Полупроводники для автомобилей что это

Почему дефицит микросхем – это миф, но автокомпаниям и дилерам он выгоден

Марк Лю, глава одного из крупнейших производителей микрочипов в мире, Taiwan Semiconductor Manufacturing Co (TSMC), который является поставщиком Apple, Intel, Qualcomm и AMD, развенчал миф о дефиците микросхем для автомобилей

Полупроводники для автомобилей что это

В прошлом году автопром сильно пострадал из-за локдаунов. Автокомпаниям приходилось закрывать заводы, а дилерам – шоу-румы и торговать машинами буквально из-под полы. Словом все они понесли солидные издержки, а эти издержки нужно как-то покрывать. Но как? Просить помощи от государства? Оно конечно поможет, но долги придется отдавать. Резко поднять цены на автомобили? Покупатели не поймут, и продажи могут упасть еще сильнее. Выпускать больше машин и заработать за счет объема? Увы, рынок не бездонный и даже с учетом отложенного спроса может возникнуть затоваривание, а, следовательно, вновь придется нести убытки.

Полупроводники для автомобилей что это

И на данном этапе рассуждений в голову какого-то менеджера приходит гениальная по своей простоте мысль: а что если создать искусственный дефицит? Все мы знаем, что происходит, когда возникает нехватка того или иного ходового товара, будь то гречка или туалетная бумага – покупатели начинают сметать его с полок по любой цене.

Аналогичная история повторилась и с автомобилями. Их вдруг стало не хватать, причем по всему миру. Покупатели же готовы были тратить деньги, которые накопились за счет отложенных поездок на отдых и «вертолетной» финансовой помощи от государства (в развитых странах). Машину захотели иметь даже те, кто раньше о ней и не думал: в постковидную эпоху личный транспорт стал своего рода «оберегом», защищающим человека от вирусов.

Полупроводники для автомобилей что это

Словом спрос появился нешуточный, а вот машин сильно больше производиться не стало. А что делают продавцы, когда спрос превышает предложение? Правильно – повышают цены. Причем повышают ровно на столько, насколько покупатели готовы переплатить. Если есть люди, согласные взять новый Land Cruiser, на который дилер накинул миллион сверху, как-то странно продавать этот же внедорожник за официальный прайс.

Не знаю, кто начал эту спекулятивную игру первым – дилеры или сами автопроизводители, но она оказалась выгодна и тем и другим. Одни смогли быстро заработать и отбить убытки от локдауна, другие – стали делать больше машин в дорогих комплектациях, которые приносят наибольшую прибыль – ведь покупатель готов купить все, что ему дают. Плюс заводы получили заказы на месяцы вперед, а вместе с ними и уверенность в завтрашнем дне. Ну и зачем, спрашивается, им нарушать эту идиллию? Гораздо проще сослаться на мифический дефицит микросхем, оправдывая многомесячные очереди и улетевшие в космос цены на машины.

Полупроводники для автомобилей что это

Хотя здесь тоже все не так просто. Ведь автоконцерны формально не причем, и винят во всех грехах производителей автокомпонентов – это им не хватает чипов. Тот же завод Bosch Самара, сорвавший поставки блоков ABS/ESP на конвейер АВТОВАЗа, прогремел на всю страну. И подумайте, стал бы немецкий бренд портить свою репутацию, только для того, чтобы автопроизводитель и его дилер смогли больше заработать на дефиците машин?

Полупроводники для автомобилей что это

А может быть, чипы оседают на складах перекупщиков, которые тянут с поставками для того, чтобы тоже заработать? Такой вариант исключать нельзя. Более того, возможен даже «заговор» на уровне… правительств! И это не шутка: американцы уже давно хотели развернуть масштабное производство микросхем у себя дома, чтобы не зависеть от несговорчивого Китая и других азиатских поставщиков – а тут и повод подвернулся, под который можно запросить у государства дополнительные ассигнования на строительство новых заводов.

Полупроводники для автомобилей что это

Источник

Электромобили и 5G: какие акции производителей чипов вырастут в 2022 году

Полупроводники для автомобилей что это

В начале этого года глава компании Microchip Technology Ганеш Мурти заявил, что такого большого разрыва между спросом и предложением в индустрии полупроводников не было последние 40 лет. Причины нехватки чипов очевидны — локдаун спровоцировал высокий спрос на ноутбуки, приставки и другую персональную электронику, в то время как автопроизводители снизили объемы выпуска и сократили заказы на микросхемы.

Когда карантин закончился, спрос на автомобили вырос больше, чем ожидалось, а спрос на технику остался по-прежнему высоким. Дефицит чипов усугубили еще несколько факторов: засуха на Тайване, где расположены предприятия крупнейшего производителя чипов TSMC, пожар на крупном заводе микросхем Renesas Electronics и нарушение глобальных цепочек поставок.

Полупроводники для автомобилей что это

Как изменится потребление на рынке полупроводников в ближайшие годы

Нормализация рынка может занять от шести месяцев до полутора лет, но уже сегодня можно увидеть несколько долгосрочных трендов, которые будут стимулировать рост в отрасли. Традиционно главными потребителями чипов в 2020 году были производители смартфонов: на них приходилась четверть спроса, в то время как на автомобильную промышленность — всего 8%.

Согласно прогнозам консалтинговой компании Gartner, в ближайшие пять лет это соотношение серьезно изменится за счет увеличения доли автопрома и дата-центров, а в ближайшие десять лет производство микросхем будет ежегодно расти в среднем на 4–7,5%.

Полупроводники для автомобилей что это

Согласно консервативному прогнозу Bloomberg, к 2030 году как минимум 34% автомобилей в мире станут полностью экологичными. Сейчас их доля составляет лишь 4%, но все больше водителей будут делать выбор в пользу электромобилей, поскольку улучшаются их характеристики.

Полупроводники для автомобилей что это

Полупроводники для автомобилей что это

Переход на новый стандарт связи 5G может стать третьим фактором поддержки спроса. Хотя эта технология пока лишь начинает широко использоваться, она, как ожидается, превзойдет по популярности 4G благодаря преимуществу в скорости и надежности. В сетях 5G задержка при передаче данных от пользователя к пользователю может составлять всего 1 мс по сравнению с 50 мс для сетей 4G. Это очевидное преимущество, и участники индустрии ожидают роста популярности смартфонов с 5G. Например, по прогнозам компании Ericsson, в 2026 году более половины интернет-трафика смартфонов будет приходиться на 5G. Переход на новый стандарт связи потребует обновления устройств, а значит, повысит спрос на полупроводники.

Какие компании извлекут выгоду от развития индустрии полупроводников

В SberCIB видят несколько интересных компаний на рынке производителей полупроводников для автомобилей, дата-центров и 5G.

Американская компания Microchip Technology, выпускающая проводники с 1989 года, никогда не была лидером отрасли, но привлекла внимание инвесторов из-за дефицита проводников. Треть выручки Microchip обеспечивается как раз за счет разработки чипов для автопроизводителей и дата-центров.

Еще недавно Microchip разрешала своим клиентам отменять заказы на производство чипов, но с февраля этого года она перешла на программу предпочтительных поставок (PSP). Программа предусматривает поставку товара заказчику в течение 12 месяцев, при этом заказ нельзя отменить. Во втором квартале 2021 года доля таких заказов в портфеле компании составляла уже 50%, что позволяет ей эффективнее распределять производственные мощности и расходы.

Некоторые компании отказываются от собственной разработки схем и брендирования, выполняя заказы других игроков — такая модель называется фаундри (foundry). Она выгодна тем, что производителю не приходится бороться за потребителя. Сейчас на этом рынке 56% занимает Taiwan Semiconductor Manufacturing Company (TSMC).

Источник

Дефицит полупроводников останавливает мировой автопром. Что происходит?

Полупроводники для автомобилей что это

Рост спроса на высокопроизводительные компьютеры в пандемию, когда большинство людей перешли на удаленную работу, спровоцировал дефицит чипов в других отраслях производства. Крупные мировые производители техники и целые отрасли столкнулись с проблемами в поставках — в частности, из-за нехватки полупроводников остановились автомобильные заводы. Разбираемся, как дефицит полупроводников влияет на крупные компании и что будет дальше.

Причины нехватки полупроводников — пандемия и Дональд Трамп

Среди причин глобального сокращения полупроводников называются две основные: последствия пандемии и торговых войн США и Китая, начатых при президенте Дональде Трампе.

Полупроводники для автомобилей что это

Негативно на поставках полупроводников сказалось и торговое противостояние США и Китая. В прошлом году власти Штатов наложили ограничения на крупнейшего китайского производителя чипов Semiconductor Manufacturing International (SMIC). В результате компания осталась без возможности закупать оборудование для производства и продавать полупроводники американским компаниям. Заказчики были вынуждены сотрудничать с его конкурентами — например, Taiwan Semiconductor Manufacturing (TSMC). Как итог — произошло серьезное перераспределение цепочек поставок чипов.

Многие производители полупроводников сейчас — это так называемые «безфабричные производства» (англ. fabless). Они лишь разрабатывают технологию, а само производство чипов передают на аутсорс.

Но некоторые компании заранее подготовились к возможным сбоям и закупили полупроводники еще до введения жестких санкций против китайского бизнеса. Так поступила Huawei, сделавшая запасы важных для нее радиочипов. Среди автопроизводителей так сделала Toyota, заявившая, что не планирует сокращать производство, так как накопила запасы полупроводников на четыре месяца вперед.

Из-за дефицита чипов больше всего пострадали автопроизводители

Сильнее всего нехватка полупроводников ударила по автопроизводителям, которые используют их для программного обеспечения машин. О приостановках или замедлении в выпуске автомобилей уже заявили GM, Ford, Volkswagen, Honda, Fiat Chrysler, Volvo, Nissan, Mitsubishi, Nio.

Дефицит микросхем задел производителей процессоров для электроники Qualcomm и AMD, поставляющих детали для технологических гигантов, в том числе Sony и Microsoft. Sony заявила, что сложности с поставками полупроводников могут привести к дефициту игровых консолей PlayStation 5. Даже Apple не справляется с нехваткой полупроводников — компания не может полностью закрыть высокий спрос на новые модели iPhone.

Полупроводники для автомобилей что это

Автомобильные производства конкурируют с технологическими компаниями за поставки чипов не напрямую, так как для автомобилей не всегда нужны столь же современные полупроводники, как и для гаджетов. Они покупают чипы, которые как управляют основными процессами в машине, так и используются в более второстепенном ПО.

Особенность цикла цепочек поставок в автопроизводстве — все детали закупаются точно к моменту сборки, запасов на будущее не делается. Но отсутствие даже одного чипа может остановить производственную линейку крупного завода.

По значимости для производителей чипов автомобилестроительные компании на втором месте после технологических, так как создатели гаджетов заключают долгосрочные контракты на поставку. В 2020 году только 3% продаж TSMC приходилось на автомобильные чипы, а на полупроводники для смартфонов — 48%.

Что происходит с автомобильными компаниями из-за дефицита полупроводников

Honda — останавливает шесть заводов в США, Канаде и Мексике.

Hyundai — сократил работу в выходные дни, чтобы скорректировать производство таких брендов, как Kona, Avante, Grandeur и Sonata.

Volvo — сократил производство грузовиков по всему миру.

Nissan — скорректирует производства на заводах в США и Мексике.

Nio — приостановила производство автомобилей на заводе Хэфэй. Компания снизила прогноз по производству на первый квартал до 19,5 тыс. единиц (предыдущий прогноз: 20–20,5 тыс. единиц).

Toyota — приостановила производство в Чехии.

Volkswagen — приостановил производство на заводе в Португалии.

Mitsubishi — сократил производство на внутреннем рынке на 4–5 тыс. единиц в марте и пересматривает производственный план на апрель.

Какие еще факторы влияют на дефицит полупроводников

TSMC — главный бенефициар дефицита полупроводников

Главные производители чипов на данный момент — тайваньская TSMC и южнокорейский Samsung. TSMC контролирует более половины мирового рынка микросхем, изготавливаемых на заказ. Сейчас компания строит новый завод. Предполагается, что полупроводники с нового производства станут на 70% более быстрыми и эффективными, чем прежние. Производство будет запущено в 2022 году.

Полупроводники для автомобилей что это

Производством чипов занимается и Intel, однако американская компания не справляется с этой задачей на 100% и часть работ передает на аутсорс TSMC. По данным Financial Times, Intel уже обговаривает возможное партнерство с TSMC по новому производству в Тайване. Аналитик по производству микросхем в Bernstein Марк Ли считает, что в 2023 году Intel передаст TSMC на аутсорс 20% производства процессоров.

В феврале TSMC объявила о создании дочерней компании в Японии для проведения исследований в области новых полупроводниковых материалов.

По мнению аналитиков, одна из ключевых причин, по которой TSMC настолько эффективна и прибыльна, это концентрация производства в Тайване. По оценкам приближенных к компании людей, производственные затраты в США будут на 8–10% выше, чем в Тайване.

Европейские компании занимаются разработкой полупроводников, но избегают создания собственных производств, а вместо этого передают большую часть работ сторонним компаниям вроде TSMC. Поэтому производство микросхем в Европе на несколько поколений отстает от лидеров отрасли, таких как TSMC и Samsung. Остальные мелкие производители серьезно уступают лидерам в технологиях и производственных мощностях.

Проблема с нехваткой полупроводников начинает набирать все большие обороты: правительства и компании уже высказывают обеспокоенность тем, что дефицит микросхем может замедлить восстановление экономики после пандемии.

Samsung предупреждает, что сбои с поставками чипов могут распространиться и на более широкий технологический сектор.

В исследовательской компании TrendForce считают, что общеотраслевые усилия по ускорению производства автомобильных микросхем могут привести к замедлению поставок полупроводников для бытовой электроники и промышленных приложений.

Больше новостей об инвестициях вы найдете в нашем аккаунте в Instagram

Источник

Автомобильный справочник

для настоящих любителей техники

Полупроводниковые технологии в автомобилестроении

Полупроводники для автомобилей что это

Тенденции развития автомобильного транспорта, применение современных двигателей, выполняемых на основе принципиально новых конструктивных решений и материалов, выдвигают требования работы электронных устройств в расширенных температурных диапазонах и меньших по объему пространствах. Поиск альтернативных методов получения энергии и развития беспроводных коммуникационных систем требуют повышения многофункциональности и снижения энергоемкости используемых для решения этих задач микроэлектронных устройств. Вот о том, что представляют собой современные полупроводниковые технологии в автомобилестроении, мы и поговорим в этой статье.

Полупроводники для автомобилей что это

Электрическая проводимость твердых тел

Полупроводники для автомобилей что этоСпособность отдельных материалов проводить электрический ток определяется количеством и подвижностью имеющихся в них свободных носителей заряда. Так, различие в удельной электропроводимости для твердых тел при комнатной температуре проявляется в преде­лах диапазона, определяемого от 10-й до 24-й степени. Поэтому материалы соответствующим образом могут быть подразделены по электри­ческим свойствам на три электрических класса. В табл. «Классификация проводимости материалов» приведено их описание с примерами.

Проводники (металлы)

В твердых телах содержится приблизительно 10 22 атомов на кубический сантиметр. Вместе их удерживают электрические силы. В ме­таллах имеется большое число свободных носителей заряда (один свободный электрон приходится на атом). Свободные носители зарядов обеспечивают металлам высокую электрическую проводимость. Для хоро­ших проводников она составляет примерно 10 6 См/см.

Диэлектрики (изоляторы)

Число свободных носителей заряда, обнару­живаемое в изоляторах, практически равно нулю. Соответственно, их электрическая про­водимость незначительна. Для хороших изо­ляторов она составляет примерно 10 18 См/см.

Полупроводники

Полупроводники по электрической проводи­мости занимают промежуточное положение между металлами и изоляторами. Это — в от­личие от проводимости металлов и диэлек­триков — в значительной степени зависит от следующих факторов:

Так как полупроводники зависят от указанных факторов, они пригодны для использования в ка­честве датчиков давления, температуры и света.

Легирование полупроводников

Электрическая проводимость полупроводников

Рассмотрим изменение этого параметра на примере кремния. В твердом состоянии кремний имеет кристаллическую решетку с четырьмя равноудаленными смежными атомами. Каждый атом кремния имеет че­тыре валентных электрона с двумя парными электронами, формирующими валентную связь между каждой парой атомов крем­ния. В таком идеальном состоянии кремний не имеет свободных носителей заряда и не является проводимым. Условия резко из­меняются при добавлении соответствующей присадки и подводе энергии.

Здесь мы поясним легирование на простой и очевидной модели. Тем не менее, важно помнить, что далеко не все эффекты можно объяснить при помощи этой модели.

n-легирование

Полупроводники для автомобилей что этоПолупроводники для автомобилей что это

р-легирование

Введение примесных атомов с тремя валент­ными электронами (например, бор) обеспе­чивает появление дырок, так как атом бора имеет на один электрон меньше, чем в кри­сталлической решетке кремния (рис. в, «Лигированный кремний«). Дырка означает нехватку электрона. Дырки перемещаются внутри кремния; в электриче­ском поле они перемещаются в направлении, противоположном направлению движения электронов. Дырки являются носителями свободного положительного заряда. Таким образом, каждый дополнительный атом бора предоставляет свободную положительно за­ряженную дырку (положительная дырка). Кремний превращается в p-проводник и на­зывается кремнием р-типа.

Собственная электропроводность

Под действием температуры и света в необ­работанном кремнии могут образоваться свободные носители заряда, представляющие собой связанные электронно-дырочные пары (экситоны), которые обеспечивают материалу собственную проводимость. Она является объединением проводимостей р- и n-типа, по­лучаемых легированием. Повышение темпера­туры ведет к экспоненциальному росту числа электронно-дырочных пар, в конечном счете устраняющему разность электрических потен­циалов между р- и n-областями, созданными легированием. Это явление налагает ограни­чение температуры, которым могут подвер­гаться полупроводниковые компоненты. Для германия — это 90-100 °С, для кремния —150— 200 °С, а для арсенида галлия — 300-350 °С.

В полупроводниках как n-, так и р-типа всегда имеется небольшое количество носи­телей заряда противоположной полярности. Их наличие сказывается на рабочих характе­ристиках практически всех полупроводнико­вых приборов.

p-n-переход

Пограничный слой между р и n-областью в пределах одного и того же кристалла полу­проводника называется p-n-переходом. Его свойства определяют рабочие характери­стики большинства полупроводников.

р-n-переход без внешнего электрического напряжения

P-область характеризуется наличием большого количества дырок, в то время как n-область имеет их очень немного. В n-области присутствует большое количество электронов, в то время как в p-области их исключительно мало. Каждый тип подвиж­ного носителя заряда стремится двигаться в противоположную зону (диффузионные токи) (рис. в, «р-n-переход в диоде» ).

Полупроводники для автомобилей что этоПолупроводники для автомобилей что это

Диффузия дырок в n-область приводит к тому, что p-область становится отрицательно заряженной в области пространственного за­ряда, так как отрицательно заряженные атом­ные радикалы, например, бора, остаются неподвижными. Недостаток электронов при­водит к тому, что n-область становится по­ложительно заряженной, так как в ней обра­зуется избыток неподвижных положительно заряженных атомных радикалов, например, фосфора. Возникает разность потенциалов между p- и n-областями (потенциал поля p-n-перехода UD), противодействующая ми­грации носителей заряда и в конечном счете приводящая к полному прекращению обмена дырок и электронов. Потенциал UD создан за счет диффузии, и его невозможно непо­средственно измерить извне, для кремния он обычно составляет всего лишь 0,6 В.

В p-n-переходе образуется область с не­достаточным количеством подвижных носи­телей заряда. Эта зона называется областью пространственного заряда или запирающим слоем. Она имеет электрическое поле, напря­женность которого также зависит от внеш­него приложенного напряжения.

р-n-переход с внешним электрическим напряжением

Теперь можно описывать условия работы ди­ода, так как p-n-переход соответствует струк­туре диода. Анод находится в p-легированном кремнии, а катод — в n-легированном кремнии.

При подаче напряжения U в обратном направлении (отрицательный полюс — в p-области, а положительный — в n-области) область пространственного заряда расширя­ется (рис. с, «р-n-переход в диоде» ). В этих условиях электрический ток I прерывается, за исключением мини­мального остаточного тока (обратный ток), поддерживаемого незначительным количе­ством носителей заряда. Напряжение U затем падает в области пространственного заряда. Соответственно, эта область становится зоной высокой напряженности электрического поля.

Полупроводники для автомобилей что этоНапряжение туннельного пробоя р-п- перехода — это напряжение обратной полярно­сти и такой величины, когда минимальное его увеличение становится достаточным для рез­кого возрастания обратного тока (рис. «Вольт-амперная характеристика кремниевого диода» ). Этот эффект объясняется следующим. Электроны, достигающие области пространственного за­ряда, значительно ускоряются за счет высокой напряженности поля. Таким образом, они мо­гут, в свою очередь, генерировать свободные носители заряда в результате такого воздей­ствия; этот эффект также известен как ударная ионизация. Это приводит к резкому возрас­танию тока и вызывает лавинный пробой. До­полнительно к лавинному пробою на основе туннельного эффекта возникает также зене­ровский пробой. Пробой может привести к нарушению p-n-перехода и поэтому иногда нежелателен. Тем не менее, во многих случаях пробой бывает полезен. Лавинный и зенеров­ский пробои возникают только в том случае, когда диод работает в обратном направлении.

При подаче напряжения U в прямом направ­лении (положительный полюс в p-области, а отрицательный — в n-области) область про­странственного заряда уменьшается (рис. d, «р-n-переход в диоде» ). Носители заряда проникают в p-n-переход под действием большого тока в прямом направле­нии (рис. «Вольт-амперная характеристика кремниевого диода» ), так как область пространствен­ного заряда больше не имеет значительного сопротивления. Эффективно только объемное сопротивление, то есть активное сопротивле­ние легированных слоев. Ток I возрастает экс­поненциально как функция U. Однако, следует помнить о «тепловом пробое», так как при этом полупроводник может полностью выйти из строя из-за перегрева. Это может прои­зойти, например, если диод работает в прямом направлении при недопустимо высоком токе.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *