстро расширяется практика использования STEM-подхода в дополнительном образовании и в сегменте платных образовательных услуг. Дети с интересом работают в командах, экспериментируют, проводят исследования, придумывают и собирают роботов, создают сайты и мультфильмы.
4. STEM и ФГОС
Стремительно растущий интерес учителей к STEM-методикам объясняется тем, что значительная часть задач, которые установлены образовательными стандартами РФ, может быть реализована с учетом идей, инструментов и методик, накопленных в рамках STEM-подхода. Концепция STEM соответствуют основным требованиям ФГОС, и в этом можно убедиться, приложив принципы STEM к образовательному стандарту основного общего образования.
1. Проектная форма организации обучения и практическая направленность STEM создают более благоприятные по сравнению с классно-урочным обучением мотивационные и предметные предпосылки для реализации следующих требований ФГОС:
— Организация активной учебно-познавательной деятельности;
— Участие в социально значимом труде и приобретение практического опыта;
— Формирование способности применять полученные знания на практике, в том числе в социально-проектных ситуациях;
— Формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками;
— Ориентировка в мире профессий и формирование устойчивых познавательных интересов как основы выбора будущей профессии.
2. Ориентация на межпредметность и накопленный в рамках STEM опыт комплексного освоения математики и естественных наук создают более благоприятные условия для:
— применения математических и естественнонаучных знаний при решении образовательных задач;
— развития навыков формулирования гипотез, планирования и проведения экспериментов, оценки полученных результатов;
— осознания значения математики и информатики в повседневной жизни человека;
— формирования умения моделировать реальные ситуации на языках алгебры и геометрии, а также исследовать построенные модели математическими методами;
— развития навыков работы со статистическими данными;
— понимания физических основ и принципов работы машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов и т. д.
Не менее значительный объем соответствий STEM-принципов во ФГОС можно установить и при анализе стандартов начального общего и среднего общего образования.
5. От STEM к STEAM
В последние несколько лет в сфере инновационной экономики все больший вес приобретают креативные индустрии, связанные с интеллектуальной и творческой деятельностью: компьютерные технологии, виртуальная реальность, дизайн, мода, реклама, анимация и т. д. Креативные отрасли во всем мире становятся движущей силой экономического роста, а занятость молодежи в креативной индустрии уже превышает занятость в реальном секторе. Эти перемены ставят новые задачи перед системой образования, а именно — необходимость большего включения в программу обучения творческих и художественных дисциплин.
В США, где в рамках креативных индустрий создано свыше 30 млн рабочих мест, эта необходимость привела к трансформации STEM-концепции: к синтезу науки, технологии, инженерии и математики добавился пятый компонент — Arts, искусство. Получилась новая аббревиатура и концепция — STEAM.
STEAM-подход сохраняет ориентир на проектную деятельность, практическую направленность и межпредметность, но меняет расстановку ключевых дисциплин. На уровне формирования учебной программы, например, в ВУЗе, STEAM предполагает включение в нее не только инженерных и естественно-научных STEM-предметов, но и гуманитарных и творческих дисциплин: литература, дизайн, архитектура, музыка, изобразительное искусство. STEM-предметы и технологии дают ясные решения для прикладных задач, а гуманитарные Arts-дисциплины развивают умение находить выход в состоянии неопределенности, неоднозначности и двусмысленности. Так учащиеся учатся гармонично сочетать в работе научную строгость и творческую свободу.
Идеологи STEAM-подхода вдохновляются примерами великих ученых, которые сочетали научные занятия с творчеством, и благодаря развитому нелинейному мышлению и воображению смогли дать миру революционные открытия: литератор Галилей, художник Леонардо Да Винчи, музыкант Эйнштейн, философ Гейзенберг.
На методическом уровне STEAM-подход предполагает, что, кроме решения технологических вопросов, в проектной деятельности ученики:
— приобретают навыки работы в команде;
— учатся конструктивно критиковать и отстаивать свое мнение;
— осваивают презентационные компетенции;
— учатся генерировать идеи в условиях неопределенности;
— применяют принципы дизайна и маркетинга для создания и продвижения продукта;
— осознают творческий потенциал применения технологий в разнообразных сферах деятельности.
В школе STEAM-подход реализуется в рамках занятий по робототехнике, особенно в соревновательной деятельности. Так для участия в международных соревнованиях FIRST® LEGO League требуется не только умение хорошо собирать и программировать, но и способность эффективно работать в команде, быстро генерировать идеи и грамотно презентовать результаты.
6. STEM и STEAM-решения LEGO Education
Одним из наиболее известных и признанных инструментов для реализации обоих подходов в школе являются решения LEGO® Education. Наборы LEGO Education разной сложности рассчитаны на работу с детьми в возрастном диапазоне от 4 до 16 лет.
Эти решения отличает привлекательность и узнаваемость (практически все знакомы с LEGO с раннего детства), яркость, простота и интуитивно-понятные способы сборки, а главное — широкие возможности для постановки комплексных учебных задач с использованием знаний всех предметов естественнонаучного цикла.
Для каждой возрастной группы в линейке LEGO Education предусмотрены свои наборы. Вот лишь некоторые из них:
Для дошкольников — это Экспресс «Юный программист» в виде поезда и железной дороги. Элементы алгоритмики, программирования изучаются с его помощью без компьютера.
Для младших школьников подходит LEGO Education WeDo 2.0. и BricQ Motion Prime. Последнее решение помогает изучать окружающий мир и физику, выполняя проекты, связанные со спортом и здоровым образом жизни. BricQ — STEAM-решение, которое вообще не предполагает программирования. В наборе также нет моторов и других, содержащих электронику деталей, что облегчает работу преподавателей-предметников (например, учителей физики).
Для средней и старшей школы — LEGO Education SPIKE Prime. Он рассчитан на применение в экспериментальной деятельности на уроках всего естественнонаучного цикла. Например, практически любой проект из курса «Фитнес датчики» позволяет не только закрепить на практике материал курса физики 7 класса, но и проработать математические закономерности, по которым строятся графики, иллюстрирующие опыты. SPIKE Prime стал самым красочным и гендерно-нейтральным из последних наборов. А разнообразие моделей и легкость программирования на языке Scratch позволяет использовать конструктор для изучения различных дисциплин.
Для каждого из наборов есть методические материалы, адаптированные под образовательные стандарты РФ. Их можно найти на официальных ресурсах LEGO Education, как и материалы для подготовки самих педагогов. Образовательную поддержку преподавателей в России осуществляет Академия LEGO Education.
Доклад на тему: Что такое STEAM образование?
Широкими шагами по стране идет для кого-то пока еще диковинный, а для кого-то уже вполне понятный тренд. Ни одна образовательная конференция, ни одно серьезное мероприятие от мира педагогики уже не обходится без этих пяти буковок, затейливо объединенных в броское «STEAM». А какие широчайшие возможности и потенциал для толкового учителя он в себе скрывает.
Что такое STEAM образование?
Началось все с термина STEM, который появился в США. Отличие STEАM от STEM всего в одной букве А- Art (искусство), но разница в подходе огромная! В последнее время именно STEAM образование стало настоящим трендом в США и Европе, и многие эксперты называют его образованием будущего.
Внедрение Art (искусства)
О необходимости сочетания науки и искусства писали еще такие мыслители, как китайские математики-просветители XI в..
Почти все изобретатели и ученые были также музыкантами, художниками, писателями или поэтами: Галилей — поэтом и литературным критиком, Эйнштейн играл на скрипке, Морзе — художником-портретистом и др. Таким образом, креативность стимулировалась и укреплялась посредством практики дисциплин, связанных с правой половиной мозга.
Без искусства в школе не обойтись. Это творчество детей.
STEAM – новая образовательная технология, сочетающая в себе несколько предметных областей, как инструмент развития критического мышления, исследовательских компетенций и навыков работы в группе.
STEAM-учебный план основан на идее обучения учеников с применением междисциплинарного и прикладного подхода. Вместо того чтобы изучать отдельно каждую из пяти дисциплин, STEAM интегрирует их в единую схему обучения.
STEM-образование позволяет использовать научные методы, технические приложения, математическое моделирование, инженерный дизайн. Что ведёт к формированию инновационного мышления обучающегося, умений, навыков 21 века.
По словам педагогов, интеграция позволяет быть успешным в большинстве профессий. Практически все специалисты отмечают, что прогрессивные технологии повышают мотивацию к обучению и расширяют базовые знания в области конструирования и программирования.
