Полиморфизм это в медицине что такое

Полиморфизм это в медицине что такое

Большинство оценок частоты мутаций использует обнаружение патологических мутаций с явным влиянием на фенотип. Тем не менее существует масса непатогенных мутаций, считающихся относительно нейтральными; а некоторые могут даже быть полезными. В ходе эволюции устойчивый приток новых изменений нуклеотидов гарантировал высокую степень генетического разнообразия и индивидуальности.

Это распространяется на все области генетики человека и медицинской генетики. Генетическое разнообразие может проявляться в виде изменений в окраске хромосом, изменения числа копий сегментов ДНК, нуклеотидных замен в ДНК, изменений в белках или же как болезнь.

ДНК последовательности каждого участка хромосомы в высшей степени сходны у большинства людей в мире. Фактически произвольно выбранный сегмент ДНК человека размером около 1000 пар оснований содержит, в среднем, только одну пару, отличающуюся на двух гомологичных хромосомах, унаследованных от родителей (если предположить, что родители не родственники).

Эта почти в 2,5 раза больше, чем оценка доли гетерозиготных нуклеотидов для кодирующих белок областей генома (примерно 1 на 2500 пар оснований). Различие неудивительное, поскольку интуитивно понятно, что регионы, кодирующие белок, находятся под более жестким давлением отбора, и таким образом встречаемость мутаций в таких регионах в эволюции должна быть более низкой.

Полиморфизм это в медицине что такое

Когда вариант встречается настолько часто, что его обнаруживают более чем в 1% хромосом в общей популяции, его называют генетическим полиморфизмом. Аллели с частотами менее чем 1% принято называть редкими вариантами. Хотя много патологических мутаций, приводящих к генетическим болезням — редкие варианты, нет простой корреляции между частотой аллеля и его влиянием на здоровье. Много редких вариантов не имеют патогенных эффектов, тогда как некоторые варианты, достаточно частые, чтобы считаться полиморфизмами, предрасполагают к тяжелым болезням.

Существует много типов полиморфизма. Некоторые полиморфизмы — следствие вариантов, вызванных делециями, дупликациями, утроениями и так далее, сотен миллионов пар оснований ДНК, и не связаны с каким-либо известным патологическим фенотипом; другие изменения аналогичного размера оказываются редкими вариантами, явно вызывающими тяжелые болезни. Полиморфизмами могут оказаться изменения в одном или нескольких основаниях ДНК, расположенных между генами или в интронах, не связанные с функционированием генов и обнаруживаемые только прямым анализом ДНК.

Изменения последовательности нуклеотидов могут располагаться в кодирующей последовательности самого гена и приводить к образованию различных вариантов белков, в свою очередь вызывающих четко очерченные фенотипы. Изменения в регуляторных областях также могут быть важными в определении фенотипа, влияя на транскрипцию или стабильность мРНК.

Полиморфизм — ключевой элемент в исследовании и практическом использовании генетики человека. Способность различать унаследованные формы генов или других сегментов генома обеспечивают инструментальные средства, необходимые для широкого спектра приложений. Как показано в этой и последующих главах, генетические маркеры — мощное научно-исследовательское инструментальное средство картирования генов на конкретном регионе хромосомы при анализе сцепления или аллельной ассоциации.

Они уже широко используются в медицине — от пренатальной диагностики наследственных болезней до обнаружения гетерозиготного носительства, а также в банках крови и тканей для типиро-вания перед переливаниями и пересадками органов (см. далее в этой главе).

Полиморфизм — основа для развивающихся мероприятий по обеспечению основанной на геномике персонализированной медицины, когда медицинские мероприятия индивидуально подбирают на основе анализа полиморфных вариантов, увеличивающих или уменьшающих риск частых болезней взрослого возраста (например, заболевания коронарных сосудов сердца, опухолей и сахарного диабета), возникновения осложнений после хирургических вмешательств или влияющих на эффективность и безопасность конкретного лекарственного препарата. Наконец, анализ полиморфизма стал мощным новым средством в судебных приложениях, например, определении отцовства, определении останков жертв преступления или для сопоставления ДНК подозреваемого и преступника.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Генетика: основные понятия и диагностика

Специализация: генетика, гинекология

Основные понятия

Геном – совокупность наследственного материала, заключенного в клетке организма [1]. Геном содержит биологическую информацию, необходимую для построения организма и поддержания его функций.
Первоначальный смысл этого термина указывал на то, что понятие генома, в отличие от генотипа, является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось, и сегодня под «геномом» понимают совокупность наследственного материала конкретного представителя вида.
Большинство геномов, в том числе геномы человека и геномы всех остальных клеточных форм жизни, построены из ДНК*. Практически у всех эукариотических организмов все гены организованы в более крупные макромолекулярные комплексы – хромосомы.
У человека наследственный материал соматической клетки представлен 23 парами хромосом (22 пары аутосом и пара половых хромосом), находящихся в ядре, а также клетка обладает множеством копий митохондриальной ДНК. 22 аутосомы, половые хромосомы Х и Y, митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований [1].
В настоящее время в молекулярной биологии установлено, что гены – это участки ДНК, несущие какую-либо целостную информацию о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.
Изначально термин «ген» появился как теоретическая дискретная единица передачи наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации. Большинство исследователей считали, что такими носителями могут быть только белки, так как их строение из 20 аминокислот позволяет создать больше вариантов, чем ДНК, состоящая всего из четырех видов
нуклеотидов. Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии.
Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин (А), тимин (Т), цитозин (Ц), гуанин (Г), пятиатомный сахар (пентозу) – дезоксирибозу, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов (Рис. 1).

Полиморфизм это в медицине что такое
Гены могут подвергаться мутациям – случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно, изменению биологических характеристик белка или РНК, что, в свою очередь, может привести к их общему или локальному изменению или аномальному функционированию. Такие мутации являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне. Однако далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется такими особенностями, как однонуклеотидные полиморфизмы и вариации числа копий генов (англ. copynumbervariations), которые составляют около 1% всей ДНК человека [2].
Однонуклеотидный полиморфизм (Single nucleotide polymorphism, SNP) – отличие последовательности ДНК размером в один нуклеотид. Если две последовательности ДНК – AAGCCTA и AAGCTTA – отличаются на один нуклеотид, в таком случае говорят о существовании двух аллелей: C и T. SNP возникают в результате точечных мутаций (как правило, типа замен) и, в частности, определяют различные аллели одного гена.
Разнообразием последовательностей ДНК у людей, возможно, объясняется то, как у них происходит течение различных заболеваний, реакции в ответ на патогены, прием лекарств, вакцин и т. п. Знание об однонуклеотидном полиморфизме, вероятно, поможет в понимании фармакокинетики и фармакодинамики действия различных лекарств на человека. Этиология широкого спектра заболеваний, таких как рак, инфекционные, аутоиммунные заболевания, серповидноклеточная анемия и многие другие, включает однонуклеотидные полиморфизмы [3].

Полиморфизмы генов

Именно полиморфизмы генов в большой степени определяют индивидуальные различия в развитии тех или иных физических и психических качеств индивидума. Масштабы полиморфизмов генов у человека таковы, что между последовательностями ДНК двух людей существуют миллионы различий. Эти различия условно подразделяют на четыре основные категории: а) фенотипически не выраженные; б) вызывающие фенотипические различия; в) играющие роль в патогенезе заболевания (при полигенных болезнях); г) играющие основную роль в развитии заболевания (при моногенных болезнях).
На сегодняшний день сформированы обширные базы полиморфизмов, очень гибкие и быстро растущие.
Они постоянно обновляются за счет информации, которую поставляют в клиники и лаборатории по всему миру научные организации, в которых работает множество специалистов в области системной и молекулярной биологии, биоинформатики.
Вариантные формы некоторых генов в определенных условиях могут привести к развитию болезней. Сочетания вариантных генов предрасположенности несут в себе генетические риски множества заболеваний. Тестирование генетических предрасположенностей помогает выявить индивидуальный риск возможности заболевания и установить подверженность влиянию и воздействию негативных факторов окружающей среды.
По клиническим группам полиморфизмов различают патологии систем свертывания крови, обмена фолиевой кислоты, обмена белков костной ткани, гормонов щитовидной железы, стероидных гормонов и еще десятки других групп полиморфизмов.
В настоящее время в лаборатории CL определяются генетические полиморфизмы генов системы свертывания крови: ген F2 (20210_G>A), ген F5 (1691_G>A), ген F7 (10976_G>A), ген F13 (103_G>Т), ген FGB (455_G>A), ген ITGA 2/интегрин α-2/(807_С>Т), ген ITGВ 3/интегрин β-3/ (1565_Т>С), ген PAI-1 (675_5G>4G). Результат исследования содержит интерпретацию и описание рисков, связанных с тем или иным сочетанием. В ближайшее время планируется значительное расширение спектра определяемых полиморфизмов в CL.

Детекция результатов ПЦР проходит в режиме реального времени. Управление прибором осуществляет программное обеспечение. Программа позволяет использовать простое и интуитивное управление с использованием функции «Тест», что значительно сокращает время создания протоколов исследований. Программное обеспечение содержит приложения для количественной оценки ДНК/кДНК, анализа кривых, определения уровня экспрессии генов, исследования биоценозов и SNP-анализа, позволяет использовать функцию «дополнительных стандартов» и формировать протоколы исследования с автоматической трактовкой полученных результатов.

Научно-технический прогресс привел к одному незаменимому открытию в области молекулярной биологии – открытию метода полимеразной цепной реакции (ПЦР), который позволяет обнаружить даже небольшой фрагмент искомого генома. Полимеразная цепная реакция поначалу применялась исключительно в научных лабораториях. Однако вскоре метод нашел свое место в медицине. В 1993 году, Kary Mullis, ученому, открывшему метод ПЦР, была присуждена Нобелевская премия в области химии.

Диагностика полиморфизмов генов в медицинской лаборатории CL

Выявлять полиморфизмы сегодня позволяют методы современной молекулярно-генетической диагностики. В лаборатории CL исследования полиморфизмов проводят с 2012 года методом полимеразной цепной реакции (ПЦР), c помощью детектирующего амплификатора DtPrime производства российской компании «ДНК-Технология». Принцип ПЦР построен на методе многократного комплементарного достраивания матрицы нуклеиновой кислоты до двухцепочечной структуры, которую способен «увидеть» прибор и распознать полиморфизм. Метод ПЦР, помимо быстроты выполнения и манипулятивной простоты, является еще и весьма чувствительным и специфичным. Очень наглядно принцип метода охарактеризован в среде лабораторных работников так: «найти иглу в стоге сена, а затем построить стог из этих игл».
Для того чтобы исключить неточности, один и тот же участок гена исследуется многократно. Вся цепь ДНК разбивается на участки, затем ведется поиск участков, где прогнозируются полиморфизмы. После чего эти участки вырезаются и сопоставляются. С помощью ПЦР количество таких участков увеличивается до 10 в 36–40 степени. Каждый участок вновь прочитывается десятки раз. Только после этого можно выстроить статистически верную кривую.

Результаты и интерпретация

Информация о наличии полиморфизмов, знание их влияния на определенные виды обмена и уровень чувствительности к лекарственным препаратам позволяют оценить риск развития заболевания, предупредить его развитие и назначить верное лечение.
Важным фактом является то, что генные полиморфизмы в течение жизни не меняются и определяются один раз! Результаты не изменяются в течение жизни и не зависят от физиологического состояния организма.
Генетическое тестирование позволяет в досимптомный период выявить существующие пока только в геноме наследственные тенденции к развитию болезней и наметить пути их ранней профилактики.
Для врачей важна интерпретация результатов анализа полиморфизмов: необходимо понять, как связан тот или иной полиморфизм с вероятностью развития патологического состояния. Следует учитывать, что ни один полиморфизм не является нозологией как таковой, только ее элементом, но зачастую решающим.
Наличие полиморфизмов можно учесть при назначении лекарственных средств. Так, врач-клиницист, руководствуясь рекомендациями генетика, может изменить концентрацию или дозу препарата, который будет влиять на компонент свертывания крови. Безусловно, важны также режим, диета, физиопроцедуры, но основная роль отведена медикаментозному лечению. А это – область фармакогенетики, которая изучает реакции организма на определенные препараты согласно особенностям генома человека.

Интеграция наук

15 лет назад было заявлено, что расшифрован геном человека. Это открытие стало возможным благодаря многолетней работе ученых различных отраслей науки, уровень которой достиг тех высот, в которых информация и знания из одной области проникают в другую. Такая «интеграция наук» выводит на качественно новый уровень дальнейшее развитие биотехнологий, медицины, генетики, геномики. Каких горизонтов достигнут ученые при детальном знании генома человека, прогнозировать трудно. Можно быть готовым лишь к тому, что природа поставит перед человеком новые, не менее сложные задачи и амбициозные цели.

Источник

ПОЛИМОРФИЗМ

Содержание

Полиморфизм в генетике

Полиморфизм в генетике (греч. polymorphos многообразный) — термин, обозначающий проявление индивидуальной, прерывистой изменчивости живых организмов. Первоначально он широко использовался для обозначения любой прерывистой изменчивости внутри вида (напр., каст общественных насекомых, возрастных отличий в окраске, полового диморфизма и др.), однако позже такие различия стали называть полифенизмом, а термином «полиморфизм» в соответствии с определением, данным английским генетиком Фордом (E. В. Ford), обозначать наличие в одной и той же популяции двух или более хорошо различимых форм, способных появляться в потомстве одной самки и встречающихся с частотой, достаточно высокой для того, чтобы исключить поддержание самой редкой из них повторно возникающими мутациями. Понятие «полиморфный» следует также отличать от понятия «политипический», к-рое обозначает сложные таксономические категории (напр., политипический вид — вид, представленный двумя или более подвидами, и т. п.).

Поскольку дискретные признаки организма контролируются, как правило, аллельными генами или блоками тесно сцепленных генов, так наз. супергенами (см. Ген), то некоторые исследователи предлагают под генетическим П. подразумевать наличие в популяции двух или более аллелей (см.) одного локуса (см.), встречающихся достаточно часто.

Полиморфизм затрагивает любые особенности фенотипа на любом уровне, в т. ч. на клеточном и молекулярном. Напр., хорошо известен П. эритроцитарных антигенов у человека (группы крови), структуры хромосом — инверсии, дупликации, добавочные хромосомы (см. Хромосомный полиморфизм).

В конце 60-х — начале 70-х гг. 20 в. благодаря разработке чувствительных методов, гл. обр. различных методов электрофореза (см.), в популяциях животных и человека обнаружен еще более широкий П. по генам, ответственным за синтез белков крови и других тканей, который присущ почти трети всех изученных генных локусов, кодирующих синтез белков как ферментной, так и неферментной природы (см. Изоферменты).

Биологическое значение такой широкой наследственной изменчивости популяций и видов до конца не расшифровано, и по этому вопросу существует две точки зрения. Согласно одной из них биохим. П. поддерживается в популяциях благодаря отбору, т. е. имеет приспособительное значение, согласно другой — биохимический Полиморфизм должен быть отнесен к категории селективно-нейтральной изменчивости. Тем не менее существует множество достоверных фактов, свидетельствующих об исключительном значении явления генетического П. для биологии и медицины. Постоянное присутствие в популяции с достаточно высокой частотой двух или более дискретных форм — генотипов (см.) — означает, что такой П. поддерживается за счет преимущественного отбора гетерозигот. Примером этого может служить полиморфизм гемоглобина, широко распространенный в популяциях людей азиатского и африканского происхождения и приводящий к заболеванию, известному под названием серповидно-клеточной анемии (см.). Анемия связана с гомозиготностью по гену s, который обусловливает образование аномального гемоглобина. Гомозиготы ss погибают вскоре после рождения. Однако стало известно, что высокая частота этого гена в популяциях сохраняется благодаря тому, что гетерозиготы Ss менее поражаются малярией, чем гомозиготы SS. В условиях постоянного присутствия в окружающей среде возбудителя малярии в популяциях поддерживается устойчивое соотношение всех трех генотипов — SS, Ss и ss, так наз. сбалансированный полиморфизм.

Аналогичный или похожий механизм лежит в основе поддержания П. групп крови и различных белков в популяциях человека, что наряду с другими доказательствами подтверждается также открытием корреляции (ассоциаций) между той или иной группой крови и устойчивостью к определенным заболеваниям. Напр., среди больных язвой желудка и двенадцатиперстной кишки группа крови О встречается соответственно на 10 и 17% чаще, чем среди остальной части популяции. Частота группы крови А достоверно выше у больных нек-рыми формами анемии и сахарного диабета. Недавно показана также определенная роль полиморфизма тканевых антигенов в устойчивости организма человека к нек-рым заболеваниям.

Каждый индивидуум обладает уникальным генотипом в отношении групп крови и белков, и эта уникальность отражается на его физических и физиологических особенностях, в т. ч. и на устойчивости к заболеваниям как экзогенной, так и эндогенной природы. Очевидно, что связь между полиморфным состоянием гена и его функциональной ролью не всегда носит столь ярко выраженный специфический характер, как в случае серповидноклеточной анемии, а гораздо чаще определяется некоей интегральной структурой генотипа по совокупности многих полиморфных генов, контролирующих неспецифическую биологическую устойчивость организма.

Т. о., хотя не все в явлении генетического П. окончательно выяснено, его анализ позволяет изучать генетические процессы в популяциях различных видов животных и человека и решать важные вопросы, связанные с их происхождением, эволюцией и адаптацией к окружающей среде. Генетический П. позволяет также использовать группы крови и электрофоретические варианты белков в качестве генетических маркеров для решения ряда задач судебной медицины (напр., при идентификации генотипов с помощью исследования образцов крови и других биол, жидкостей, при доказательстве монозиготности близнецов, при решении вопросов о спорном отцовстве и др.), для составления оптимальных схем трансплантации органов и тканей, для обнаружения связей между генотипом и устойчивостью к различным заболеваниям. Следует, однако, указать, что генетическое «содержание» вида не сводится к одной лишь изменчивости и что наряду с П. необходимо учитывать явление генетического мономорфизма, когда вид в целом представлен лишь одним, преобладающим генотипом, а частота вариантных форм не превышает вероятности повторного мутирования.

Имеются указания на то, что мономорфное состояние гена определяется его важной функциональной ролью в организме, в связи с чем многие вновь возникающие мутации соответствующих генов, как правило, отметаются отбором на ранних онтогенетических стадиях. Если же носители таких мутаций выживают, то они оказываются пораженными наследственными болезнями (см.), относящимися к категории так наз. врожденных нарушений обмена веществ.

Полиморфизм в патологии

Полиморфизм в патологии (греч. polymorphos многообразный) — многообразие структурных проявлений патологического процесса в органах, тканях и клетках.

В общей патологии Полиморфизм наблюдается при компенсаторно-приспособительных процессах, возникающих на различных этапах развития болезни. Компенсаторные процессы (см.) весьма разнообразны и обычно развиваются в отдельных системах, органах и тканях организма. Напр., при регенерации костной ткани в зоне перелома костная мозоль может быть представлена как волокнистой соединительной тканью, так и костно-хрящевыми структурами. Кроме того, П. отмечается при метаплазии тканей (см. Метаплазия) и в процессе организации (см.). В частной патологии П. проявляется в изменчивости морфологической картины ряда заболеваний (туберкулеза, крупозной пневмонии и др.) под влиянием естественных и индуцированных факторов (см. Патоморфоз). В частности, течение крупозной пневмонии может начинаться со стадии красного опеченения или серого опеченения, а в нек-рых случаях она носит мигрирующий характер. Чаще понятие «полиморфизм» используют для морфол, характеристики опухолевого роста.

Клеточный П. характеризуется изменением структуры и функции клеток, в связи с чем они могут иметь различную величину и форму. Клеточный П. может наблюдаться при регенерации в результате неодинаковой зрелости клеток, при различных дистрофиях. В злокачественных новообразованиях опухолевые клетки обычно имеют различную величину и форму (чаще всего неправильную), в цитоплазме обнаруживают разнообразные включения (жировые вакуоли, фрагменты разрушенных ядер и др.).

Для ядерного Полиморфизма характерно появление ядер различной величины и формы, различных патологических форм кариокинеза. Так, в опухолевых клетках ядро может занимать почти всю цитоплазму или в части случаев бывает резко уменьшено в размерах. В связи с нарушениями митоза (см.) возникают гигантские многоядерные клетки. Ядра нек-рых клеток интенсивно окрашиваются, становятся гиперхромными. При гидропической дистрофии ядра клеток увеличены в объеме, округлой формы, с разреженной нуклеоплазмой. Иногда в ядрах имеют место признаки пикноза (см.). В условиях регенерации ядра могут приобретать неправильные очертания, в них отмечается перераспределение хроматина (см.). Часто в условиях регенерации и патологии обнаруживается П. внутриклеточных структур, таких как митохондрии (см.), эндоплазматическая сеть, лизосомы (см.).

Полиморфизм в химии

Полиморфизм в химии (греч. polymorphous многообразный) — способность одного и того же химического соединения или элемента образовывать в зависимости от внешних условий (температуры, давления и др.) различные кристаллические формы (модификации). П. объясняют способностью одних и тех же атомов или молекул образовывать различные кристаллические решетки, отличающиеся своей устойчивостью. Явление П. в химии открыто Мичерлихом (E. Mitscherlich) в 1821 г. П. наблюдается для простых веществ (так наз. аллотропия), для многих органических и неорганических соединений, а также для минералов. Примерами аллотропных простых веществ могут служить алмаз и графит, белый и фиолетовый (красный) фосфор и др. Примером П. хим. соединений могут служить кальцит и арагонит — полиморфные модификации карбоната кальция. Известны два основных вида Полиморфизма: энантиотропия (обратимые превращения) и монотропия (необратимые превращения).

Вещества, находящиеся в различных полиморфных модификациях, обладают разными физ.-хим. свойствами и разной биологической активностью; напр., рост гемофильных бактерий на синтетической среде, заменяющей кровь, происходит при наличии в среде гамма-Fe2O3, а в присутствии aльфа-Fe2O3 бактерии погибают.

Библиография

Полиморфизм в генетике

Алтухов Ю. П. и Рычков Ю. Г. Генетический мономорфизм видов и его возможное биологическое значение, Журн. общ. биол., т. 33, № 3, с. 281, 1972; Бочков Н. П. Генетика человека, М., 1978; Майр Э. Популяции, виды и эволюция, пер. с англ., М., 1974; Харрис Г. Основы биохимической генетики человека, пер. с англ., М., 1973; Эрлих П. и Холм Р. Процесс эволюции, пер. с англ., М., 1966; Сavаlli-Sfоrza L. L. a. Bodmer W. F. The genetics of human populations, San Francisco, 1971; Ford E. B. Polymorphism and taxonomy, в кн.: The new systematics, ed. by J. Huxley, p. 493, L., 1941.

Полиморфизм в патологии

Давыдовский И. В. Общая патология человека, с. 506, М., 1969; Струков А. И. и Серов В. В. Патологическая анатомия с. 159, М., 1979.

Полиморфизм в химии

Некрасов Б. В. Учебник общей химии, с. 382, М., 1981; Неницеску К. Общая химия, пер. с румын., с. 130, М., 1968.

Ю. П. Алтухов (полиморфизм в генетике), Г. М. Могилевский (полиморфизм в патологии),

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *