Практическая астрометрия что изучает
Практическая астрономия
Полезное
Смотреть что такое «Практическая астрономия» в других словарях:
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ — учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. Практическая астрономия подразделяется на геодезическую, мореходную и авиационную … Большой Энциклопедический словарь
Практическая астрономия — раздел астрономии, изучающий устройство и правила пользования астрономическими инструментами. С помощью практической астрономии судоводители, наблюдая небесные светила, могут определить координаты места корабля, поправку курсоуказания, проверяют… … Морской словарь
практическая астрономия — учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. Практическая астрономия подразделяется на геодезическую, мореходную и авиационную. * * *… … Энциклопедический словарь
Практическая астрономия — учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. Практическая астрономия подразделяется на геодезическую, мореходную и авиационную … Астрономический словарь
Практическая астрономия — учит наиболее целесообразно располагать, производить и обрабатывать наблюдения астрономическими инструментами, необходимые для решения той или другой задачи астрономии. Существенную часть ее составляет теория инструментов (об этом см.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ — учение об астр. инстр тах и способах определения из астр. наблюдений времени, геогр. координат и азимутов направлений. П. а. подразделяется на геодезическую, мореходную и авиационную … Естествознание. Энциклопедический словарь
Астрономия Древней Греции — Астрономия Древней Греции астрономические познания и взгляды тех людей, которые писали на древнегреческом языке, независимо от географического региона: сама Эллада, эллинизированные монархии Востока, Рим или ранняя Византия. Охватывает… … Википедия
Астрономия — I Астрономия (греч. astronomía, от Астро. и nómos закон) наука о строении и развитии космических тел, их систем и Вселенной в целом. Задачи и разделы астрономии. А. исследует тела Солнечной системы, звёзды, галактические… … Большая советская энциклопедия
Астрономия — I Астрономия (греч. astronomía, от Астро. и nómos закон) наука о строении и развитии космических тел, их систем и Вселенной в целом. Задачи и разделы астрономии. А. исследует тела Солнечной системы, звёзды, галактические… … Большая советская энциклопедия
астрономия — и; ж. [греч. astron звезда и nomos закон]. Комплексная наука о строении и развитии небесных тел, их систем и Вселенной в целом. * * * астрономия (от астро. и греч. nómos закон), наука о строении и развитии космических тел, образуемых ими… … Энциклопедический словарь
Практическая астрономия
В настоящее время многие задачи практической астрономии решаются с помощью спутниковых систем навигации.
Для решения задач практической астрономии используются сведения из сферической астрономии и применяются данные из звёздных каталогов.
Один из основных используемых инструментов, это так называемый универсальный инструмент, также применяются секстанты, переносной пассажный инструмент, зенитная фотографическая труба, зенитный телескоп и другие.
Связанные понятия
В физике и математике, в отрасли динамических систем, двойной маятник — это маятник с другим маятником, прикреплённым к его концу. Двойной маятник является простой физической системой, которая проявляет разнообразное динамическое поведение со значительной зависимостью от начальных условий. Движение маятника руководствуется связанными обыкновенными дифференциальными уравнениями. Для некоторых энергий его движение является хаотическим.
Спутниковые навигационные системы GPS (США) и ГЛОНАСС (Россия) функционируют в собственном системном времени. Все процессы измерений фиксируются в этой шкале времени. Необходимо, чтобы шкалы времени используемых спутников были согласованы между собой. Это достигается независимой привязкой каждой из шкал спутников к системному времени.
Косми́ческие ско́рости (первая v1, вторая v2, третья v3 и четвёртая v4) — характерные критические скорости движения космических объектов в гравитационных полях небесных тел и их систем. Космические скорости используются для характеристики типа движения космического аппарата в сфере действия небесных тел: Солнца, Земли и Луны, других планет и их естественных спутников, а также астероидов и комет.
Фотометри́ческая величина́ — аддитивная физическая величина, определяющая временно́е, пространственное, спектральное распределение энергии оптического излучения и свойств веществ, сред и тел как посредников переноса или приемников энергии.
Астрометрия
Астроме́трия (от др.-греч. ἄστρον — «звезда» и μετρέω — «измеряю») — раздел астрономии, главной задачей которого является изучение геометрических, кинематических и динамических свойств небесных тел.
Основная задача астрометрии более развёрнуто формулируется как высокоточное определение местонахождения небесных тел и векторов их скоростей в данный момент времени. Полное описание этих двух величин дают шесть астрометрических параметров:
Знания этих астрометрических параметров для астрономического объекта с высокой точностью позволяют получить о нём следующую информацию: [2]
Многие из этих сведений необходимы для того, чтобы делать выводы о физических свойствах и внутреннем строении наблюдаемого объекта, а также давать ответы и на более фундаментальные вопросы — об объеме, массе и возрасте всей Вселенной. Т.о., астрометрия является одним из необходимых разделов астрономии, дающим экспериментальную информацию, необходимую для развития остальных разделов (астрофизики, космологии, космогонии, небесной механики, и т. п.).
Содержание
Классификация астрометрии
Фундаментальная астрометрия
Для точных измерений положений и движений небесных тел необходимо иметь систему отсчёта с заданными координатами. Фундаментальной астрометрией называется тот подраздел астрометрии, который занимается проблемами выбора такой системы координат, и связанных с ними вопросов — какие именно объекты выбрать для начала отсчёта (т. н., реализации системы координат); каким способом привязать систему координат к объектам, являющимся началом отсчёта.
Современные системы кооординат подразделяются на кинематические и динамические:
С начала развития астрономии и вплоть до конца XX века астрономы всегда пользовались именно динамической системой экваториальных координат. За начало отсчёта этой системы была принята точка весеннего равноденствия, традиционно обозначаемая символом , — точки пересечения эклиптики с небесным экватором, определяемая из наблюдений годового движения Солнца.
Такая динамическая система имеет ряд недостатков. Вследствие прецессии и нутации земной оси, движения оси вращения внутри Земли, а также вековых и периодических возмущений орбиты Земли от тел Солнечной системы (т. н., «прецессия от планет» [3] ), точка весеннего равноденствия движется среди звёзд. Пока в астрономии пользовались динамической системой координат, это движение вынуждены были компенсировать подсчетом влияния всех вышеперечисленных процессов, соответственно пересчитывая координаты на каждую эпоху.
Кроме того, динамическая система отсчёта не удовлетворяет предъявляемому к опорной системе требованию инерциальности.
Эти затруднения привели к целесообразности замены динамической системы координат на кинематическую. В современной астрометрии пользуются кинематической системой координат. В настоящий момент это система координат ICRF в радиодиапазоне, с внегалактическими объектами в качестве опорных, и HCRF в оптическом диапазоне, использующая привязку к системе ICRF наблюдений космического астрометрического проекта Hipparcos.
Кинематическая система отсчёта, базирующаяся на внегалактических объектах в качестве опорных, считается квазиинерциальной (поскольку ускорением в движении внегалактических объектов, и даже самим наличием этого движения, можно пренебречь).
Любая кинематическая система координат определяется с помощью фундаментального каталога, как совокупность всех астрометрических параметров объектов, зачисленных в это каталог.
Практическая астрометрия
Практической астрономией называется подраздел, занимающийся проблемами: [2]
К практической астрометрии следует отнести и обзоры неба — составление подробных фотографических карт с целью каталогизации как можно большего числа астрометрических объектов.
Изучение вращения Земли
Так как астрометрические наблюдения в большом объёме ведутся с поверхности Земли, изучение любых вариаций её движения и движения её коры также связано с решением астрометрических задач, и является подразделом астрометрии. На движение каждой отдельно выбранной точки на поверхности Земли влияют такие процессы как прецессия, нутация, движение полюсов, замедление вращения Земли, движение литосферных плит, неравномерность хода часов в гравитационном поле. При этом параметры вращения Земли не постоянны; они меняются со временем. Одним из методов, применяемых для изучения вращения Земли, является гравиметрия
Следует отметить, что вращение Земли примерно до середины XX века использовалось в астрометрии для измерения времени, а также геогарфических координат. После изобретения более точных способов для того и другого астрометрия теперь решает обратную задачу — изучает вариации вращения Земли, (в частности, замедление), используя стандарты точного времени; и изучает колебания земной коры, используя системы глобальной спутниковой навигации.
История астрометрии
До появление астрофизики в начала XX века практически вся астрономия сводилась к астрометрии. Астрометрия неразрывно связана со звёздными каталогами. Первый каталог был составлен ещё в Древнем Китае астрономом Ши Шенем. Точнее, это был не каталог, а схематичная карта неба. Первый же астрометрический каталог, содержащий координаты звезд, был создан древнегреческим астрономом Гиппархом и датируется 129 годом до нашей эры, но он не сохранился. Сравнив свои наблюдения с более ранними, Гиппарх открыл явление предварения равноденствий, или прецессии. Стимулом для развития астрометрии являлись практические нужды человека: без компаса и механических часов навигация могла осуществляться только по наблюдениям небесных светил (см. Астрономическая навигация).
В Средние века астрометрия была широко распространена в Арабском мире. Наибольший вкалад в неё внесли ал-Баттани (X в.), ал-Бируни (XI в.) и Улугбек (XV в.). В XVI веке Тихо Браге в течение 16 лет проводил наблюдения Марса, обработав которые, его преемник Иоганн Кеплер открыл законы движения планет. На основе этих эмпирических законов Исаак Ньютон описал закон всемирного тяготения и заложил основы классической механики, что привело к появлению научного подхода.
В конце XX века, после значительного кризиса, в астрометрии произошла революция, благодаря развитию вычислительной техники и усовершенствованию приёмников излучения.
Основные задачи современной астрометрии
Первоначально задачей астрометрии было измерение положения звезд с целью определения по ним географических координат для навигации. Если географические координаты известны, то отмечая момент прохождения светила через небесный меридиан, можно узнать местное время.
Основные цели современной астрометрии
Методы астрометрии
Астрометрические наблюдения
Измеряемыми величинами при астрономических наблюдениях точечного источника света (в том числе и любой, за исключением Солнца, звезды) являются: [2]
Наблюдения, показывающие эти величины, являются фотометрическими, спектроскопическими, и астрометрическими соответственно. С появлением новых, более универсальных приёмников света, такое разделение по классификации наблюдений становится всё менее заметным. Для определения астрометрических параметров небесных тел необходимы все три перечисленные типа измерений.
Точность измерений положений зависит от радиуса
дифракционного диска изображения точечного источника и количества квантов света
, пришедших от источника, следующим образом:
Астрометрические инструменты
Предполагается, что космический аппарат Gaia достигнет точности измерения углов до 20 µas (микросекунд дуги).
Классические астрометрические инструменты
Классический астрограф — телескоп-рефрактор, используемый для фотографирования небесных объектов. Получили распространение в конце XIX века после изобретения фотографии. Использовался для создания обзоров неба.
Телескоп Шмидта — зеркально-линзовый телескоп, имеющий, по сравнению с классическим астрографом, бо́льшую светосилу и поле зрения. Также используется для обзоров неба.
Длиннофокусный астрограф — рефрактор с фокусным расстоянием до 19 метров. В отличие от классического астрографа дает большее увеличение, что позволяет его использовать для измерения параллаксов.
Пассажный инструмент — рефрактор, который может вращаться только вокруг горизонтальной оси, жестко закрепленной на двух тумбах и расположенной в направлении запад-восток. То есть для наблюдений доступны лишь звезды, находящиеся в окрестности небесного меридиана. Инструмент предназначен для наблюдения звезд во время верхних и нижних кульминаций. На оси закреплен специальный диск, по которому можно определить высоту светила. Также фиксируется и момент времени прохождения светила через меридиан.
Зенит-телескоп и зенит-труба используются для определения широты.
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ, раздел астрометрии, посвящённый учению об астрономич. инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. В зависимости от условий, в к-рых решаются задачи П. а., она подразделяется на геодезическую астрономию, мореходную астрономию и авиационную астрономию. Способы П. а. основываются на правилах сферической астрономии и использовании звёздных каталогов, составлением к-рых занимается фундаментальная астрометрия.
П. а. возникла в глубокой древности под влиянием задач хоз. жизни человеческого общества.
Применяемые в П. а. инструменты позволяют измерять углы в горизонтальной и вертикальной плоскостях и фиксировать моменты прохождения светил через вертикалы и альмукантараты. Среди этих инструментов: универсальный инструмент, зенит-телескоп, вертикальный круг, переносной пассажный инструмент, зенитная фотографич. труба, мореходный и авиац. секстанты и др. (см. Астрономические инструменты и приборы). Для измерения времени служат кварцевые часы и морские хронометры. При определении долгот используется аппаратура для приёма радиосигналов времени.
В П. а. применяются след, способы определения местного времени s (что равносильно определению поправки часов и),
широты фи, долготы лямбда и азимута А направления на земной предмет. (Ниже использованы обозначения: а — азимут, z — зенитное расстояние, a — прямое восхождение, б — склонение, t — часовой угол небесного светила, s — местное время, Т — показания часов в момент наблюдений.)
1) Определение и и фи по измерениям z светила g. Из параллактического треугольника PZсигма (Р — полюс мира, Z — зенит, сигма— место светила; рис. 1) следует, чтo
Найдя в астрономич. каталоге а и 5 наблюдаемого светила и измерив его зенитное расстояние z в момент Т, из ур-ний (1) и (2) можно вычислить поправку часов u, если известна фи, или вычислить фи, если известна и. Если неизвестны миф, то решение ур-ний (1) и (2) ведут способом последовательных приближений или наблюдают две звезды: одну вблизи меридиана, другую — вблизи первого вертикала. Полученные две системы ур-ний (1) и (2)
(индексы S и N обозначают светила, кульминирующие, соответственно, к югу и северу от зенита). Т. к. измерить z строго в меридиане нельзя, то измеряют его вблизи меридиана, вводя при вычислениях необходимую поправку.
2) Определение и и фи по наблюдениям пар звёзд на равных зенитных расстояниях z. В 1874 рус. геодезист Н. Я. Цингер предложил способ определения и по наблюдениям моментов прохождения двух звёзд через один и тот же альмукантарат (см. Цингера способ). Звёзды наблюдаются вблизи первого вертикала: одна — на востоке, другая на западе, симметрично относительно меридиана. Аналогичный способ для определения ф по наблюдениям пары звёзд на равных зенитных расстояниях вблизи меридиана предложил в 1887 рус. путешественник М. В. Певцов (см. Певцова способ). Оба способа характеризуются простотой наблюдений и высокой точностью получаемых результатов.
3) Совместное определение u и фи. Сов. учёные В. В. Каврайский (1924—36) и А. В. Мазаев(1943—45) предложили способы совместного определения u и фи (см. Каврайского способ и Мазаева способ). По способу Каврайского наблюдаются четыре звезды на попарно равных зенитных расстояниях z; по способу Мазаева — серия звёзд в альмукантарате с г = 45° или z = 30°.
4) Определение ф по способу Талькотта. Этот способ, предложенный в 1857 амер. геодезистом А. Талькоттом, основан на измерении малой разности зенитных расстояний двух звёзд, кульминирующих по разные стороны от зенита (см. Талъкотта способ). Полусумма правых и левых частей равенств (3) даёт:
Звёзды выбираются так, чтобы разность их зенитных расстояний была в пределах диаметра рабочей части поля зрения трубы, т. е. не превышала 10—15‘, а разность прямых восхождений отличалась бы на 5—20 мин (при наблюдениях обеих звёзд в верхней кульминации). Для наблюдений труба зенит-телескопа или универсального инструмента устанавливается на среднее зенитное расстояние пары в азимуте 0° для наблюдения звезды, кульминирующей к югу от зенита, и 180° — к северу от него. Величина Zs — ZN измеряется окулярным микрометром. Способ нашёл широкое применение, в частности на междунар. станциях, изучающих движение земных полюсов.
5) Определение и и ф из наблюдений на зенитной фотографич. трубе. В нек-рых обсерваториях для служб времени и служб широты определяют и и ф из совместных наблюдений на фотографич. зенитных трубах. Изображение звезды фиксируется на движущейся с её скоростью фотографич. пластинке с маркировкой на ней моментов времени. Звёзды наблюдают в узкой зенитной зоне, ограниченной рабочей частью поля зрения трубы. Ось инструмента постоянно направлена в зенит, что контролируется ртутным горизонтом.
6) Определение и пассажным инструментом. Этот способ широко применяется в практике служб времени и при высокоточных определениях долгот. Наблюдаются моменты прохождений серии звёзд через меридиан с регистрацией их или контактным микрометром, или с помощью фотоумножителей. Поправки определяются по формуле
Подобный способ применительно к универсальному инструменту предложил рус. геодезист Н. Д. Павлов (1912). В нек-рых случаях определение и производится по наблюдению прохождений звёзд в вертикале Полярной (способ Деллена).
7) Определение лямбда. Восточная долгота места наблюдения связана со всемирным временем S и местным s соотношением:
и — определяется одним из изложенных выше способов, a S — путём приёма радиосигналов времени, транслируемых в течение суток многими радиостанциями. 8) Определение А. Наиболее распространённый способ основан на измерении универсальным инструментом горизонтального угла между направлениями на Полярную Мсигма (рис. 2) и земной предмет М и вычислении азимута Полярной в момент наблюдения s. Для этого служит соотношение:
В геодезии, практике часто применяется способ определения азимута, основанный на наблюдениях моментов прохождения звёзд с большими z (50°-70°) вблизи меридиана.
z1 с центром в 24 проходит на глобусе через точку т. Измерив z2 другого «ветила, проводят другую окружность радиусом z2 с центром в СУММА2; в одной из двух точек пересечения этих окруж-Лостей расположена искомая точка т (выбор нужной точки не представляет затруднений, т. к. приближённое место наблюдения бывает известно). На практике пользуются не глобусом, а картой, прочерчивая на ней отрезки кривых, отождествляемые с дугами окружности вблизи их пересечений. Эти отрезки наз. высотными линиями положений или линиями Сомнера (см. Позиционная линия).
Все проблемы П. а. имеют большое значение для астрономии, геодезии, геофизики. Определения ф, X. и А необходимы для ориентирования триангуляционных сетей, служащих опорой для картографич. работ и для изучения фигуры Земли. Изучение изменяемости ф привело к установлению периодич. и вековых движений земных полюсов. Переопределение долгот обсерваторий в разные эпохи доставляет необходимые данные для изучения дрейфа континентов.
Лит.: Блажко С. Н., Курс практической астрономии, 3 изд., М.- Л., 1951; Белобров А. П., Мореходная астрономия, Л., 1954; Воробьев Л. М., Астрономическая навигация летательных аппаратов, М., 1968. В. П. Щеглов.
Смотреть что такое ПРАКТИЧЕСКАЯ АСТРОНОМИЯ в других словарях:
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
учит наиболее целесообразно располагать, производить и обрабатывать наблюдения астрономическими инструментами, необходимые для решения той или другой з. смотреть
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
раздел астрометрии (См. Астрометрия), посвященный учению об астрономических инструментах и способах определения из астрономических наблюдений в. смотреть
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
Практическая астрономия раздел астрономии, изучающий устройство и правила пользования астрономическими инструментами. С помощью практической астрономи. смотреть
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. Практическая астрономия подразделяется на геодезическую, мореходную и авиационную. Астрономический словарь.EdwART.2010. смотреть
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ, учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. Практическая астрономия подразделяется на геодезическую, мореходную и авиационную.
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ, учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. Практическая астрономия подразделяется на геодезическую, мореходную и авиационную. смотреть
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
— учение об астрономических инструментах испособах определения из астрономических наблюдений времени, географическихкоординат и азимутов направлений. Практическая астрономия подразделяетсяна геодезическую, мореходную и авиационную. смотреть
ПРАКТИЧЕСКАЯ АСТРОНОМИЯ
учение об астр. инстр-тах и способах определения из астр. наблюдений времени, геогр. координат и азимутов направлений. П. а. подразделяется на геодезич. смотреть