STEM обучение — это инновационная методика, которая позволяет выйти на новый уровень совершенствования навыков у наших детей. С ее помощью мы сможем сформировать прогрессивную кадровую базу, которая позволит нам стать экономически независимой и конкурентноспособной страной.
— Интегрированное обучение по темам, а не по предметам.
— Применение научно-технических знаний в реальной жизни.
— Развитие навыков критического мышления и разрешения проблем.
— Формирование уверенности в своих силах.
— Активная коммуникация и командная работа.
— Развитие интереса к техническим дисциплинам.
— Креативные и инновационные подходы к проектам.
— Развитие мотивации к техническому творчеству через детские виды деятельности с учётом возрастных и индивидуальных особенностей каждого ребёнка.
— Ранняя профессиональная ориентация.
— Подготовка детей к технологическим инновациям жизни.
— STEM, как дополнение к обязательной части основной образовательной программы (ООП).
Научно техническая направленность (STEM)
Стремительное развитие технологий ведет к тому, что в будущем самыми востребованными станут профессии, связанные с высокими технологиями: IT специалисты, инженеры big data, программисты. Система образования реагирует на такой социальный запрос появлением большого количества кружков робототехники, программирования, моделирования (STEM). Однако, все чаще и чаще звучит мысль о том, что научно-технических знаний мало. В будущем будет востребованы навыки XXI века, которые часто называют 4К.
Навыки будущего (4К)
Эти навыки нельзя получить только в лабораториях или из знания определенных математических алгоритмов. Именно поэтому специалистам приходится все больше и чаще учиться STEAM-дисциплинам.
Программа «STEM-ОБРАЗОВАНИЕ ДЕТЕЙ ДОШКОЛЬНОГО И МЛАДШЕГО ШКОЛЬНОГО ВОЗРАСТА»
Предложенная программа «STEM-ОБРАЗОВАНИЕ ДЕТЕЙ ДОШКОЛЬНОГО И МЛАДШЕГО ШКОЛЬНОГО ВОЗРАСТА» является парциальной модульной программой дошкольного образования, направленной на развитие интеллектуальных способностей в процессе познавательной деятельности и вовлечения в научно-техническое творчество.
Программа также может успешно использоваться во внеурочной деятельности в рамках основной образовательной программы начального общего образования, а каждый её раздел – образовательный модуль – самостоятельно применяться как в вышеуказанных образовательных организациях, так и в системе дополнительного образования.
Современный мир ставит перед образованием непростые задачи: подготовить ребенка к жизни в обществе будущего, которое требует от него особых интеллектуальных способностей, направленных в первую очередь на работу с быстро меняющейся информацией. Развитие умений получать, перерабатывать и практически использовать полученную информацию и лежит в основе программы STEM-образования.
ЧТО ЖЕ ВХОДИТ В ПРОГРАММУ И КАКИЕ ОБРАЗОВАТЕЛЬНЫЕ ЗАДАЧИ РЕШАЮТСЯ:
Образовательный модуль «Дидактическая система Ф. Фребеля»
— Экспериментирование с предметами окружающего мира;
— Освоение математической действительности путем действий с геометрическими телами и фигурами;
— Освоение пространственных отношений;
— Конструирование в различных ракурсах и проекциях.
Образовательный модуль «Экспериментирование с живой и неживой природой»
-формирование представлений об окружающем мире в опытно-экспериментальной деятельности;
-осознание единства всего живого в процессе наглядно-чувственного восприятия;
-формирование экологического сознания
— способность к практическому и умственному экспериментированию, обобщению, установлению причинно-следственных связей, речевому планированию и речевому комментированию процесса и результата собственной деятельности;
-умение группировать предметы;
-умение проявлять осведомленность в разных сферах жизни;
-свободное владение родным языком (словарный состав, грамматический строй речи, фонетическая система, элементарные представления о семантической структуре);
-умение создавать новые образы, фантазировать, использовать аналогию и синтез.
Образовательный модуль «Математическое развитие»
-комплексное решение задач математического развития с учетом возрастных и индивидуальных особенностей детей по направлениям: величина, форма, пространство, время, количество и счет.
Образовательный модуль «Робототехника»
-развитие логики и алгоритмического мышления;
-формирование основ программирования;
-развитие способностей к планированию, моделированию;
-развитие способности к абстрагированию и нахождению закономерностей;
— умение быстро решать практические задачи;
-овладение умением акцентирования, схематизации, типизации;
-знание и умение пользоваться универсальными знаковыми системами (символами);
-развитие способностей к оценке процесса и результатов собственной деятельности.
Образовательный модуль «Мультстудия «Я творю мир»
— организация продуктивной деятельности на основе синтеза художественного и технического творчества.
Каждый модуль направлен на решение специфичных задач, которые при комплексном их решении обеспечивают реализацию целей STEM-образования: развития интеллектуальных способностей в процессе познавательно-исследовательской деятельности и вовлечения в научно-технического творчество детей младшего возраста.
В каждый отдельный модуль входит тематическая подборка пособий, обеспечивающих комплексный подход к реализации образовательных задач для развития интеллектуальных способностей в процессе познавательно-исследовательской деятельности и вовлечение в научно-техническое творчество детей младшего возраста.
Такое образование может быть, конечно, только творческим, создающим условия для поиска ребёнком собственного пути развития в соответствии с тем, что ему интересно.
Чему же необходимо учиться и учить, чтобы достичь личностного развития каждого ребёнка, которому предстоит жить в высоко технологичном мире. Важно, чтобы каждый ребёнок вовремя понял, какое направление ему интересно, чтобы он увлёкся ещё в школе и продолжил развитие в этом направлении. Поэтому в современном мире перед учителем стоит ответственная задача: научить детей развивать интуицию. Устанавливать причинно-следственные связи, искать закономерности, решать открытые задачи.
Известно, что поток информации сегодня настолько велик, а инструменты для развлечения так разнообразны, что маленький ребёнок может потеряться в огромном цифровом мире. Следовательно, учителю необходимо выбрать для организации инструменты, которые будут понятны детям, которые позволят развивать у них различные компетенции. Таким инструментом может стать роботехнический набор «Лего 2:0». Конструктор LEGO позволяет детям независимо от их особенностей успешно
овладевать знаниями. Например:
Отрезок – часть прямой, ограниченная точками. Отрезок имеет начало и конец (начало и конец отрезка показаны кирпичиками красного цвета).
Луч. Имеет начало, но не имеет конца.
Прямая. Её можно продлить в обе стороны (учитель прикрепляет кирпичики “точки”) Прямая линия – это линия, вдоль которой расстояние между двумя точками является кратчайшим.
Для первоклассников становится понятно, что прямая линия это множество точек, которые стоят близко друг к другу. Дети это наглядно видят, строя прямую, из кирпичиков «Лего» (точек).
Для демонстрации точек, лежащих и не лежащих на прямой можно использовать пособие. С помощью легокирпичиков, прикрепленных к плате, можно наглядно показать, что через одну точку можно провести много прямых линий, а через две точки можно провести только одну прямую.
В 3 классе учащиеся знакомятся с площадью прямоугольника, квадрата. Учат формулы для нахождения периметра и площади квадрата, прямоугольника.
В 4 класса учащиеся знакомятся с диагоналями прямоугольника.
В качестве своеобразного алгоритма применения перворобота LEGO Education WeDo приведём примеры его использования на уроках окружающего мира
1. Тема урока «Животные Африки». Детям предлагается кроссворд, который заполняется
по мере выступления учащихся с докладами о животных Африки (в клетки кроссворда вписываются названия животных).
Вслед за этим учитель предлагает командам из 5–6 учащихся или парам собрать из деталей конструктора любое понравившееся им животное африканского континента.
Следующим интересным этапом работы может стать использование робототехники на уроках литературного чтения. Вот один из примеров. Учащиеся изучают произведение К. Чуковского «Краденое солнце». По мотивам произведения выстраивают лего фигурки, а затем все вмести снимают и монтируют фильм. Получившийся проект демонстрируют учащимся других классов, чем стимулирую интерес к литературе и чтению.
Характерная черта нашей жизни – нарастание темпа изменений. Мы живем в мире, который совсем не похож на тот, в котором мы родились. И темп изменений продолжает нарастать.
Сегодняшним школьникам предстоит: работать по профессиям, которых пока нет, использовать технологии, которые еще не созданы, решать задачи, о которых мы можем лишь догадываться.
Школьное образование должно соответствовать целям опережающего развития.
Интегрированный учебный процесс, включающий исследовательскую и предметно-практическую деятельность, позволяет детям лучше познакомиться с объектами неживой природы в области естествознания и способствует приобретению первых навыков проектирования и программирования моделей. Это создает лучшую основу для перспективного будущего наших детей.
Как STEAM подход влияет на успеваемость?
Основная идея STEAM подхода такова: практика так же важна, как и теоретические знания. То есть, обучаясь, мы должны работать не только мозгами, но и руками. Обучение лишь в стенах класса не успевает за стремительно меняющимся миром. Основным отличием STEAM подхода является то, что здесь дети используют и свои мозги, и свои руки для успешного изучения множества предметов. Знания, которые они получают, они «добывают» самостоятельно.
ПОЧЕМУ НЕОБХОДИМО ВНЕДРЯТЬ STEM ОБРАЗОВАНИЕ В НАЧАЛЬНОЙ ШКОЛЕ?
-Активизирует интерес к математике, естествознанию.
-Помогает приобрести знания в области техники, робототехники, конструирования.
-Содействует развитию творческих способностей и коммуникативных навыков.
-Способствует раннему определению потенциала ребенка и его профессионального самоопределения.
ПРЕИМУЩЕСТВА ВНЕДРЕНИЯ STEM ТЕХНОЛОГИЙ В ОБРАЗОВАНИЕ
Развитие интереса к техническим дисциплинам. Утверждение прогрессивной системы в ДОУ, школах, институтах и других специализированных учреждениях позволит вовлечь учащихся в учебный процесс.
Совершенствование навыков критического мышления. Учащиеся и студенты учатся преодолевать нестандартные задачи путем тестирования и проведения различных опытов. Все это позволяет им подготовиться ко взрослой жизни, где они могут столкнуться с необычными, нестандартными проблемами.
Активация коммуникативных навыков. Внедрение данной системы в основном включает в себя командную работу. Ведь большую часть времени дети совместно исследуют и развивают свои модели. Они учатся строить диалог с инструкторами и своими друзьями.
STEM-образование является своеобразным мостом, соединяющий учебный процесс, карьеру и дальнейший профессиональный рост. Инновационная образовательная концепция позволит на профессиональном уровне подготовить детей к технически развитому миру.
В ЧЕМ СУТЬ STEM-ТЕХНОЛОГИЙ?
Введение основных компонентов STEM образования помогает создать наилучшую среду для выявления особо одаренных детей в каждой общеобразовательной школе. STEAM как новую систему обучения, основанную на инновационных технологиях 21 века, основной целью которой является развитие у детей мышления нового типа. Это принципиально новый подход, который разительно отличается от традиционной школьной модели обучения и основывается на развитии творческих и аналитических навыков.
Учебное пространство STEAM предоставляет людям эффективный обучающий интерактивно подход совместно с самоподготовкой и умением работать в команде. Давайте поближе рассмотрим такой учебный процесс: что здесь отличается от традиционного типа обучения и как развивают детское мышление.
Например, вот как второму классу дается тема «окружающая среда». Сначала дети смотрят короткий документальный фильм, играют в игры или делают специальные задания с преподавателем. У них появляется представление о различных живых существах и природных зонах, вместе они рисуют их или делают поделки на эту тему, таким образом дети получают знания опытным путем. Затем они изучают каждую тему по отдельности: малыши смотрят видео, слушают аудио-записи, просматривают нужные сайты в интернете, это время для самоподготовки. Потом детей тестируют, чтобы определить, насколько хорошо они разобрались в этой теме, и уже после этого учащиеся сами делают аудио- или видео-материалы или пишут в свой собственный блог на тему окружающей среды. Этот этап называется созданием смысла. И финальный шаг, весь класс вместе снимает 10 минутное видео по теме изменений в окружающей среде, а именно: как уменьшить выбросы углекислого газа. На данном этапе все дети показывают свои знания по теме (все то, чему они научились).
Конечно же, вы видите, что STEAM подход значительно отличается от традиционного:
Дети уделяют больше времени самоподготовке, учатся находить проблемы и решать их самостоятельно.
Дети делятся между собой своим удачным и неудачным учебным опытом, работают вместе над проектами или решением определенных проблем.
Одноклассники помогают и поддерживают друг друга, решая учебные задачи с помощью новых навыков и знаний.
В конечном итоге STEAM подход прежде всего направлен на развитие навыков обучения, а не зазубривание материала, данного преподавателем. В основе него лежат: способность к созданию новых идей, навыки самоподготовки, совместная работа, постоянное исправление ошибок и решение учебных задач.
Основная идея STEAM подхода такова: практика так же важна, как и теоретические знания. То есть, обучаясь, мы должны работать не только мозгами, но и руками. Обучение лишь в стенах класса не успевает за стремительно меняющимся миром. Основным отличием STEAM подхода является то, что здесь дети используют и свои мозги, и свои руки для успешного изучения множества предметов. Знания, которые они получают, они «добывают» самостоятельно.
STEAM подход – это не только метод обучения, но и способ мышления. В образовательной среде STEAM дети получают знания и сразу же учатся их использовать. Поэтому, когда они вырастают и сталкиваются с жизненными проблемами в реальном мире, будь то загрязнение окружающей среды или глобальные изменения климата, они понимают, что решить такие сложные вопросы можно только опираясь на знания из разных областей и работая всем вместе. Полагаться на знания только по одному предмету здесь недостаточно.
STEAM подход меняет наш взгляд на обучение и образование. Делая акцент на практических способностях, школьники развивают свою силу воли, творческий потенциал, гибкость и учатся сотрудничеству с другими. Эти навыки и знания и составляют основную учебную задачу, т.е. то, к чему стремится вся эта система образования.
Важной особенностью работы по данной технологии является именно коллективная работа над проектом. STEAM – позволяет задействовать правое полушарие мозга, отвечающее за творчество, эмоции, чувства. Существует множество примеров удачных проектных работ по данной технологии.
Каким будет процесс обучения через год, пять или даже десять лет? Когда тренды в образовании динамически меняются под воздействием многих факторов. И как бы ни были успешны традиционные методы преподавания, современная реальность требует поиска новых и эффективных форм обучения.
Чему и как учить сегодня, чтобы наши дети были успешными завтра – это главная идеология современного образования. Привить навыки самостоятельного обучения в течение всей жизни, научить взаимодействию на разных уровнях, развивать самостоятельное и критическое мышление – эти и многие другие принципы составляют стратегию развития современных образовательных технологий.
Если мы готовим наших учеников к жизни после школы, то мы должны позволить им использовать те инструменты, которые в дальнейшем всё равно станут частью их повседневной жизни.
При организации работы с использованием STEAM-технологии необходимо учитывать основные педагогические принципы:
— интегративности, предполагающий взаимосвязь всех компонентов процесса обучения, определяющий целеполагание, содержание обучения, его формы и методы;
— сознательности и активности, предполагающий выработку глубоких и осмысленных знаний, на основе собственной познавательной активности ребенка, обеспечивающий определение логических связей между известным и неизвестным, понимание причинно-следственных связей между предметами и явлениями, учитывающий индивидуальные интересыобучающегося;
— наглядности обучения, обеспечивающий наглядную иллюстрацию информации, содержащей строго зафиксированные научные закономерности;
— системности, обеспечивающий взаимосвязь содержания и форм воспитания обучающихся в зависимости от их возраста;
— доступности и последовательности, обеспечивающий единство взаимосвязи обучения и воспитания ребенка;
— природосообразности, обеспечивающий воспитание и образование ребенка в соответствии с законами его физического и духовного развития;
— сотрудничества единство взаимодействия семьи и учреждения образования в воспитании и образовании ребенка.
В ходе работы над проектом обучающиеся взаимодействуют, принимают решения, используют различные инструменты оценивания, то есть овладевают универсальными учебными действиями. Здесь не учителя показывают, что они знают и умеют, как они работают, а сами ученики.
STEAM в Казахстане?
Как известно, с сентября 2016 года в Казахстане введена новая программа обучения для начальной школы, включающей дисциплину «Введение в науку». С 2018-2019 гг. в третьем классе появится предмет «Информационно-коммуникационные технологии», на котором ребят научат не только работать с компьютером, но и искать и обрабатывать информацию. А у старшеклассников появятся новые предметы: «Проектная деятельность» и «Глобальные перспективы». К слову, учителя школы на уроках большое внимание уделяют проектной деятельности, поскольку она ориентирована на самостоятельную работу учеников. Педагог лишь направляет эту деятельность, в результате повышается качество образовательной деятельности, развивается системное мышление.
Помимо связи предметов с реальной жизнью, этот подход открывает возможность для творчества ученика. При таком подходе проектная деятельность младших школьников ставит ряд задач, которые необходимо решить. Единственно верного решения нет, ученику дается полная свобода творчества. С помощью подобных заданий ребенок не просто генерирует интересные идеи, но и сразу воплощает их в жизнь. Таким образом он учится планировать свою деятельность, исходя из поставленной задачи и имеющихся ресурсов, что обязательно пригодится ему в реальной жизни.
Также одним из основных постулатов STEAM-образования является парное обучение в небольших группах. Так, например, на занятиях по робототехнике двое учеников работают за одним компьютером и собирают один конструктор. Это сделано совсем не для экономии учебных материалов. Такой подход предполагает обучение детей сотрудничеству, помогая детям учиться работать в команде, развивать навыки общения, работы в группе.
Во многих странах STEAM-образование в приоритете по следующим причинам:
— В ближайшем будущем в мире будет резко не хватать: IT-специалистов, программистов, инженеров, специалистов высокотехнологичных производств и др.
— В отдаленном будущем появятся профессии, которые сейчас даже представить трудно, все они будут связаны с технологией и высоко технологичным производством на стыке с естественными науками. Особенно будут востребованы специалисты био- и нанотехнологий.
— Специалистам будущего требуется всестороння подготовка и знания из самых разных образовательных областей естественных наук, инженерии и технологии.
Все новое – это хорошо забытое старое?
Многие могут сказать, что все новое – это хорошо забытое старое. Да, конечно, STEAM похоже на методики, которые использовались и ранее. Обучающиеся по программе «STEAM-образование», помимо физики и математики, изучают робототехнику, программирование, конструируя и программируя собственных роботов. На занятиях используется специальное технологичное лабораторное и учебное оборудование, такое как 3D-принтеры, средства визуализации и прочее оборудование. Можно сказать, что философия STEAM-образования основана на старых добрых подходах обучения детей профессиям на уроках труда, разве что инструменты изменились и способы обучения.
Активно вовлекаются бизнес-компании для реализации проектов предметно-ориентированного обучения детей и студентов, что подтверждает правильность данной стратегии в образовании. В Казахстане с 2015 также осуществляется реформа среднего школьного образования. В США действует национальная программа по подготовке 100000 учителей в области STEAM за ближайшие 10 лет.
Интеграция STEM — это один из основных трендов в мировом образовании. Воспитывая интерес в области естественных и общественных наук у маленьких детей, мы значительно повышаем шансы на успех СТЕМ в средней школе и высших учебных заведениях. Реализация проектной и учебно-исследовательской деятельности с применением междисциплинарного прикладного подхода позволяет создать лучшую основу для освоения важных дисциплин в сфере ИТ-технологий.
Подводя черту всему вышесказанному, можно отметить, что потребность в формировании STEAM-образовательной среды в Казахстане актуальна не менее чем в других странах.
В настоящее время наблюдается всплеск интереса среди инвесторов, бизнес-ангелов, крупного бизнеса к научно-инновационным проектам. А для появления множества прогрессивных разработок, безусловно, необходимо и создание STEAM-центров, и включение таких дисциплин как робототехника, интеграции основ программирования в предмет «информатика» в школьную программу среднего образования, и использование существующего опыта путем объединения педагогов в тематические общности и т.д.
Только объединяясь вместе, мы взрослые, в силах изменить будущее наших детей, приложив усилия.
На Международной конференции “STEAM forward”, которая прошла в 2014 году в Иерусалиме, были высказаны следующие заявления:
Привлечение детей к STEAM. Данное образование должно начинаться с самого раннего дошкольного возраста, а потому нужно внедрять программы в детские сады.
Science is fun! Наука должна быть праздником, она должна захватывать и быть интересна учащимся.
Будущее зависит от Великих Учителей STEAM!
«Ваши руки знают намного больше, чем вы думаете, что они знают!
Ваши руки знают то, что ваш ум не знает, что он знает!»
Спасибо за внимание, уважаемые коллеги. Надеюсь, что информация была для вас полезной.