Преаналитические причины при подсчете соэ что это такое
Скорость оседания эритроцитов. Современные методы определения и клиническая интерпретация
Аптинов М.М. – руководитель учебного центра компании West Medica
Скорость оседания эритроцитов (СОЭ) – показатель, определение которого входит в общий анализ крови. Это неспецифический лабораторный скрининговый тест, изменение которого может служить косвенным признаком текущего воспалительного или иных патологических процессов, таких как злокачественные опухоли и диффузные заболевания соединительной ткани.
Скорость оседания эритроцитов определяют в разведенной цитратом крови за определенный промежуток времени (1час) и выражают в мм за 1 час.Значение СОЭ определяют как расстояние от нижней части поверхностного мениска (прозрачная плазма) до верхней части осевших эритроцитов в вертикальном столбце стабилизированной цитратом цельной крови.
Удельная масса эритроцитов выше, чем удельная масса плазмы, поэтому в пробирке при наличии антикоагулянта (цитрата натрия) под действием силы тяжести эритроциты оседают на дно. Процесс оседания (седиментации) эритроцитов можно разделить на 3 фазы, которые происходят с разной скоростью:
Показатель СОЭ меняется в зависимости от множества физиологических и патологических факторов. Значения СОЭ у женщин несколько выше, чем у мужчин. Изменения белкового состава крови при беременности ведут к повышению СОЭ в этот период. Снижение содержания эритроцитов в крови (анемия) приводит к ускорению СОЭ и, напротив, повышение содержания эритроцитов в крови замедляет скорость седиментации. В течение дня возможно колебание значений, максимальный уровень отмечается в дневное время.
Основным фактором, влияющим на образование «монетных столбиков» при оседании эритроцитов является белковый состав плазмы крови. Острофазные белки, адсорбируясь на поверхности эритроцитов, снижают их заряд и отталкивание друг от друга, способствуют образованию монетных столбиков и ускоренному оседанию эритроцитов. Повышение уровнябелков острой фазы, например, С-реактивного белка, гаптоглобина, альфа-1-антитрипсина и др., при остром воспалении приводит к повышению СОЭ.
При острых воспалительных и инфекционных процессах изменение СОЭ отмечается через 24 ч после повышения температуры и увеличения числа лейкоцитов. При хроническом воспалении повышение СОЭ обусловлено увеличением концентрации фибриногена и иммуноглобулинов. Определение СОЭ в динамике, в комплексе с другими тестами, используют в контроле эффективности лечения воспалительных и инфекционных заболеваний.
Методы определения СОЭ
Модифицированный метод Вестергрена: Система Ves-matic (Diesse – Италия).
Использование для определения СОЭ анализаторов серии Ves-matic позволяет не только повысить скорость анализа, но и существенно повышает точность полученных результатов, т.к., полностью исключает влияние субъективного фактора на результат определения.
Анализаторы серии Ves-matic, производитель Diesse – Италия
VES-MATIC 20 – Стационарный настольный автоматический СОЭ-метр на 20 позиций с перемешиванием проб крови и измерением результатов. Оптимальный прибор для средних и больших лабораторий. Кровь, собранная в специальные пробирки, тщательно перемешивается прибором. Ротор прибора вращается с заданной скоростью (1 поворот каждые 1,5 с). Посредством цифрового датчика прибор автоматически определяет уровень осаждения эритроцитов, данные рассчитываются и выводятся на принтер и дисплей. Время измерения 20 минут. Производительность: до 60 тестов в час. Память на 3 последних цикла измерения (до 60 тестов). 4 режима измерения. Клавиатура: 12 функциональных клавиш.
Сравнение значений СОЭ (мм/час), определенных двумя методами
Результаты сравнения результатов определения СОЭ методом Панченкова и Вестергрена представлены в Таблице 1 и на Рис. 1-2. Как видно из представленных данных, методы Панченкова и Вестергрена дают сходные результаты лишь в диапазоне нормальных значений СОЭ (рис.1, табл.1). В области высоких значений метод Вестергрена показывает более высокие уровни СОЭ (Табл.1).
Таблица 1. Пример результатов СОЭ у одних и тех же пациентов, определенных методом Панченкова и методом Вестергрена
Преаналитические причины при подсчете соэ что это такое
Характеристика исследования
При острых воспалительных и инфекционных процессах увеличение СОЭ отмечается через 24 часа после повышения температуры и увеличения числа лейкоцитов. Показатель СОЭ меняется в зависимости от множества физиологических и патологических факторов. Показатели СОЭ у женщин несколько выше, чем у мужчин. Изменения белкового состава крови при беременности ведут к повышению СОЭ в этот период. В течение дня возможно колебание значений, максимальный уровень отмечается в дневное время.
Измерение СОЭ необходимо рассматривать как скрининговый тест, который не имеет специфичности при каком-либо заболевании. Обычно исследование СОЭ назначают вместе с общим анализом крови.
Показания к назначению исследования
Методы исследования
Для определения СОЭ Международным комитетом стандартизации в гематологии (ICSH) рекомендован метод Вестергрена. Метод является эталонным. Исследование проводится в специальных капиллярах Вестергрена с просветом 2,5 мм и градуированной шкалой в 200 мм. Результаты исследования СОЭ выражаются в мм за 1 час (мм/час).
В нашей стране чаще применяется микрометод Панченкова, для данного метода используется аппарат Панченкова, состоящий из штатива и капиллярных пипеток со шкалой100 мм.
Результаты, получаемые при использовании метода Вестергрена, в области нормальных значений совпадают с результатами, получаемыми при определении СОЭ методом Панченкова. Однако метод Вестергрена более чувствителен к повышению СОЭ, и результаты в зоне повышенных значений, полученные методом Вестергрена, выше результатов, получаемых методом Панченкова.
Исследование СОЭ в лабораториях Ассоциации СИТИЛАБ
Определение СОЭ в лабораториях Ассоциации проводится классическим методом Вестергрена на автоматических анализаторах StaRRsed фирмы Radiomet. Данный анализатор автоматически забирает пробу, разводит её цитратом в нужном соотношении, и результаты исследования отправляются в информационную систему. Кроме того, технологические особенности прибора позволяют в автоматическом режиме производить поправки на температуру окружающего воздуха. При проведении исследования полностью исключается так называемый «человеческий фактор».
Что показывает анализ крови на СОЭ
Где его можно сдать и сколько это будет стоить
Скорость оседания эритроцитов (СОЭ) — анализ, во время которого кровь заливают в длинную стеклянную трубочку с делениями и оставляют на час.
Сходите к врачу
Наши статьи написаны с любовью к доказательной медицине. Мы ссылаемся на авторитетные источники и ходим за комментариями к докторам с хорошей репутацией. Но помните: ответственность за ваше здоровье лежит на вас и на лечащем враче. Мы не выписываем рецептов, мы даем рекомендации. Полагаться на нашу точку зрения или нет — решать вам.
Когда кровь находится внутри человека, она очень быстро движется по сосудам и постоянно перемешивается. Эритроциты равномерно распределяются в плазме — жидкой составляющей крови, — поэтому свежая кровь похожа на красную краску. Но если налить кровь в пробирку, через некоторое время она расслоится: на поверхности пробирки окажется желтоватая плазма, а эритроциты под действием силы тяжести опустятся на дно и превратятся в красный осадок.
У здоровых людей поверхность эритроцитов заряжена отрицательно, так что они отталкиваются друг от друга. А поскольку эритроциты очень легкие, они находятся в плазме во взвешенном состоянии и поэтому оседают медленно.
Скорость оседания эритроцитов — международный учебник для лаборантов
Как работает СОЭ — педиатрический журнал США
Если с организмом что-то не так, в плазме крови могут появиться белки, которых в норме там нет — или есть, но очень мало. Например, при многих внешних и внутренних повреждениях в крови повышается концентрация защитных белков-иммуноглобулинов и фибриногена — белка, который «зашивает» раны. Фибриноген и иммуноглобулины прилипают к поверхности эритроцитов, заставляя их слипаться друг с другом в тяжелые комочки. В результате у людей, в организме которых идет воспалительный процесс, эритроциты тонут быстрее, чем у здоровых.
На этой простой идее основан метод СОЭ: если красный осадок появился в пробирке быстрее, чем положено, значит, в крови много лишнего белка. Это может говорить о том, что где-то в организме идет скрытое воспаление.
Зачем назначают СОЭ
Чтобы обнаружить воспаление. Как правило, врачи назначают анализ, если у человека есть симптомы, позволяющие заподозрить скрытый воспалительный процесс:
Зачем назначают СОЭ — международная медицинская энциклопедия MedlinePlus
Кроме того, СОЭ назначают, если анализы выявили анемию — когда в крови уменьшается число эритроцитов или концентрация главного дыхательного белка — гемоглобина.
Особенности СОЭ как метода исследования — Ассоциация специалистов по клинической лабораторной диагностике (AACC)
При этом разобраться, какая причина вызвала воспаление, СОЭ не помогает. В международной медицинской практике этот анализ используют как вспомогательный метод при диагностике всего трех воспалительных заболеваний, при которых СОЭ повышается очень сильно — больше 100 мм/ч:
Во всех остальных случаях СОЭ может только намекнуть, что со здоровьем что-то не так — и, возможно, причина именно в воспалении.
Дело в том, что на скорость оседания эритроцитов, помимо воспаления, влияют многие другие состояния: от изменения размеров и формы эритроцитов, как это бывает при серповидноклеточной анемии, до беременности, сахарного диабета и сердечно-сосудистых болезней, при которых тоже повышается уровень фибриногена в крови.
Чтобы избежать такой путаницы, в современной лабораторной практике СОЭ все чаще дополняют или даже заменяют прямым измерением специфических белков, которые появляются в разгар воспалительной реакции, например С-реактивного белка. Так меньше шанс перепутать воспаление с особенностями организма.
Чтобы понять, помогает ли лечение. В большинстве случаев СОЭ назначают не столько для диагностики, сколько для контроля за лечением воспалительных заболеваний. Если СОЭ уменьшается — значит, лечение помогает.
Как делают СОЭ: методы анализа
СОЭ — один из самых старых лабораторных анализов на свете. Еще в конце 18 века британский военный хирург Джон Хантер обнаружил, что у больных людей осадок в крови появляется быстрее, чем у здоровых. Почему это происходит, доктор не знал, однако написал об этом в статье, которая вышла уже после его смерти.
История СОЭ — международная библиотека для врачей StatPearls Publishing
В 19 веке идею подхватил и развил польский врач Эдмунд Бернацкий. Он предположил, что дело может быть в изменении белкового состава крови. А в начале 20 века два шведских доктора — Роберт Фареус и Альф Вестергрен — установили, что СОЭ помогает предсказывать исход туберкулеза, и предложили способ измерения оседания эритроцитов, который до сих пор почти без изменений используют лаборатории во всем мире.
В лабораторной диагностике применяется еще несколько методов измерения скорости оседания эритроцитов. Все они занимают час, но их результаты отличаются друг от друга.
Метод Вестергрена. У пациента забирают 2 мл венозной крови в специальную вакуумную пробирку, смешивают с антикоагулянтом и засасывают в градуированную тридцатисантиметровую стеклянную трубку — для анализа кровь набирают до отметки в 200 мм, то есть заполняют ⅔ трубки. Затем трубку ставят вертикально в специальный штатив и оставляют на час. Результат фиксируют либо вручную, либо автоматически в специальных анализаторах.
Международный совет по стандартизации в гематологии (ICSH) признал метод Вестергрена эталонным способом измерения СОЭ. Большая часть международных клинических рекомендаций и учебников опирается на результаты, полученные именно этим методом, — в том числе и потому, что исследование делается на венозной крови.
ГОСТ Р 53079.4-2008 — о том, как добиться наилучших результатов анализов
Кровь из вены считается наиболее подходящей для лабораторных исследований, потому что при заборе капиллярной крови могут образовываться микросгустки, способные повлиять на результаты анализа.
Метод Винтроба. Это модифицированный метод Вестергрена, при котором кровь не разводят, а для анализа используются трубки длиной 10 см.
Метод Винтроба используется в основном за рубежом и гораздо реже, чем метод Вестергрена, потому что считается менее точным.
Метод Панченкова. У пациента забирают примерно 100 мкл крови из пальца — прямо в тонкую стеклянную трубочку длиной 17,2 см, предварительно промытую антикоагулянтом. Затем кровь переливают на стекло, перемешивают с антикоагулянтом и снова засасывают в трубочку до уровня 10 см — и так четыре раза. В конце концов трубку устанавливают в стойку вертикально и оставляют на час.
Метод Панченкова подразумевает использование капиллярной крови и поэтому считается менее точным, чем метод Вестергрена. Применяется только на территории России и стран СНГ. Некоторые частные лаборатории указывают, что делают анализ по методу Вестергрена, но из капиллярной крови — так что, скорее всего, это модификация метода Панченкова.
Нормы СОЭ
Нормы СОЭ, полученные методами Вестергрена и Панченкова, похожи — однако в зоне повышенных значений измерения СОЭ немного отличаются. Трубка, которую используют при измерении СОЭ методом Вестергрена, длиннее, чем трубка, которую используют в методе Панченкова. Так что при использовании первого метода результаты тоже могут быть выше.
Преаналитические причины при подсчете соэ что это такое
Согласно данным ВОЗ, удельный вес лабораторных анализов составляет 75–80 % от общего числа диагностических исследований, выполняемых в медорганизациях. Служба значительно эволюционировала: если раньше лаборатория была придатком в поиске факторов риска, постановке диагноза, назначении лечения, то сегодня она является объединяющим механизмом на всех этапах взаимодействия врача и пациента. Централизация лабораторных исследований — мировая тенденция реформирования клинической лабдиагностики. Особое значение имеет преаналитический этап клинических лабораторных исследований.
Юлия Ярец, заведующая клинико-диагностической лабораторией РНПЦ радиационной медицины и экологии человека, кандидат мед. наук, доцент Важная составляющая
Основной целью централизации лабораторных исследований является повышение эффективности лечебно-диагностического процесса за счет расширения объема лабораторной, диагностически значимой информации, которая поступает лечащим врачам из централизованной лаборатории.
Согласно постановлению коллегии Минздрава от 25.07.2018 № 14.4 «О совершенствовании работы службы лабораторной диагностики», централизация лабораторий, направленная на увеличение доступности лабораторных исследований, определена основным стратегическим моментом развития службы клинической лабораторной диагностики страны.
Важнейшей составляющей централизации является процесс взаимодействия с внешним заказчиком (медучреждением) на преаналитическом этапе оказания лабораторных услуг. Преаналитический этап включает прием пациента врачом, назначение лабораторных исследований, заполнение бланка направления, получение пациентом инструкций об особенностях подготовки к сдаче анализов или сбору биологического материала, взятие проб, доставку материала в лабораторию.
При централизации для лаборатории существенно увеличивается число пунктов сбора проб биологического материала, значительно расширяется спектр заказываемых тестов, изменяется структура проб биологического материала, ритм и временной период их поступления в лабораторию.
Взаимодействие централизованной лаборатории с заказчиком на преаналитическом этапе предполагает обучение врачей, медсестер, курьеров, обеспечение их инструкциями по подготовке пациентов к лабораторным исследованиям, правилам взятия, сбора и подготовки проб к транспортировке, организацию логистики доставки. Порядок организации взятия проб биологического материала и доставки его в централизованную лабораторию является одним из важнейших моментов обеспечения правильного взаимодействия лаборатории и учреждения здравоохранения.
Централизация лабораторных исследований предусматривает особые требования к организации преаналитического этапа, строгое выполнение которых позволит обеспечить получение качественных результатов. Любые неточности на этапе назначения лабораторных исследований будут существенным образом снижать эффективность лечебно-диагностического процесса.
Большинство ошибок в процессе лабораторного анализа — от назначения теста до интерпретации результатов — происходит до того, как образец попал в лабораторию, т. е. вне прямого контроля лаборатории. По данным различных исследований, на преаналитический этап приходится от 46 % до 68 % всех лабораторных ошибок.
Наиболее частые ошибки преаналитического этапа:
Рекомендации
При определении приемлемости выявленных ошибок рекомендуется использовать целевые уровни индикаторов качества преаналитического этапа, установленные Международной федерацией клинической химии и лабораторной медицины (IFCC). Ошибки преаналитического этапа могут существенно исказить состав или свойства биологического материала и таким образом существенно снизить диагностическую ценность результата лабораторного исследования. Частота таких ошибок зависит от уровня технологической дисциплины в направляющей организации здравоохранения, качества администрирования этого этапа.
Основные причины большого количества ошибок:
Прогресс лабораторных технологий, оснащение медицинской лаборатории современными автоматическими анализаторами позволили получать существенно более точные результаты анализов. Новые автоматические анализаторы весьма чувствительны к качеству исследуемого биоматериала, что предъявляет более высокие требования к условиям взятия, хранения и срокам доставки проб.
Согласно приказу Минздрава от 18.04.2019 № 466 «О совершенствовании деятельности службы лабораторной диагностики Республики Беларусь», обеспечение качества преаналитического этапа лабораторных исследований является зоной ответственности клинических специалистов. В стандарте СТБ ISO 15189-2015 «Медицинские лаборатории. Требования к качеству и компетенции» требуется установление индикаторов качества с целью мониторинга и оценки работы по всем критическим аспектам преаналитического этапа. Их внедрение в лабораторную практику и систематический сбор данных позволят обеспечить надежность результатов лабораторного тестирования.
Внутренний стандарт
Клинико-диагностическая лаборатория (КДЛ) РНПЦ РМиЭЧ является многопрофильной, с 2016 года выполняет централизованные исследования для взрослых и детей Новобелицкого и Советского районов Гомеля. Заказчиками являются 10 поликлиник. Исследования включают широкий спектр биохимических (специфических белков и метаболитов), иммунохимических (гормоны, онкомаркеры, витамины и др.), коагулологических (коагулограмма, агрегатограмма, факторы свертывания и антикоагулянты, D-димеры и др.) лабораторных тестов.
Разработан внутренний стандарт, который был включен в текст совместного приказа РНПЦ РМиЭЧ и ГУЗО Гомельского облисполкома (№ 117 и № 167 от 05.02.2019) «О централизации лабораторных исследований». Определена схема проведения централизованных лабораторных исследований.
Для обеспечения доступности для врачей-клиницистов информации о полном спектре выполняемых тестов сотрудниками лаборатории разработаны бланки направлений.
Для обеспечения контроля качества выполнения централизованных исследований лаборатория постоянно анализирует результаты применения основных индикаторов качества преаналитического этапа:
По результатам анализа, проведенного КДЛ РНПЦ РМиЭЧ, несоответствия в целом выявляются для 1,3 % доставленных образцов сыворотки/плазмы. Среди индикаторов с наибольшей частотой встречаются ошибки транскрипции тестов, составляющие 1 %:
Реже определяются ошибки идентификации пробы — нарушение маркировки, в т. ч. расхождения между нумерацией направления и пробы. В 0,34 % случаев пробы не доставлялись в лабораторию, в 0,3 % — для проб отсутствовали направления на исследования. Несмотря на то что выбраковка по причине гемолиза определена на этапе взятия крови и первичной пробоподготовки, в лабораторию в 0,31 % случаев доставляются гемолизированные образцы. В 0,5–1 % случаев в пробах сыворотки встречаются нити фибрина, сгустки, осадок эритроцитов. Регистрируются случаи доставки количества сыворотки, недостаточного для выполнения назначенных тестов. Такие несоответствия являлись результатом неполного соблюдения поликлиниками правил пробоподготовки: выдержки необходимого времени сворачивания крови, соблюдения режима центрифугирования крови и пипетирования сыворотки.
Для образцов сыворотки с выявленными ошибками транскрипции тестов лаборатория выясняет необходимую информацию по телефону, после чего образцы, как правило, принимаются в работу. Указанные действия позволили минимизировать потери образцов по причине нарушений правил преаналитики. Выбраковка с оформлением акта отказа в приеме биологического материала с объяснением причин проводится для гемолизированных образцов либо для случаев, когда доставляется только проба сыворотки без направления и наоборот. Пробы сыворотки со сгустками, эритроцитами подвергаются повторному центрифугированию, после чего выполняются исследования.
Методические рекомендации. Гематологические анализаторы. Интерпретация анализа крови
УТВЕРЖДАЮ
Заместитель Министра
здравоохранения и
социального развития
Российской Федерации
Р.А.ХАЛЬФИН
21 марта 2007 г. N 2050-РХ
ГЕМАТОЛОГИЧЕСКИЕ АНАЛИЗАТОРЫ. ИНТЕРПРЕТАЦИЯ АНАЛИЗА КРОВИ
В эру использования современных технологий автоматизированного анализа крови стало реальным предоставлять значительно больше клинической информации о состоянии кроветворной системы и реагировании ее на различные внешние и внутренние факторы. Анализ результатов исследования крови составляет неотъемлемое звено в диагностическом процессе и последующем мониторинге на фоне проводимой терапии.
Высокотехнологические гематологические анализаторы способны измерять более 32 параметров крови, осуществлять полный дифференцированный подсчет лейкоцитов по 5-ти основным популяциям: нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты, что делает возможным в случае отсутствия от референсных значений этих показателей не проводить ручной подсчет лейкоцитарной формулы.
Аналитические возможности гематологических анализаторов:
высокая производительность (до 100-120 проб в час)
небольшой объем крови для анализа (12-150 мкл)
анализ большого количества (десятки тысяч) клеток
высокая точность и воспроизводимость
оценка 18-30 и более параметров одновременно
графическое представление результатов исследований в виде гистограмм, скатерограмм.
Диагностические возможности гематологических анализаторов:
оценка состояния гемопоэза
диагностика и дифференциальная диагностика анемий
диагностика воспалительных заболеваний
оценка эффективности проводимой терапии
мониторинг за мобилизацией стволовых клеток из костного мозга.
Несмотря на все достоинства, даже самые современные гематологические анализаторы обладают некоторыми ограничениями, которые касаются точной морфологической оценки патологических клеток (например, при лейкозах), и не в состоянии полностью заменить световую микроскопию.
Преаналитический этап гематологических исследований
Контроль преаналитических факторов в гематологических исследованиях является ключевым для обеспечения качественных результатов тестов. Отклонения от стандартов при взятии пробы, транспортировке и хранении образца, интерферирующие вещества, а также факторы, связанные с пациентом, могут привести к неверным или неточным результатам анализов и, следовательно, к постановке ошибочного диагноза. До 70% лабораторных ошибок связаны именно с преаналитическим этапом исследования крови. За счет снижения числа ошибок на любом этапе преаналитической подготовки можно существенно улучшить качество гематологических анализов, снизить количество повторных проб, сократить расходы рабочего времени и средств на обследование пациентов.
Снижение до минимума возможных ошибок и обеспечение высокого качества гематологических исследований возможно за счет стандартизации преаналитического и аналитического этапов работы.
На точность и правильность результатов оказывает влияние техника взятия крови, используемые при этом инструменты (иглы, скарификаторы и др.), а также пробирки, в которые берется, а в последующем хранится и транспортируется кровь.
— Кровь следует брать натощак (после примерно 12 часов голодания, воздержания от приема алкоголя и курения), между 7 и 9 часами утра, при минимальной физической активности непосредственно перед взятием (в течение 20-30 мин.), в положении пациента лежа или сидя.
— Взятие материала следует проводить в резиновых перчатках, соблюдая правила асептики.
Венозная кровь. Венозная кровь считается лучшим материалом для клинического исследования крови. При известной стандартизации процессов взятия, хранения, транспортировки венозной крови удается добиться минимальной травматизации и активации клеток, примеси тканевой жидкости, при этом всегда имеется возможность повторить и/или расширить анализ, например, добавив исследование ретикулоцитов.
Достоверность и точность гематологических исследований, проводимых из венозной крови, во многом определяется техникой взятия крови.
Подготовка пациента к взятию крови из вены включает несколько этапов. Место венепункции нужно продезинфицировать марлевой салфеткой или специальной безворсовой салфеткой, смоченной 70 град. спиртом, и подождать до полного высыхания антисептика (30-60 секунд). Применение ватных тампонов и других волокнистых материалов подобного рода может привести к засорению волокнами счетной и гемоглобиновой камер, что влечет снижение точности и воспроизводимости измерения. Не рекомендуется использовать 96 град. спирт, так как он дубит кожу, поры кожи закрываются, и стерилизация может быть неполной.
Не рекомендуется вытирать и обдувать место прокола, пальпировать вену после обработки. Рука пациента должна покоиться на твердой поверхности, быть вытянута и наклонена немного вниз так, чтобы плечо и предплечье образовывали прямую линию. Необходимо следить, чтобы в момент взятия крови кулак пациента был разжат. Жгут следует накладывать не более чем на 1-2 минуты, тем самым обеспечивается минимальный стаз, при котором клетки крови не повреждаются. Игла должна быть достаточно большого диаметра и иметь короткий срез, чтобы не травмировать противоположную стенку вены во избежание тромбоза. После взятия крови необходимо приложить сухую стерильную салфетку к месту венепункции, а затем наложить давящую повязку на руку или бактерицидный пластырь.
— Кровь для гематологических исследований должна поступать
свободным током непосредственно в пробирку, содержащую
антикоагулянт К ЭДТА. Взятие крови шприцом без антикоагулянта с последующим переливанием в пробирку нежелательно из-за
формирования микросгустков и гемолиза. При взятии капиллярной
крови необходимо использовать специальные пробирки с ЭДТА для
капиллярной крови.
У некоторых пациентов может наблюдаться небольшая спонтанная агрегация тромбоцитов или реже так называемая ЭДТА-зависимая псевдотромбоцитопения (иммунного характера), причем эти явления прогрессируют по мере увеличения времени, прошедшего после взятия крови. У таких лиц точный подсчет числа эритроцитов может быть осуществлен при взятии крови с цитратом в качестве антикоагулянта.
Следует помнить, что применение в качестве антикоагулянтов гепарина или цитрата натрия сопровождается структурными изменениями клеток и поэтому не рекомендуется для использования как при автоматизированном, так и морфологическом исследовании крови.
Капиллярная кровь. Для гематологических исследований капиллярную кровь рекомендуется брать в следующих случаях:
— при ожогах, занимающих большую площадь поверхности тела пациента;
— при выраженном ожирении пациента;
— при установленной склонности к венозному тромбозу;
Применение ватных тампонов и других волокнистых материалов не рекомендовано, поскольку это приводит к засорению волокнами счетных и гемоглобиновой камер. В результате точность и воспроизводимость измерения падает.
Первую каплю крови, полученную после прокола кожи, следует удалить тампоном, поскольку эта капля содержит примесь тканевой жидкости. Капли крови должны свободно вытекать, нельзя давить на палец и массировать зону вокруг прокола, так как при этом в кровь попадает тканевая жидкость, что существенно искажает результаты исследования. После взятия крови к раневой поверхности прикладывается новый стерильный тампон, смоченный 70 град. спиртом. Тампон следует удерживать, пока не прекратится кровотечение.
При прикосновении края пробирки к месту пункции капли крови начинают стекать в нее под действием капиллярного эффекта. После завершения сбора крови пробирку следует плотно закрыть. Необходимым условием для обеспечения качественной пробы является ее обязательное немедленное перемешивание с антикоагулянтом осторожным переворачиванием пробирки до 10 раз. В случае последовательного взятия капиллярной крови в несколько микропробирок необходимо соблюдать определенный порядок их заполнения. Последовательность взятия крови такова: в первую очередь заполняются пробирки с ЭДТА, затем с другими реактивами и в последнюю очередь заполняются пробирки для исследования сыворотки крови.
Основные рекомендации при работе с капиллярной кровью:
— При взятии крови в пробирку с антикоагулянтом не допускается стекание крови по коже пальца, стенке пробирки и любой другой поверхности, так как мгновенно происходит контактная активация прогресса свертывания.
— Кровь самотеком из прокола должна попадать прямо в антикоагулянт, перемешиваясь с ним.
— Нельзя выдавливать кровь из пальца во избежание спонтанной агрегации тромбоцитов и попадания в пробу большого количества межтканевой жидкости (тканевого тромбопластина).
Следует отметить, что при взятии капиллярной крови возможен ряд особенностей, которые бывает весьма трудно стандартизировать:
Все это приводит к значительным разбросам в получаемых результатах и, как следствие, к необходимости повторных исследований для уточнения результата.
Доставка, хранение и подготовка проб к исследованию
Для обеспечения качественного результата исследований нужно четко контролировать время и условия хранения проб до выполнения анализа.
— Непосредственно после взятия крови исключается возможность спонтанной агрегации тромбоцитов, примерно 25 мин. необходимо для адаптации тромбоцитов к антикоагулянту. При анализе, проведенном позже чем через 6-8 часов после взятия образца, уменьшается достоверность результатов. Более продолжительное хранение крови не рекомендуется, т.к. изменяются некоторые характеристики клеток (сопротивляемость клеточной мембраны), снижается объем лейкоцитов, повышается объем эритроцитов, что в конечном итоге приводит к ошибочным результатам измерения и неправильной интерпретации результатов. Только концентрация гемоглобина и количество тромбоцитов остаются стабильными в течение суток хранения крови.
— Кровь нельзя замораживать. Капиллярную кровь с ЭДТА следует хранить при комнатной температуре и анализировать в течение 4 часов после взятия.
— Непосредственно перед исследованием кровь должна быть тщательно перемешана в течение нескольких минут для разведения антикоагулянта и равномерного распределения форменных элементов в плазме. Длительное постоянное перемешивание образцов на ротомиксе до момента их исследований не рекомендуется вследствие возможного травмирования и распада патологических клеток.
— Исследование крови на приборе проводится при комнатной температуре. Кровь, хранившуюся в холодильнике, необходимо вначале согреть до комнатной температуры, так как при низкой температуре увеличивается вязкость, а форменные элементы имеют тенденцию к склеиванию, что, в свою очередь, приводит к нарушению перемешивания и неполному лизису. Исследование холодной крови может быть причиной появления «сигналов тревоги» вследствие компрессии лейкоцитарной гистограммы.
— Приготовление мазков крови рекомендуется делать не позднее 1-2 часов после взятия крови.
При выполнении гематологических исследований на значительном удалении от места взятия крови неизбежно возникают проблемы, связанные с неблагоприятными условиями транспортировки. Тряска, вибрация, постоянное перемешивание, нарушения температурного режима, возможные проливы и загрязнения проб могут оказывать существенное влияние на качество анализов. Для устранения этих причин при перевозках пробирок с кровью рекомендуется использовать герметично закрытые пластиковые пробирки (BD Vacutainer (R) производства компании «Becton Dickinson», Deltalab, Sarstedt) и специальные транспортные изотермические контейнеры (фирма «Гем»).
Влияние преаналитических факторов, зависящих от пациента
На результаты гематологических исследований могут влиять факторы, связанные с индивидуальными особенностями и физиологическим состоянием организма пациента. Изменения клеточного состава периферической крови наблюдаются не только при различных заболеваниях, они также зависят от возраста, пола, диеты, курения и употребления алкоголя, менструального цикла, беременности, физической нагрузки, эмоционального состояния и психического стресса, циркадных и сезонных ритмов; климатических и метеорологических условий; положения пациента в момент взятия крови; приема фармакологических препаратов и др. Так, например, число эритроцитов и концентрация гемоглобина у новорожденных выше, чем у взрослых. С увеличением высоты над уровнем моря значительное повышение наблюдается для гематокрита и гемоглобина (до 8% на высоте 1400 м). Физические упражнения могут приводить к существенным изменениям числа лейкоцитов, обусловленным гормональными сдвигами. У больных при переходе из положения лежа в положение стоя показатели гемоглобина и число лейкоцитов могут увеличиваться на 6-8%, а показатели гематокрита и число эритроцитов возрастать на 15-18%. Этот эффект обусловлен переходом жидкости из сосудистого русла в ткани в результате повышения гидростатического давления. Выраженная диарея и рвота могут приводить к значительной дегидратации и гемоконцентрации. После регидратации наблюдается снижение гемоглобина и гематокрита, что может быть ошибочно принято за кровопотерю.
Для устранения или сведения к минимуму влияния этих факторов кровь для повторных анализов необходимо брать в тех же условиях, что при первом исследовании.
Автоматизированное исследование клеток крови
Автоматические счетчики крови оценивают размеры, структурные, цитохимические и другие характеристики клеток. Они анализируют около 10000 клеток в одном образце и имеют несколько различных каналов подсчета клеточных популяций и концентрации гемоглобина. На основании количества определяемых параметров и степени сложности их можно условно разделить на 3 основных класса:
В основе работы анализаторов I-го класса лежит кондуктометрический метод. Анализаторы II и III-го классов используют в своей работе комбинации разных методов.
Кондуктометрические гематологические анализаторы
Если в один и тот же момент в канале находятся две клетки, они регистрируются в виде одного импульса, что приведет к ошибке подсчета клеток. Во избежание этого, проба крови разводится до такой концентрации, при которой в канале датчика всегда будет не больше одной клетки.
Апертуро-импедансный метод позволяет определять большинство эритроцитарных и тромбоцитарных показателей, связанных с объемом клеток (НСТ, MCV, МСН, МСНС, MPV), а также является основой для дифференцировки лейкоцитов по трем параметрам.
Подсчет эритроцитов и тромбоцитов, расчет величины гематокрита, эритроцитарных и тромбоцитарных индексов
Устройство, которое разделяет импульсы по величине амплитуды, называется дискриминатор. В современных анализаторах применяются многоканальные дискриминаторы, позволяющие получить детальную информацию о размерах клеток в виде гистограмм, поскольку каждый канал соответствует определенному объему клеток.
Поскольку в норме концентрация эритроцитов в крови на 3 порядка превышает концентрацию лейкоцитов, то вклад лейкоцитов в общее количество подсчитываемых клеток пренебрежимо мал по сравнению с эритроцитами, поэтому в некоторых анализаторах за количество эритроцитов принимают общее подсчитанное количество клеток. Такое допущение справедливо, за исключением случаев явных лейкоцитозов.
Подсчет и дифференцировка лейкоцитов
Определение количества лейкоцитов возможно только после лизиса эритроцитов. Эта задача оказалась легко решаемой, так как свойства мембран эритроцитов и лейкоцитов существенно различаются. Эритроциты легко лизируются под воздействием многих поверхностно-активных веществ, при этом лейкоциты, хотя и претерпевают некоторые изменения, остаются целыми. Поэтому при подсчете лейкоцитов, прежде чем пропустить разведенную суспензию крови через апертуру датчика, к ней добавляют лизирующий раствор или гемолитик, эритроциты разрушаются до очень мелких фрагментов, которые при подсчете лейкоцитов генерируют электрические импульсы очень низкой амплитуды, не влияющие на результат анализа.
Разделение неизмененных лейкоцитов кондуктометрическим методом на основные субпопуляции невозможно в виду близости их объемов, однако можно подобрать такую композицию растворителя и гемолитика, что различные формы лейкоцитов претерпевают изменения размеров в разной степени и, благодаря этому, могут разделяться данным методом. Изменение объема клетки зависит от многих факторов, включающих величину и форму ядра, объем цитоплазмы, наличие внутриклеточных включений и т.д., поэтому размер трансформированных клеток не соответствует размерам клеток при визуальном просмотре их в окрашенном мазке крови (таблица 1)
Соотношение размеров клеток в окрашенных мазках крови и в приборах после обработки их лизирующим реагентом | ||
Тип клеток | Размер клеток при визуальном анализе мазков крови | Размер клеток после обработки лизатом |
Лимфоциты | малый | малый |
Базофилы | средний | средний, малый |
Эозинофилы | средний | средний, большой |
Моноциты | наибольший | средний |
Нейтрофилы | средний | большой, средний |
Патологические формы клеток | различный | различный |
Дальнейшая идентификация патологических форм клеток проводится визуально |
— Область малых объемов (35-90 фл) формируется лимфоцитами, которые под действием гемолитика значительно уменьшаются в объеме.
— Гранулоциты (нейтрофилы, базофилы и эозинофилы), напротив, подвергаются небольшому сжатию и расположены в области больших объемов (120-400 фл).
— Между двумя пиками имеется зона так называемых «средних лейкоцитов» (90-120 фл), которая лучше всего коррелирует с моноцитами (по этой причине в некоторых анализаторах клетки в этой области указываются как моноциты). Однако, учитывая тот факт, что коэффициент корреляции с моноцитами R = 0,5-0,8 сравнительно невысок, более корректным является название параметра «средние лейкоциты» или «средние клетки» (MID). Практически в область средних клеток могут частично попадать базофилы, эозинофилы, различные патологические формы.
Высокотехнологические гематологические анализаторы
Высокотехнологические гематологические анализаторы способны осуществлять дифференцированный счет лейкоцитов по 5-ти (5Diff) основным популяциям, используя различные принципы дифференцирования клеток: нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты, оценивать наличие незрелых гранулоцитов, анализировать ретикулоциты и их субпопуляции, проводить оценку стволовых гемопоэтических клеток и субпопуляций лимфоцитов. Многочисленные функции современных гематологических анализаторов стали возможны, благодаря развитию новых технологий, которые отличаются у разных фирм-производителей.
— для оценки клеточной зернистости и дифференцировки эозинофилов используется оценка светорассеивания деполяризованного луча под углом в 90 град.
Сравнивая информацию, получаемую с Perox- и Baso-каналов, компьютер осуществляет дифференцировку лейкоцитов на 5 основных популяций, а также сигнализирует в виде флагов о присутствии в крови активированных лимфоцитов, незрелых гранулоцитов, бластов, эритробластов.
3. Детекция специфического флюоресцентного сигнала (SFL), которая регистрируется также как боковое светорассеивание под углом 90 град. и позволяет судить о содержании РНК/ДНК в клетках.
Кроме того, приборы оборудованы каналом для выделения незрелых гранулоцитов и атипичных лимфоцитов.
Таким образом, использование приборов с полным дифференцированным подсчетом лейкоцитов (5Diff) позволяет повысить точность дифференциального подсчета лейкоцитов, провести скрининг нормы и патологии, динамический контроль за лейкоцитарной формулой и резко сократить ручной подсчет лейкоцитарной формулы, оставляя примерно до 15-20% образцов крови для световой микроскопии.
В классическом гемиглобинцианидном методе (метод Драбкина) +2 +3 Fe гемоглобина окисляется до Fe метгемоглобина феррицианидом, затем метгемоглобин переводится в стабильный цианметгемоглобин цианидом. Оптическая плотность CNmetHb измеряется при 540 нм, при которой имеется максимум поглощения. Гемиглобинцианидный метод рекомендован Международным комитетом по стандартизации в гематологии Всемирной Организации Здравоохранения и используется в мировой практике более 30 лет.
В гематологических анализаторах к методам определения гемоглобина предъявляется ряд специфических требований. Во-первых, время реакции должно быть в десятки раз меньше для обеспечения высокой производительности анализаторов. Во-вторых, для оптимизации конструкции анализаторов гемоглобин должен измеряться в том же гемолизате, который используется для подсчета лейкоцитов, и, следовательно, компоненты, обеспечивающие гемоглобиновую реакцию, не должны негативно влиять на подсчет лейкоцитов.
Многие гематологические анализаторы измеряют концентрацию гемоглобина модифицированным гемиглобинцианидным методом. Высокая
скорость реакции достигается путем быстрого лизиса эритроцитов, +3 денатурирования и окисления гемоглобина до Fe с помощью
поверхностно-активных веществ. Последующая реакция с цианидом формирует устойчивую форму со спектром поглощения, похожим на
спектр гемиглобинцианида в методе Драбкина, и максимумом поглощения около 545 нм. Достоинством метода является его простота, высокая скорость реакции и стабильность конечного продукта. Применение циановых методов в гематологических автоанализаторах имеет два существенных недостатка, связанных с тем, что цианид из флаконов постепенно выпаривается в виде синильной кислоты. Во-первых, это может оказывать вредное воздействие на персонал при плохой вентиляции помещения. Во-вторых, это приводит к ухудшению реакции и изменению калибровки по гемоглобину через 2-3 месяца после подсоединения к прибору флакона с гемолитиком.
Учитывая недостатки модифицированных гемиглобинцианидных методов, в последние годы в большинстве новых моделей гематологических анализаторов используются бесциановые методы. Одной из первых бесциановый SLS (натрий лаурил сульфат)-метод использовала фирма Sysmex. Этот метод оказался не совместимым с определением лейкоцитов в одном канале, для его реализации используется дополнительный реагент и канал измерения.
В других современных бесциановых методах используются компоненты гемихромной реакции, которые совместимы с подсчетом лейкоцитов и их дифференциацией на три популяции. Высокая скорость реакции достигается путем быстрого лизиса эритроцитов, +3 денатурирования и окисления гемоглобина до Fe с помощью окислителей в присутствии поверхностно-активных веществ. При этом в качестве лигандов атомов железа гема используются отличные от цианида вещества.
Качество результатов исследования крови на гематологическом анализаторе определяется следующими факторами:
— точностью дозирования цельной или разведенной крови;
— точностью дозирования изотонического раствора при проведении процедуры разведения крови;
— точностью определения объема суспензии, пропущенного через датчики подсчета клеток;
— точностью самого подсчета клеток;
— точностью определения размеров клеток;
— корректностью математических методов обработки первичных результатов измерений.
Во избежание случаев несовместимости реагентов следует использовать изотонический раствор и гемолитик от одного изготовителя. При смене реагентов одного производителя на реагенты другого производителя необходимо проверить калибровку анализатора по контрольной крови, обращая особое внимание на Hb и MCV/HCT, и при необходимости нужно делать перекалибровку этих показателей. Калибровка других показателей, как правило, не меняется.
Периодически необходима калибровка по стандартным материалам, так как электронные и механические компоненты прибора, датчиков, насосов и т.д. со временем подвергаются старению и меняют свои технические параметры. Для осуществления калибровки необходимо пользоваться только качественными контрольными материалами!
Гематологические анализаторы очень чувствительны к длительным отключениям и перебоям в работе, что связано с подсыханием шлангов, проростом микрофлоры, кристаллизацией из растворов. При длительной остановке (на период отпуска, переезда или отсутствия реагентов) обязательным является заполнение шлангов консервирующими растворами с последующей многократной отмывкой от них.
Автоматизированные гематологические анализаторы, поставляемые в КДЛ в рамках Приоритетного национального проекта «Здоровье»
Для оснащения клинико-диагностических лабораторий поликлиник предпочтение отдано автоматизированным гематологическим анализаторам, работа которых основана на кондуктометрическом методе, который позволяет получить до 18 параметров крови с определением трех популяций лейкоцитов (лимфоциты, клетки средних размеров, гранулоциты).
При использовании такого анализатора определяют:
— RBC (количество эритроцитов)
— HGB (концентрация гемоглобина)
— MCV (средний объем эритроцита)
— МСН (среднее содержание гемоглобина в эритроците)
— МСНС (средняя концентрация гемоглобина в эритроците)
— RDW (ширина распределения эритроцитов по объему)
— PLT (количество тромбоцитов)
— MPV (средний объем тромбоцита)
— PDW (ширина распределения тромбоцитов по объему)
— WBC (количество лейкоцитов)
Гистограммы (распределение клеток по объему)
Автоматизированный гематологический анализатор MEK-6400J/K
В приборе существует пять режимов разведения: нормальный, режим низкого, высокого и очень высокого разведения, режим предварительного разведения.
В нормальном режиме разведения измеряется образец объемом 30 мкл.
Для режимов измерения крови с предварительным разведением можно указать объем исследуемой крови (10 или 20 мкл). Этот режим удобен при работе с малым объемом крови, особенно у детей и пожилых людей.
При наличии лейкоцитоза образец крови может быть измерен в режиме высокого или более высокого разведения. В режиме высокого разведения образец крови объемом 10 мкл разводится втрое больше обычной пропорции разведения. В режиме более высокого разведения 5 мкл образца крови разводится в пропорции, в шесть раз большей обычной пропорции разведения.
В случаях низкого содержания в крови лейкоцитов и тромбоцитов образец измеряется в режиме низкого разведения, при котором 55 мкл крови разводится в пропорции, вдвое меньшей обычной пропорции. Пересчет с высоким/низким разведением недоступен для образцов в режиме предварительного разведения.
Прибор снабжен системой закодированных флагов, которые появляются на экране при наличии отклонений в измерении или изменении гистограмм распределения клеток. Следует внимательно изучить названия флагов, т.к. они помогают определить возможные причины их появления. Помимо количественных характеристик клеток крови в анализаторе отображается распределение клеток по объему в виде гистограмм, анализ которых имеет диагностическое значение.
Уважаемые коллеги!
Все методические рекомендации, пособия и т.д. интеллектуальная собственность авторов, Ассоциации и являются архивными материалами разных лет!!