Принцип работы емкостного дисплея на что реагирует
xTechx.ru
Новости Высоких Технологий
Ёмкостный сенсорный экран — технология, принцип работы. Преимущества и недостатки.
Принцип работы ёмкостного сенсорного экрана.
На стеклянную или пластиковую панель наносится резистивный материал, нанесённый сеткой, специальным образом — посегментно (обычно оксид олова).
По углам экрана расположены электроды, которые подают постоянный, слабый ток на панель. Так же, по краям находятся датчики, которые регистрируют утечки токов, если к экрану прикасается что-то с большей ёмкостью, чем сама сенсорная панель. Чем ближе к месту утечки датчик, тем больше ток утечки.
Таким образом, датчики с помощью нехитрых расчётов контролёра, могут легко определить точку касания относительно друг друга.
Плюсами данной технологии является – относительная долговечность (больше 150тыс. касаний), слабое влияние загрязнений, устойчивость к попаданию воды, высокая прозрачность (>90%). Такие сенсорные панели, получив повреждения, трещины и сколы, могут продолжать работу, совсем немного потеряв в точности. Имеется поддержка технологии MultiTouch, но для этого используются более точные сенсорные панели, с 6-ю датчиками и более. Существуют ёмкостные экраны как с поддержкой, так и без поддержки многоточечного ввода.
Ёмкостные сенсорные экраны, предназначены для работы с пальцем человека и реагируют только на предметы имеющие высокий ёмкостный потенциал. Со стилусами работа возможна, но со специальными, предназначенными именно для ёмкостных экранов. Из минусов таких стилусов, можно отметить — высокую цену и относительно крупные габариты.
Ёмкостные панели, уже с 2009 года начали активно вытеснять резистивные, благодаря лучшим потребительским характеристикам. Лучшая реакция на пальцы, прочность, долговечность, надёжность, нет нужды в использовании защитных плёнок как на резистивных экранах.
Есть и пара минусов : относительно плохая работа при минусовых температурах, невозможность использовать сенсорный экран с любыми, неспециализированными указывающими предметами (карандаш, медиатор & etc) и в перчатках.
Можно трогать
Сегодня уже никого не удивить телефоном с сенсорным экраном. Ручное управление вошло в моду, но мало кто задумывается о том, что же происходит, когда вы прикасаетесь к дисплею. Я расскажу, как работают наиболее распространенные типы сенсорных экранов. Удобство и продуктивность работы с цифровой техникой зависят в первую очередь от используемых устройств ввода информации, при помощи которых человек управляет оборудованием и осуществляет загрузку данных. Наиболее массовым и универсальным инструментом является клавиатура, получившая в настоящее время повсеместное распространение. Однако использовать ее удобно далеко не всегда. Например, габариты мобильных телефонов не позволяют установить крупные клавиши, в результате чего скорость ввода информации снижается. Эта проблема решилась за счет применения сенсорных экранов. Всего за несколько лет они произвели на рынке настоящую революцию и стали внедряться повсюду — от мобильных телефонов и электронных книг до мониторов и принтеров.
Начало сенсорного бума
Покупая новый смартфон, на корпусе которого нет ни одной кнопки или джойстика, вы вряд ли задумываетесь о том, как будете им управлять. С точки зрения пользователя в этом нет ничего сложного: достаточно прикоснуться пальцем к иконке на экране, что приведет к выполнению какого-либо действия — открытию окна ввода телефонного номера, SMS или адресной книги. А между тем 20 лет назад о таких возможностях можно было только мечтать.
Сенсорный экран был изобретен в США во второй половине 60-х годов прошлого века, но до начала 90-х применялся преимущественно в медицинском и промышленном оборудовании для замены традиционных устройств ввода, использование которых сопряжено с трудностями при определенных условиях эксплуатации. По мере уменьшения размера компьютеров и появления КПК встал вопрос о совершенствовании их систем управления. В 1998 году появился первый наладонник с сенсорным экраном и системой ввода и распознавания рукописного текста Apple Newton MessagePad, а вскоре и коммуникаторы с тачскринами.
В 2006 году практически все крупные производители приступили к выпуску смартфонов с сенсорными экранами, а после появления Apple iPhone в 2007 году начался настоящий сенсорный бум — дисплеи такого типа появились в принтерах, электронных книгах, различных видах компьютеров и т. д. Что же происходит, когда вы дотрагиваетесь до сенсорного экрана, и каким образом устройство «узнает», куда именно вы нажали?
Принцип работы резистивного сенсорного экрана
За 40-летнюю историю развития сенсорных экранов было разработано несколько типов этих устройств ввода, основанных на различных физических принципах, которые используются для определения места касания. В настоящее время наибольшее распространение получили два типа дисплеев — резистивные и емкостные. Помимо этого различают экраны, способные регистрировать одновременно несколько нажатий (Multitouch) или только одно.
Экраны, выполненные по резистивной технологии, состоят из двух основных частей — гибкого верхнего и жесткого нижнего слоев. В качестве первого могут использоваться различные пластиковые или полиэфирные пленки, а второй изготавливается из стекла. На внутренние стороны обеих поверхностей нанесены слои гибкой мембраны и резистивного (обладающего электрическим сопротивлением) материала, проводящего электрический ток. Пространство между ними заполнено диэлектриком.
По краям каждого слоя установлены тонкие металлические пластинки — электроды. В заднем слое с резистивным материалом они расположены вертикально, а в переднем — горизонтально. В первом случае на них подается постоянное напряжение, и от одного электрода к другому протекает электрический ток. При этом возникает падение напряжения, пропорциональное длине участка экрана.
При касании сенсорного экрана передний слой прогибается и взаимодействует с задним, что позволяет контроллеру определить напряжение на нем и вычислить с его помощью координаты точки касания по горизонтали (оси X). Для уменьшения влияния сопротивления переднего резистивного слоя расположенные в нем электроды заземляются. Затем проделывается обратная операция: напряжение подается на электроды переднего слоя, а расположенные в заднем слое заземляются — так удается вычислить координату точки касания по вертикали (оси Y). Таков принцип работы четырехпроводного (названного так по количеству электродов) резистивного сенсорного экрана.
Помимо четырехпроводных встречаются также пяти- и восьмипроводные сенсорные экраны. Последние обладают аналогичным принципом работы, но более высокой точностью позиционирования.
Принцип работы и устройство пятипроводных резистивных сенсорных экранов несколько отличаются от описанного выше. Слой переднего резистивного покрытия в них заменен проводящим слоем и используется исключительно для считывания значения напряжения на заднем резистивном слое. В него встроено четыре электрода по углам экрана, пятый электрод является выводом переднего проводящего слоя. Изначально все четыре электрода заднего слоя находятся под напряжением, а на переднем слое оно равно нулю. Как только происходит касание такого сенсорного экрана, верхний и нижний слои соединяются в определенной точке, и контроллер улавливает изменение напряжения на переднем слое. Так он определяет, что до экрана дотронулись. Далее два электрода в заднем слое заземляются, вычисляется координата точки касания по оси X, а затем заземляются два других электрода, и вычисляется координата точки касания по оси Y.
Принцип работы емкостного сенсорного экрана
В основе принципа работы емкостных сенсорных экранов лежит свойство человеческого тела проводить электрический ток, что указывает на наличие электрической емкости. В простейшем случае такой экран состоит из прочной стеклянной подложки, на которую наносится слой резистивного материала. По его углам размещаются четыре электрода. Сверху резистивный материал укрывается токопроводяшей пленкой.
На все четыре электрода подается небольшое переменное напряжение. В момент прикосновения человека к экрану электрический заряд перетекает по коже на тело, при этом возникает электрический ток. Его значение пропорционально расстоянию от электрода (угла панели) до точки касания. Контроллер замеряет силу тока по всем четырем электродам и на основе этих значений вычисляет координаты точки касания.
Такой возможностью обладает проекционно-емкостный сенсорный экран, который используется в телефонах iPhone и аналогичных устройствах. Он имеет более сложное строение по сравнению с обычными емкостными экранами. На подложку из стекла наносится два слоя электродов, разделенные диэлектриком и формирующие решетку (электроды в нижнем слое расположены вертикально, а в верхнем — горизонтально). Сетка электродов вместе с телом человека образует конденсатор. В месте касания пальцем происходит изменение его емкости, контроллер улавливает это изменение, определяет, на каком пересечении электродов оно произошло, и вычисляет по этим данным координату точки касания.
Такие экраны также имеют высокую прозрачность и способны работать при еще более низких температурах (до —40 °С). Проводящие электрический ток загрязнения влияют на них в меньшей степени, они реагируют на руку в перчатке. Высокая чувствительность позволяет использовать для защиты таких экранов толстый слой стекла (до 18 мм).
Резистивные сенсорные экраны
Принцип работы четырехпроводного резистивного сенсорного экрана
Принцип работы пятипроводного резистивного сенсорного экрана
Емкостный сенсорный экран
Проекционно-емкостный сенсорный экран
Windows 7
В появилась возможность управления компью тером с помощью жестов «Прокрутка», «Вперед/назад», «Поворот» и «Масштабирование». Операционная система Windows 7 намного лучше адаптирована для работы с сенсорными дисплеями, чем все предыдущие версии. 06 этом свидетельствуют видоизмененный интерфейс и панель задач, в которой на месте прямоугольных кнопок, символизирующих запущенные программы, появились квадратные иконки — на них намного удобнее нажимать пальцем. Кроме того, появилась новая функция — списки переходов, позволяющие быстро найти недавно открывавшиеся файлы или часто запускаемые элементы. Для активации этой возможности достаточно перетащить иконку программы на Рабочий стол.
Впервые в операционную систему Windows добавлена опция распознавания сенсорных жестов, к которым привязано выполнение отдельных функций. Так, в Windows 7 появились сенсорная прокрутка и такая же, как, например, в Apple iPhone, возможность увеличения картинок или документов движением двух пальцев рук в разные стороны. Не обошлось и без движения, отвечающего за поворот изображения. Таким операциям, как копирование, удаление и вставка, также можно назначить отдельные жесты. Кнопки экранной клавиатуры подсвечиваются при касании, что облегчает ее использование на сенсорном экране. А возможность распознавания рукописного текста позволяет быстро вводить небольшие сообщения.
Как работает сенсорный экран смартфона?
Содержание
Содержание
Сенсорные экраны, без которых невозможно представить современный мир, впервые появились в мобильных устройствах в далеком 1994 году, когда в продажу вышел уникальный для своего времени телефон IBM Simon. Но сенсорные тачскрины далеко не сразу полюбились массовому пользователю, так как поначалу их отзывчивость и энергоэффективность оставляли желать лучшего. Устройства, оснащенные экранами, которые реагируют на нажатия, нельзя было назвать доступными по цене.
Но времена меняются. К 2020 году наблюдается следующая тенденция — некоторые кнопочные телефоны и смартфоны могут стоить даже дороже бюджетных аналогов с сенсорным экраном. Производство тачскринов стало максимально бюджетным, хотя многое зависит от типа используемой матрицы. Пользоваться экранами стало значительно удобнее. О том, как развивались сенсорные экраны, какие их виды существуют на сегодняшний день и что, предположительно, нас ждет в будущем, вы можете прочитать в нашей статье, а также посмотреть видео на эту тему.
Резистивные экраны
Именно экран с резистивным принципом определения координат стал первым в мире (если рассматривать коммерческие решения), с помощью которого стало возможно управлять техникой. Изобретено такое решение было ещё в 70 году прошлого века — во времена, когда смартфоны если и существовали, то только в виде идеи, реализация которой станет доступна спустя пару десятков лет.
Принцип работы резистивного экрана, изобретённый физиком Джорджом Сэмюэлем Херстом и его коллегами, заключается в наличии над матрицей двух электропроводящих резистивных слоев и находящихся между ними микроизоляторов, равномерно распределенных по всей области экрана. При нажатии на дисплей слои замыкаются, при этом меняется сопротивление, которое регистрируется аналогово-цифровым преобразователем, принимая вид координат прикосновения по осям X и Y. Это позволяет определить в каком месте было совершено нажатие. Главным плюсом резистивного тачскрина считается его всеядность — он реагирует на прикосновения любых предметов, но и недостатков у такого экрана хватает, из-за чего он давно не используется в смартфонах.
Минусы:
При этом в разное время были и примеры сравнительно хороших резистивных экранов с отличным позиционированием, а ещё такие экраны надежно работают на холоде и в жару.
Емкостные экраны
Это может показаться удивительным, но первые емкостные дисплеи, которые используются в современных смартфонах, появились раньше резистивного варианта, уже практически не встречающегося в мобильной технике. Принято считать, что емкостный экран был создан англичанином Эриком Джонсоном из Royal Radar Establishment. Разработанный экран реагировал именно на прикосновения пальцев или других токопроводящих предметов, но долгое время использовался в основном авиадиспетчерами. Недостатки технологии заключались в отсутствии поддержки более одного касания и в сложности использования в массовых устройствах.
Впервые в смартфонах поддержка более одного нажатия, или мультитача, стала доступна в аппарате Iphone первого поколения, который начал продаваться в 2007 году. Многочисленные пользователи сразу оценили удобство и сравнительно хорошую отзывчивость дисплея. Не будет преувеличением написать, что именно Iphone стал убийцей кнопочных смартфонов, которые постепенно начали вымирать, даже противникам сенсорных экранов не оставалось ничего иного, как смириться с этим явлением.
Преимущества емкостного тачскрина вполне очевидны, если вам приходилось пользоваться его резистивным аналогом, до сих пор применяемым в некоторых банкоматах и различных автоматах для покупки билетов, еды, напитков и т. п. Прежде всего, для распознания нажатия не нужно слишком сильно давить на экран, хотя современные стекла в этом плане достаточно прочны. Также в последние годы почти во всех смартфонах отказались от использования экранов с воздушной прослойкой, хотя исключения есть не только в ультрабюджетном сегменте. К примеру, прослойка есть в девайсе Armor 3 WT, стоимость которого превышает 20000 рублей.
К тому же интерфейс мобильных устройств с емкостным тачскином, как правило, хорошо оптимизирован под управление только лишь пальцами, за исключением некоторых старых моделей смартфонов, уже снятых с производства и с продажи. Но в случае необходимости можно воспользоваться емкостным стилусом для рукописного ввода текста или работы и изображениями. Также в некоторых моделях, к примеру, в аппаратах Samsung Galaxy Note, применяется стилусы, передающие сигнал через Bluetooth, а не нажатия на экран, и, по слухам, в будущем будет использоваться Wi-Fi-соединение для еще большей дальности связи.
Современные емкостные дисплеи вовсе не такие хрупкие, какими их принято считать, и хотя почти все экраны не переносят или с трудом переносят падения с большой высоты, но даже трещины на стекле в большинстве случаях не приводят к поломке сенсорного слоя. Поэтому все еще остается возможность управляеть девайсом через экран.
Правда, есть проблемы с работой при низкой температуре окружающей среды и с попаданием воды на экран, приводящей к случайным нажатиям и проблемам с управлением, так как жидкость обладает токопроводящими качествами. Из-за попадания капелек воды сенсор нередко считает, что его коснулись пальцем — это происходит из-за похожего сигнала, который имеет достаточную силу и не отсекается устройством.
Проблема привела к тому, что даже в защищенных от воды смартфонах делают специальный режим подводной съемки, при котором любые нажатия на экран перестают распознаваться, а управление камерами переносится на различные кнопки. Чаще всего это качелька регулировки громкости.
В ближайшее время проблема может решиться: уже состоялись презентации смартфонов с сенсорами, которыми можно полноценно управлять даже под водой, но о повсеместном использовании пока говорить не приходится. О патенте, в котором описывается метод работы сенсора под водой, можно прочитать здесь, но работа над этой технологией прекращена.
О режиме работы в перчатках
В большинстве случаев емкостными экранами не получается пользоваться в перчатках или с любыми не проводящими ток предметами, но некоторые смартфоны имеют так называемый режим работы в перчатках. Реализован этот режим на уровне софта, путем многократного повышения чувствительности сенсорного слоя — он может встретиться и в бюджетных смартфонах, к примеру, в Ulefone Armor X7 или Neffos C9, поэтому не стоит считать его особенностью дорогих моделей.
При этом если перчатки тонкие, а нажатия сильные, и если в смартфоне не используется дополнительное защитное стекло, то чувствительности экрана может хватить, так как с развитием технологий дисплеи становятся всё более отзывчивыми.
Что еще влияет на чувствительность сенсора?
Во многом чувствительность сенсорного слоя зависит и от того, сколько одновременных нажатий поддерживает тачскрин, и проверить это может любой пользователь путем установки софта MultiTouch Tester или его аналогов. В бюджетных моделях, у которых мультатач воспринимает всего два касания, чаще всего возникают проблемы с точностью позиционирования. Также распространены более точные мультитачи на 5 и 10 касаний. А вот вариантов на 3 касания на самом деле не существует, хотя вы можете обнаружить подобный в своём устройстве или в некоторых обзорах смартфонов. Три касания отображаются из-за реализации таких функций, как снятие скриншота свайпом тремя пальцами и других возможностей, связанных с наэкранными жестами, но такое поведение встречается в единичных моделях. Не нужно считать, что мультитач на 10 касаний является избыточным — хотя использовать все 10 пальцев при реальных сценариях использования никогда не приходится, но отзывчивость экрана и точность нажатий от этого только увеличатся.
В последнее время в характеристиках некоторых смартфонов стало принято указывать частоту опроса сенсорного слоя, которое не стоит путать с частотой обновления экрана. Значение может составить и 270 Гц, как в смартфоне Xiaomi Black Shark 3, и нужно полагать, что это предел только на момент написания статьи. В теории, если это не маркетинговая уловка, более высокая частота опроса ускоряет реакцию смартфона на прикосновения, положительно влияя на отзывчивость.
Какие еще виды сенсорных дисплеев существуют?
Емкостные экраны благодаря своей универсальности стали самыми распространенными в смартфонах и планшетах, тогда как другие тачскрины не прижились именно в мобильной технике из-за своих недостатков. Долгое время считалось, что на смену емкостным тачскринам придут волновые (и до сих на эту тему появляется много статей), которые могут учитывать силу нажатия и пропускают больше света.
Но они не стали, и, вполне вероятно, не станут популярными, так как их пока нельзя использовать в моделях с загнутыми боками или с раскладными экранами. Поэтому интересно будет узнать о том, как разработчики пытаются дополнить возможности емкостной технологии.
Настоящее и будущее емкостных тачскринов
Один из самых интересных примеров переосмысления сенсора еще в 2012 году представила компания Sony, выпустившая на рынок смартфон Xperia Sola с технологией Floating touch, что в дословном переводе означает «парящее касание». Особенность Floating touch состоит в том, что пользователь может управлять экраном без прикосновения к нему, с расстояния примерно до 22 мм. Для этого использовался отдельный датчик, но работу функции нельзя было назвать идеальной, и, к тому же, изначально экран в воздухе реагировал только при работе с браузером и с живыми обоями. Возможно, именно поэтому Floating touch нельзя обнаружить в современных девайсах.
Проводятся эксперименты и по управлению с помощью слежения за лицом и за жестами в воздухе, которые фиксирует фронтальная камера, как это случилось в серии смартфонов HUAWEI Mate 30.
Такой способ управления может стать популярным в будущем, но пока камера не всегда фиксирует некоторые жесты, как было это выяснено автором статьи из личного опыта тестирования Mate 30 Pro.
Не стоит забывать и про голосовое управление, которое наверняка будет чаще использоваться, причем не только людьми с ограниченными возможностями.
Отсутствие тактильного отклика сенсора некоторые производители с различной степенью успешности пытаются заменить продвинутой системой вибрации, срабатывающей при прикосновениях к экрану, но пока нельзя сказать, что результаты впечатляют.
В заключение стоит упомянуть, что во многом самыми совершенными сенсорными экранами на 2020 год являются Super и Dymamic Amoled, у которых емкостный сенсорный слой расположен не за стеклом, как у многих моделей, а прямо внутри дисплейного модуля. Это позволяет не только уменьшить толщину экранов, а значит и смартфонов в целом, но и делает матрицу более яркой. Поэтому неудивительно, что Amoled-матрицы воспринимаются более яркими, чем IPS-аналоги при одинаковой максимальной яркости. Кроме того, у таких матриц наименьшее время отклика, что особенно важно для игр.
Также в последнее время появляется все больше устройств со складными экранами, которые могут менять размеры и служить как смартфоном, так и планшетом.
Перспективной, на первый взгляд, выглядит технология управления нажатием на изображение, выводимое с проектора. Правда, пока ничего не указывает на то, что в скором времени нечто подобное появится в смартфонах. Изображению будет не хватать яркости, а у мобильного устройства значительно снизится время работы, не говоря уже о прочих проблемах, связанных с удобством.
Предугадать, какой вариант придёт в будущем на замену емкостному дисплею, сложно. И вовсе не факт, что в ближайшие десятилетия придумают что-то более удобное и функциональное. Скорее емкостные тачскрины просто будут совершенствоваться, дополнительно получая новые способы управления, перечисленные в статье.