Показать что тройка векторов образует базис

Доказать, что 3 вектора образуют базис трёхмерного пространства и найти координаты 4-го вектора в данном базисе

Даны векторы Показать что тройка векторов образует базис. Показать, что векторы Показать что тройка векторов образует базисобразуют базис трехмерного пространства и найти координаты вектора Показать что тройка векторов образует базисв этом базисе.

Решение: Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора Показать что тройка векторов образует базисвполне могут образовывать новый базис. И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы Показать что тройка векторов образует базислинейно независимы:

Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис
Показать что тройка векторов образует базис, значит, векторы Показать что тройка векторов образует базислинейно независимы и образуют базис трехмерного пространства.

! Важно: координаты векторов Показать что тройка векторов образует базисобязательно записываем в столбцыопределителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения.

Теперь вспомним теоретическую часть: если векторы Показать что тройка векторов образует базисобразуют базис, то любой вектор Показать что тройка векторов образует базисможно единственным способом разложить по данному базису: Показать что тройка векторов образует базис, где Показать что тройка векторов образует базис– координаты вектора в базисе Показать что тройка векторов образует базис.

Поскольку наши векторы Показать что тройка векторов образует базисобразуют базис трёхмерного пространства (это уже доказано), то вектор Показать что тройка векторов образует базисможно единственным образом разложить по данному базису:
Показать что тройка векторов образует базис, где Показать что тройка векторов образует базис– координаты вектора Показать что тройка векторов образует базисв базисе Показать что тройка векторов образует базис.

По условию и требуется найти координаты Показать что тройка векторов образует базис.

Для удобства объяснения поменяю части местами: Показать что тройка векторов образует базис. В целях нахождения Показать что тройка векторов образует базисследует расписать данное равенство покоординатно:
Показать что тройка векторов образует базис

По какому принципу расставлены коэффициенты? Все коэффициенты левой части в точности перенесены из определителя Показать что тройка векторов образует базис, в правую часть записаны координаты вектора Показать что тройка векторов образует базис.

Получилась система трёх линейных уравнений с тремя неизвестными. Обычно её решают поформулам Крамера, часто даже в условии задачи есть такое требование.

Главный определитель системы уже найден:
Показать что тройка векторов образует базис, значит, система имеет единственное решение.

Дальнейшее – дело техники:
Показать что тройка векторов образует базис

Таким образом:
Показать что тройка векторов образует базис– разложение вектора Показать что тройка векторов образует базиспо базису Показать что тройка векторов образует базис.

Ответ: Показать что тройка векторов образует базис

Как я уже отмечал, задача носит алгебраический характер. Векторы, которые были рассмотрены – это не обязательно те векторы, которые можно нарисовать в пространстве, а, в первую очередь, абстрактные векторы курса линейной алгебры. Для случая двумерных векторов можно сформулировать и решить аналогичную задачу, решение будет намного проще. Однако на практике мне такое задание ни разу не встречалось, именно поэтому я его пропустил в предыдущем разделе.

Такая же задача с трёхмерными векторами для самостоятельного решения:

Даны векторы Показать что тройка векторов образует базис. Показать, что векторы Показать что тройка векторов образует базисобразуют базис и найти координаты вектора Показать что тройка векторов образует базисв этом базисе. Систему линейных уравнений решить методом Крамера.

Полное решение и примерный образец чистового оформления в конце урока.

Аналогично можно рассмотреть четырёхмерное, пятимерное и т.д. векторные пространства, где у векторов соответственно 4, 5 и более координат. Для данных векторных пространств тоже существует понятие линейной зависимости, линейной независимости векторов, существует базис, в том числе, ортонормированный, разложение вектора по базису. Да, такие пространства невозможно нарисовать геометрически, но в них работают все правила, свойства и теоремы двух и трех мерных случаев – чистая алгебра. Собственно, о философских вопросах меня уже пробивало поговорить в статье Частные производные функции трёх переменных, которая появилась раньше данного урока.

Любите векторы, и векторы полюбят вас!

Пример 2: Решение: составим пропорцию из соответствующих координат векторов:
Показать что тройка векторов образует базис
Ответ: при Показать что тройка векторов образует базис

Пример 4: Доказательство: Трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
1) Проверим параллельность противоположных сторон Показать что тройка векторов образует базиси Показать что тройка векторов образует базис.
Найдём векторы:
Показать что тройка векторов образует базис
Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, значит, данные векторы не коллинеарны, и стороны Показать что тройка векторов образует базисне параллельны.
2) Проверим параллельность противоположных сторон Показать что тройка векторов образует базиси Показать что тройка векторов образует базис.
Найдём векторы:
Показать что тройка векторов образует базис
Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, значит, данные векторы коллинеарны, и Показать что тройка векторов образует базис.
Вывод: Две стороны четырёхугольника Показать что тройка векторов образует базиспараллельны, а две другие стороны не параллельны, значит, он является трапецией по определению. Что и требовалось доказать.

Пример 5: Решение:
б) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:
Показать что тройка векторов образует базис
Система не имеет решения, значит, векторы Показать что тройка векторов образует базисне коллинеарны.
Более простое оформление:
Показать что тройка векторов образует базис– вторая и третья координаты не пропорциональны, значит, векторы Показать что тройка векторов образует базисне коллинеарны.
Ответ: векторы Показать что тройка векторов образует базисне коллинеарны.
в) Исследуем на коллинеарность векторы Показать что тройка векторов образует базис. Составим систему:
Показать что тройка векторов образует базис
Соответствующие координаты векторов пропорциональны, значит Показать что тройка векторов образует базис
Вот здесь как раз не проходит «пижонский» метод оформления.
Ответ: Показать что тройка векторов образует базис

Пример 6: Решение: б) Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис(определитель раскрыт по первой строке):
Показать что тройка векторов образует базис
Показать что тройка векторов образует базис, значит, векторы Показать что тройка векторов образует базислинейно зависимы и не образуют базиса трёхмерного пространства.
Ответ: данные векторы не образуют базиса

Пример 9:Решение:Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис
Таким образом, векторы Показать что тройка векторов образует базислинейно независимы и образуют базис.
Представим вектор Показать что тройка векторов образует базисв виде линейной комбинации базисных векторов:
Показать что тройка векторов образует базис
Покоординатно:
Показать что тройка векторов образует базис
Систему решим по формулам Крамера:
Показать что тройка векторов образует базис, значит, система имеет единственное решение.
Показать что тройка векторов образует базис

Ответ: Векторы Показать что тройка векторов образует базисобразуют базис, Показать что тройка векторов образует базис

Автор: Емелин Александр

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Векторное произведение векторов.
Смешанное произведение векторов

На данном уроке мы рассмотрим ещё две операции с векторами: векторное произведение векторов и смешанное произведение векторов. Ничего страшного, так иногда бывает, что для полного счастья, помимо скалярного произведения векторов, требуется ещё и ещё. Такая вот векторная наркомания. Может сложиться впечатление, что мы залезаем в дебри аналитической геометрии. Это не так. В данном разделе высшей математики вообще мало дров, разве что на Буратино хватит. На самом деле материал очень распространенный и простой – вряд ли сложнее, чем то же скалярное произведение, даже типовых задач поменьше будет. Главное в аналитической геометрии, как многие убедятся или уже убедились, НЕ ОШИБАТЬСЯ В ВЫЧИСЛЕНИЯХ. Повторяйте как заклинание, и будет вам счастье =)

Если векторы сверкают где-то далеко, как молнии на горизонте, не беда, начните с урокаВекторы для чайников, чтобы восстановить или вновь приобрести базовые знания о векторах. Более подготовленные читатели могут знакомиться с информацией выборочно, я постарался собрать максимально полную коллекцию примеров, которые часто встречаются в практических работах

Чем вас сразу порадовать? Когда я был маленьким, то умел жонглировать двумя и даже тремя шариками. Ловко получалось. Сейчас жонглировать не придётся вообще, поскольку мы будем рассматривать только пространственные векторы, а плоские векторы с двумя координатами останутся за бортом. Почему? Такими уж родились данные действия – векторное и смешанное произведение векторов определены и работают в трёхмерном пространстве. Уже проще!

Источник

35. Базис векторов пространства

Рассмотрим множество V3 всех векторов пространства.

Теорема 5. Любая упорядоченная система трех некомпланарных векторов A, B, С V3 Образуют базис векторного пространства V3.

Доказательство. Пусть A, B, С Некомпланарные векторы. По следствию 1 теоремы 8 они образует линейно независимую систему. Пусть D V3. Отложим векторы A, B, С и D от точки O: A = Показать что тройка векторов образует базис, B = Показать что тройка векторов образует базис, С = Показать что тройка векторов образует базис, D = Показать что тройка векторов образует базис(см. рис. 18). Проведем через точку D прямую L, параллельную прямой OD. Так как векторы A, B, С некомпланарны, то прямая L пересекает плоскость OAB в точке E. Тогда Показать что тройка векторов образует базис=Показать что тройка векторов образует базис+Показать что тройка векторов образует базис. Так как векторы Показать что тройка векторов образует базислежит в плоскости OAB, а вектора образуют базис векторов этой плоскости, то по теореме 7 Показать что тройка векторов образует базис= a a + b b, где a, b R. Так как вектор Показать что тройка векторов образует базисколлинеарен вектору C, То по теореме 8 § 1 он линейно выражается через вектор С: Показать что тройка векторов образует базис= g с. Поэтому D = Показать что тройка векторов образует базис= a a + b b + g с и по определению 1 вектора A, B, С образует базис пространства V3.

По теореме 5 базис векторов на пространстве образуют любые три некомпланарные вектора, поэтому любой вектор в пространстве имеет три координаты. Тогда справедливо следующее утверждение.

Следствие 1. Вектора A = (a1, b1, g1), B = (a2, b2, g2), С = (a3, b3, g3) Образуют базис векторов пространства тогда и только тогда, когда

Показать что тройка векторов образует базис= 0.

Теорема 6. Любые четыре вектора A, B, С, D В пространстве линейно зависимы.

Доказательство. Если векторы A, B, С Компланарны, то по теоремы 5 они линейно зависимы. Тогда по свойству линейной зависимости по свойству 4 § 3 вектора A, B, С, D линейно зависимы. Если вектора A, B, С некомпланарны, то по теореме 5 они образуют базис векторов пространства. Тогда вектор D линейная комбинация векторов A, B, С и по свойству линейной зависимости векторы A, B, С, D линейно зависимы.

Решение. Так как определитель

Показать что тройка векторов образует базис,

Для того, чтобы найти координаты вектора D в базисе A, B, С составим векторное уравнение

И запишем его в координатной форме:

Показать что тройка векторов образует базис

Источник

Линейная зависимость и линейная независимость векторов.
Базис векторов. Аффинная система координат

В аудитории находится тележка с шоколадками, и каждому посетителю сегодня достанется сладкая парочка – аналитическая геометрия с линейной алгеброй. В данной статье будут затронуты сразу два раздела высшей математики, и мы посмотрим, как они уживаются в одной обёртке. Сделай паузу, скушай «Твикс»! …блин, ну и чушь спорол. Хотя ладно, забивать не буду, в конце концов, на учёбу должен быть позитивный настрой.

Линейная зависимость векторов, линейная независимость векторов, базис векторов и др. термины имеют не только геометрическую интерпретацию, но, прежде всего, алгебраический смысл. Само понятие «вектор» с точки зрения линейной алгебры – это далеко не всегда тот «обычный» вектор, который мы можем изобразить на плоскости или в пространстве. За доказательством далеко ходить не нужно, попробуйте нарисовать вектор пятимерного пространства Показать что тройка векторов образует базис. Или вектор погоды, за которым я только что сходил на Гисметео: Показать что тройка векторов образует базис– температура и атмосферное давление соответственно. Пример, конечно, некорректен с точки зрения свойств векторного пространства, но, тем не менее, никто не запрещает формализовать данные параметры вектором. Дыхание осени….

Нет, я не собираюсь грузить вас теорией, линейными векторными пространствами, задача состоит в том, чтобы понять определения и теоремы. Новые термины (линейная зависимость, независимость, линейная комбинация, базис и т.д.) приложимы ко всем векторам с алгебраической точки зрения, но примеры будут даны геометрические. Таким образом, всё просто, доступно и наглядно. Помимо задач аналитической геометрии мы рассмотрим и некоторые типовые задания алгебры. Для освоения материала желательно ознакомиться с уроками Векторы для чайников и Как вычислить определитель?

Линейная зависимость и независимость векторов плоскости.
Базис плоскости и аффинная система координат

Рассмотрим плоскость вашего компьютерного стола (просто стола, тумбочки, пола, потолка, кому что нравится). Задача будет состоять в следующих действиях:

1) Выбрать базис плоскости. Грубо говоря, у столешницы есть длина и ширина, поэтому интуитивно понятно, что для построения базиса потребуется два вектора. Одного вектора явно мало, три вектора – лишка.

2) На основе выбранного базиса задать систему координат (координатную сетку), чтобы присвоить координаты всем находящимся на столе предметам.

Не удивляйтесь, сначала объяснения будут на пальцах. Причём, на ваших. Пожалуйста, поместите указательный палец левой руки на край столешницы так, чтобы он смотрел в монитор. Это будет вектор Показать что тройка векторов образует базис. Теперь поместите мизинец правой руки на край стола точно так же – чтобы он был направлен на экран монитора. Это будет вектор Показать что тройка векторов образует базис. Улыбнитесь, вы замечательно выглядите! Что можно сказать о векторах Показать что тройка векторов образует базис? Данные векторы коллинеарны, а значит, линейно выражаются друг через друга:
Показать что тройка векторов образует базис, ну, или наоборот: Показать что тройка векторов образует базис, где Показать что тройка векторов образует базис– некоторое число, отличное от нуля.

Картинку сего действа можно посмотреть на уроке Векторы для чайников, где я объяснял правило умножения вектора на число.

Будут ли ваши пальчики Показать что тройка векторов образует базисзадавать базис на плоскости компьютерного стола? Очевидно, что нет. Коллинеарные векторы путешествуют туда-сюда по одному направлению, а у плоскости есть длина и ширина.

Такие векторы называют линейно зависимыми.

Справка: Слова «линейный», «линейно» обозначают тот факт, что в математических уравнениях, выражениях нет квадратов, кубов, других степеней, логарифмов, синусов и т.д. Есть только линейные (1-й степени) выражения и зависимости.

Два вектора плоскости линейно зависимы тогда и только тогда, когда они коллинеарны.

Скрестите пальцы на столе, чтобы между ними был любой угол, кроме 0 или 180 градусов. Два вектора плоскости Показать что тройка векторов образует базислинейно независимы в том и только том случае, если они не коллинеарны. Итак, базис Показать что тройка векторов образует базисполучен. Не нужно смущаться, что базис получился «косым» с неперпендикулярными векторами различной длины. Очень скоро мы увидим, что для его построения пригоден не только угол в 90 градусов, и не только единичные, равные по длине векторы

Любой вектор плоскости Показать что тройка векторов образует базисединственным образом раскладывается по базису Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, где Показать что тройка векторов образует базис– действительные числа. Числа Показать что тройка векторов образует базисназывают координатами вектора в данном базисе.

Также говорят, что вектор Показать что тройка векторов образует базис представлен в виде линейной комбинации базисных векторов. То есть, выражение Показать что тройка векторов образует базисназывают разложением вектора Показать что тройка векторов образует базиспо базису Показать что тройка векторов образует базисили линейной комбинацией базисных векторов.

Например, можно сказать, что вектор Показать что тройка векторов образует базисразложен по ортонормированному базису плоскости Показать что тройка векторов образует базис, а можно сказать, что он представлен в виде линейной комбинации векторов Показать что тройка векторов образует базис.

Сформулируем определение базиса формально: Базисом плоскости называется пара линейно независимых (неколлинеарных) векторов Показать что тройка векторов образует базис, взятых в определённом порядке, при этом любой вектор плоскости является линейной комбинацией базисных векторов.

Существенным моментом определения является тот факт, что векторы взяты в определённом порядке. Базисы Показать что тройка векторов образует базис– это два совершенно разных базиса! Как говорится, мизинец левой руки не переставишь на место мизинца правой руки.

С базисом разобрались, но его недостаточно, чтобы задать координатную сетку и присвоить координаты каждому предмету вашего компьютерного стола. Почему недостаточно? Векторы являются свободными и блуждают по всей плоскости. Так как же присвоить координаты тем маленьким грязным точкам стола, которые остались после бурных выходных? Необходим отправной ориентир. И таким ориентиром является знакомая всем точка – начало координат. Разбираемся с системой координат:

Начну со «школьной» системы. Уже на вступительном уроке Векторы для чайников я выделял некоторые различия между прямоугольной системой координат и ортонормированным базисом Показать что тройка векторов образует базис. Вот стандартная картина:

Показать что тройка векторов образует базис

Когда говорят о прямоугольной системе координат, то чаще всего имеют в виду начало координат, координатные оси и масштаб по осям. Попробуйте набрать в поисковике «прямоугольная система координат», и вы увидите, что многие источники вам будут рассказывать про знакомые с 5-6-го класса координатные оси и о том, как откладывать точки на плоскости.

С другой стороны, создается впечатление, что прямоугольную систему координат вполне можно определить через ортонормированный базис Показать что тройка векторов образует базис. И это почти так. Формулировка звучит следующим образом:

Точка Показать что тройка векторов образует базисплоскости, которая называется началом координат, и ортонормированный базис Показать что тройка векторов образует базисзадают декартову прямоугольную систему координат плоскости. То есть, прямоугольная система координат однозначно определяется единственной точкой и двумя единичными ортогональными векторами Показать что тройка векторов образует базис. Именно поэтому, вы видите чертёж, который я привёл выше – в геометрических задачах часто (но далеко не всегда) рисуют и векторы, и координатные оси.

Думаю, всем понятно, что с помощью точки Показать что тройка векторов образует базис(начала координат) и ортонормированного базиса Показать что тройка векторов образует базисЛЮБОЙ ТОЧКЕ плоскости и ЛЮБОМУ ВЕКТОРУ плоскости можно присвоить координаты. Образно говоря, «на плоскости всё можно пронумеровать».

Обязаны ли координатные векторы быть единичными? Нет, они могут иметь произвольную ненулевую длину. Рассмотрим точку Показать что тройка векторов образует базиси два ортогональных вектора Показать что тройка векторов образует базиспроизвольной ненулевой длины:

Показать что тройка векторов образует базис
Такой базис называется ортогональным. Начало координат с векторами Показать что тройка векторов образует базисзадают координатную сетку, и любая точка плоскости, любой вектор имеют свои координаты в данном базисе. Например, Показать что тройка векторов образует базисили Показать что тройка векторов образует базис. Очевидное неудобство состоит в том, что координатные векторы в общем случае имеют различные длины, отличные от единицы. Если длины равняются единице, то получается привычный ортонормированный базис.

! Примечание: в ортогональном базисе, а также ниже в аффинных базисах плоскости и пространства единицы по осям считаются УСЛОВНЫМИ. Например, в одной единице по оси абсцисс содержится 4 см, в одной единице по оси ординат 2 см. Данной информации достаточно, чтобы при необходимости перевести «нестандартные» координаты в «наши обычные сантиметры».

И второй вопрос, на который уже на самом деле дан ответ – обязательно ли угол между базисными векторами должен равняться 90 градусам? Нет! Как гласит определение, базисные векторы должны быть лишь неколлинеарными. Соответственно угол может быть любым, кроме 0 и 180 градусов.

Точка Показать что тройка векторов образует базисплоскости, которая называется началом координат, и неколлинеарные векторы Показать что тройка векторов образует базис, взятые в определённом порядке, задают аффинную систему координат плоскости:

Показать что тройка векторов образует базис
Иногда такую систему координат называют косоугольной системой. В качестве примеров на чертеже изображены точки Показать что тройка векторов образует базиси векторы:
Показать что тройка векторов образует базис

Как понимаете, аффинная система координат ещё менее удобна, в ней не работают формулы длин векторов и отрезков, которые мы рассматривали во второй части урока Векторы для чайников, многие вкусные формулы, связанные со скалярным произведением векторов. Зато справедливы правила сложения векторов и умножения вектора на число, формулы деления отрезка в данном отношении, а также ещё некоторые типы задач, которые мы скоро рассмотрим.

А вывод таков, что наиболее удобным частным случаем аффинной системы координат является декартова прямоугольная система. Поэтому её, родную, чаще всего и приходится лицезреть. …Впрочем, всё в этой жизни относительно – существует немало ситуаций, в которых уместна именно косоугольная (или какая-набудь другая, например, полярная) система координат. Да и гуманоидам такие системы могут прийтись по вкусу =)

Переходим к практической части. Все задачи данного урока справедливы как для прямоугольной системы координат, так и для общего аффинного случая. Сложного здесь ничего нет, весь материал доступен даже школьнику.

Как определить коллинеарность векторов плоскости?

Типовая вещь. Для того чтобы два вектора плоскости Показать что тройка векторов образует базисбыли коллинеарны, необходимо и достаточно, чтобы их соответствующие координаты были пропорциональны Показать что тройка векторов образует базис. По существу, это покоординатная детализация очевидного соотношения Показать что тройка векторов образует базис.

а) Проверить, коллинеарны ли векторы Показать что тройка векторов образует базис.
б) Образуют ли базис векторы Показать что тройка векторов образует базис?

Решение:
а) Выясним, существует ли для векторов Показать что тройка векторов образует базискоэффициент пропорциональности Показать что тройка векторов образует базис, такой, чтобы выполнялись равенства Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, значит, данные векторы коллинеарны.

Обязательно расскажу о «пижонской» разновидности применения данного правила, которая вполне прокатывает на практике. Идея состоит в том, чтобы сразу составить пропорцию Показать что тройка векторов образует базиси посмотреть, будет ли она верной:

Составим пропорцию из отношений соответствующих координат векторов:
Показать что тройка векторов образует базис

Сокращаем:
Показать что тройка векторов образует базис, таким образом, соответствующие координаты пропорциональны, следовательно, Показать что тройка векторов образует базис

Отношение можно было составить и наоборот, это равноценный вариант:
Показать что тройка векторов образует базис

Для самопроверки можно использовать то обстоятельство, что коллинеарные векторы линейно выражаются друг через друга. В данном случае имеют место равенства Показать что тройка векторов образует базис. Их справедливость легко проверяется через элементарные действия с векторами:
Показать что тройка векторов образует базис

б) Два вектора плоскости образуют базис, если они не коллинеарны (линейно независимы). Исследуем на коллинеарность векторы Показать что тройка векторов образует базис. Составим систему:
Показать что тройка векторов образует базис

Из первого уравнения следует, что Показать что тройка векторов образует базис, из второго уравнения следует, что Показать что тройка векторов образует базис, значит, система несовместна (решений нет). Таким образом, соответствующие координаты векторов не пропорциональны.

Вывод: векторы линейно независимы и образуют базис.

Упрощённая версия решения выглядит так:

Составим пропорцию из соответствующих координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, значит, данные векторы линейно независимы и образуют базис.

Обычно такой вариант не бракуют рецензенты, но возникает проблема в тех случаях, когда некоторые координаты равны нулю. Вот так: Показать что тройка векторов образует базис. Или так: Показать что тройка векторов образует базис. Или так: Показать что тройка векторов образует базис. Как тут действовать через пропорцию? (действительно, на ноль же делить нельзя). Именно по этой причине я и назвал упрощенное решение «пижонским».

Ответ: а) Показать что тройка векторов образует базис, б) образуют.

Небольшой творческий пример для самостоятельного решения:

При каком значении параметра Показать что тройка векторов образует базисвекторы Показать что тройка векторов образует базисбудут коллинеарны?

В образце решения параметр найден через пропорцию Показать что тройка векторов образует базис.

Существует изящный алгебраический способ проверки векторов на коллинеарность., систематизируем наши знания и пятым пунктом как раз добавим его:

Для двух векторов плоскости эквивалентны следующие утверждения:
1) векторы линейно независимы;
2) векторы образуют базис;
3) векторы не коллинеарны;
4) векторы нельзя линейно выразить друг через друга;
+ 5) определитель, составленный из координат данных векторов, отличен от нуля.

Соответственно, эквивалентны следующие противоположные утверждения:
1) векторы линейно зависимы;
2) векторы не образуют базиса;
3) векторы коллинеарны;
4) векторы можно линейно выразить друг через друга;
+ 5) определитель, составленный из координат данных векторов, равен нулю.

Я очень и очень надеюсь, что на данный момент вам уже понятны все встретившиеся термины и утверждения.

Рассмотрим более подробно новый, пятый пункт: два вектора плоскости Показать что тройка векторов образует базисколлинеарны тогда и только тогда, когда определитель, составленный из координат данных векторов, равен нулю: Показать что тройка векторов образует базис. Для применения данного признака, естественно, нужно уметь находить определители.

Решим Пример 1 вторым способом:

а) Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, значит, данные векторы коллинеарны.

б) Два вектора плоскости образуют базис, если они не коллинеарны (линейно независимы). Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, значит, векторы Показать что тройка векторов образует базислинейно независимы и образуют базис.

Ответ: а) Показать что тройка векторов образует базис, б) образуют.

Выглядит значительно компактнее и симпатичнее, чем решение с пропорциями.

Проверка векторов на коллинеарность – простая и очень распространенная задача аналитической геометрии. Нередко в условии заодно требуется проверить векторы и на ортогональность (базис в таких случаях, как правило, ортонормированный). Данное задание подробно рассмотрено на уроке Скалярное произведение векторов.

С помощью рассмотренного материала можно устанавливать не только коллинеарность векторов, но и доказывать параллельность отрезков, прямых. Рассмотрим пару задач с конкретными геометрическими фигурами.

Даны вершины четырёхугольника Показать что тройка векторов образует базис. Доказать, что четырёхугольник Показать что тройка векторов образует базисявляется параллелограммом.

Доказательство: Чертежа в задаче строить не нужно, поскольку решение будет чисто аналитическим. Вспоминаем определение параллелограмма:
Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны.

Таким образом, нужно доказать:
1) параллельность противоположных сторон Показать что тройка векторов образует базиси Показать что тройка векторов образует базис;
2) параллельность противоположных сторон Показать что тройка векторов образует базиси Показать что тройка векторов образует базис.

1) Найдём векторы:
Показать что тройка векторов образует базис

Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, значит, данные векторы коллинеарны, и Показать что тройка векторов образует базис.

2) Найдём векторы:
Показать что тройка векторов образует базис

Получился один и тот же вектор («по школьному» – равные векторы). Коллинеарность совсем очевидна, но решение таки лучше оформить с толком, с расстановкой. Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, значит, данные векторы коллинеарны, и Показать что тройка векторов образует базис.

Вывод: Противоположные стороны четырёхугольника Показать что тройка векторов образует базиспопарно параллельны, значит, он является параллелограммом по определению. Что и требовалось доказать.

Больше фигур хороших и разных:

Даны вершины четырёхугольника Показать что тройка векторов образует базис. Доказать, что четырёхугольник Показать что тройка векторов образует базисявляется трапецией.

Для более строгой формулировки доказательства лучше, конечно, раздобыть определение трапеции, но достаточно и просто вспомнить, как она выглядит.

Это задание для самостоятельного решения. Полное решение в конце урока.

А теперь пора потихонечку перебираться из плоскости в пространство:

Как определить коллинеарность векторов пространства?

Правило очень похоже. Для того чтобы два вектора пространства Показать что тройка векторов образует базисбыли коллинеарны, необходимо и достаточно, чтобы их соответствующие координаты были пропорциональны Показать что тройка векторов образует базис.

Выяснить, будут ли коллинеарны следующие векторы пространства:

а) Показать что тройка векторов образует базис;
б) Показать что тройка векторов образует базис
в) Показать что тройка векторов образует базис

Решение:
а) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:
Показать что тройка векторов образует базис

Система не имеет решения, значит, векторы Показать что тройка векторов образует базисне коллинеарны.

«Упрощёнка» оформляется проверкой пропорции Показать что тройка векторов образует базис. В данном случае:
Показать что тройка векторов образует базис– соответствующие координаты не пропорциональны, значит, векторы Показать что тройка векторов образует базисне коллинеарны.

Ответ: векторы Показать что тройка векторов образует базисне коллинеарны.

б-в) Это пункты для самостоятельного решения. Попробуйте его оформить двумя способами.

Существует метод проверки пространственных векторов на коллинеарность и через определитель третьего порядка, данный способ освещен в статье Векторное произведение векторов.

Аналогично плоскому случаю, рассмотренный инструментарий может применяться в целях исследования параллельности пространственных отрезков и прямых.

Добро пожаловать во второй раздел:

Линейная зависимость и независимость векторов трехмерного пространства.
Пространственный базис и аффинная система координат

Многие закономерности, которые мы рассмотрели на плоскости, будут справедливыми и для пространства. Я постарался минимизировать конспект по теории, поскольку львиная доля информации уже разжёвана. Тем не менее, рекомендую внимательно прочитать вводную часть, так как появятся новые термины и понятия.

Теперь вместо плоскости компьютерного стола исследуем трёхмерное пространство. Сначала создадим его базис. Кто-то сейчас находится в помещении, кто-то на улице, но в любом случае нам никуда не деться от трёх измерений: ширины, длины и высоты. Поэтому для построения базиса потребуется три пространственных вектора. Одного-двух векторов мало, четвёртый – лишний.

И снова разминаемся на пальцах. Пожалуйста, поднимите руку вверх и растопырьте в разные стороны большой, указательный и средний палец. Это будут векторы Показать что тройка векторов образует базис, они смотрят в разные стороны, имеют разную длину и имеют разные углы между собой. Поздравляю, базис трёхмерного пространства готов! Кстати, не нужно демонстрировать такое преподавателям, как ни крути пальцами, а от определений никуда не деться =)

Далее зададимся важным вопросом, любые ли три вектора образуют базис трехмерного пространства? Пожалуйста, плотно прижмите три пальца к столешнице компьютерного стола. Что произошло? Три вектора расположились в одной плоскости, и, грубо говоря, у нас пропало одно из измерений – высота. Такие векторы являются компланарными и, совершенно очевидно, что базиса трёхмерного пространства не создают.

Следует отметить, что компланарные векторы не обязаны лежать в одной плоскости, они могут находиться в параллельных плоскостях (только не делайте этого с пальцами, так отрывался только Сальвадор Дали =)).

Определение: векторы называются компланарными, если существует плоскость, которой они параллельны. Здесь логично добавить, что если такой плоскости не существует, то и векторы будут не компланарны.

Три компланарных вектора всегда линейно зависимы, то есть линейно выражаются друг через друга. Для простоты снова представим, что они лежат в одной плоскости. Во-первых, векторы Показать что тройка векторов образует базисмало того, что компланарны, могут быть вдобавок ещё и коллинеарны, тогда любой вектор можно выразить через любой вектор. Во втором случае, если, например, векторы Показать что тройка векторов образует базисне коллинеарны, то третий вектор выражается через них единственным образом: Показать что тройка векторов образует базис(а почему – легко догадаться по материалам предыдущего раздела).

Справедливо и противоположное утверждение: три некомпланарных вектора всегда линейно независимы, то есть никоим образом не выражаются друг через друга. И, очевидно, только такие векторы могут образовать базис трёхмерного пространства.

Определение: Базисом трёхмерного пространства называется тройка линейно независимых (некомпланарных) векторов Показать что тройка векторов образует базис, взятых в определённом порядке, при этом любой вектор пространства единственным образом раскладывается по данному базису Показать что тройка векторов образует базис, где Показать что тройка векторов образует базис– координаты вектора Показать что тройка векторов образует базисв данном базисе

Напоминаю, также можно сказать, что вектор Показать что тройка векторов образует базиспредставлен в виде линейной комбинации базисных векторов.

Понятие системы координат вводится точно так же, как и для плоского случая, достаточно одной точки и любых трёх линейно независимых векторов:

Точка Показать что тройка векторов образует базиспространства, которая называется началом координат, и некомпланарные векторы Показать что тройка векторов образует базис, взятые в определённом порядке, задают аффинную систему координат трёхмерного пространства:
Показать что тройка векторов образует базис

Конечно, координатная сетка «косая» и малоудобная, но, тем не менее, построенная система координат позволяет нам однозначно определить координаты любого вектора и координаты любой точки пространства. Аналогично плоскости, в аффинной системе координат пространства не будут работать некоторые формулы, о которых я уже упоминал.

Наиболее привычным и удобным частным случаем аффинной системы координат, как все догадываются, является прямоугольная система координат пространства:

Точка Показать что тройка векторов образует базиспространства, которая называется началом координат, и ортонормированный базис Показать что тройка векторов образует базисзадают декартову прямоугольную систему координат пространства. Знакомая картинка:
Показать что тройка векторов образует базис

Перед тем, как перейти к практическим заданиям, вновь систематизируем информацию:

Для трёх векторов пространства эквивалентны следующие утверждения:
1) векторы линейно независимы;
2) векторы образуют базис;
3) векторы не компланарны;
4) векторы нельзя линейно выразить друг через друга;
5) определитель, составленный из координат данных векторов, отличен от нуля.

Противоположные высказывания, думаю, понятны.

Три вектора пространства Показать что тройка векторов образует базис компланарны тогда и только тогда, когда определитель, составленный из координат данных векторов, равен нулю: Показать что тройка векторов образует базис.

Обращаю внимание на небольшой технический нюанс: координаты векторов можно записывать не только в столбцы, но и в строки (значение определителя от этого не изменится – см. свойства определителей). Но гораздо лучше в столбцы, поскольку это выгоднее для решения некоторых практических задач.

Тем читателям, которые немножко позабыли методы расчета определителей, а может и вообще слабо в них ориентируются, рекомендую один из моих самых старых уроков: Как вычислить определитель?

Проверить, образуют ли базис трёхмерного пространства следующие векторы:

а) Показать что тройка векторов образует базис
б) Показать что тройка векторов образует базис

Решение: Фактически всё решение сводится к вычислению определителя.

а) Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис(определитель раскрыт по первой строке):
Показать что тройка векторов образует базис
Показать что тройка векторов образует базис, значит, векторы Показать что тройка векторов образует базислинейно независимы (не компланарны) и образуют базис трёхмерного пространства.

Ответ: данные векторы образуют базис

б) Это пункт для самостоятельного решения. Полное решение и ответ в конце урока.

Встречаются и творческие задачи:

При каком значении параметра Показать что тройка векторов образует базисвекторы Показать что тройка векторов образует базисбудут компланарны?

Решение: Векторы компланарны тогда и только тогда, когда определитель, составленный из координат данных векторов равен нулю:
Показать что тройка векторов образует базис

По существу, требуется решить уравнение с определителем. Налетаем на нули как коршуны на тушканчиков – определитель выгоднее всего раскрыть по второй строке и сразу же избавиться от минусов:
Показать что тройка векторов образует базис

Проводим дальнейшие упрощения и сводим дело к простейшему линейному уравнению:
Показать что тройка векторов образует базис

Ответ: при Показать что тройка векторов образует базис

Здесь легко выполнить проверку, для этого нужно подставить полученное значение Показать что тройка векторов образует базисв исходный определитель и убедиться, что Показать что тройка векторов образует базис, раскрыв его заново.

В заключение рассмотрим ещё одну типовую задачу, которая носит больше алгебраический характер и традиционно включается в курс линейной алгебры. Она настолько распространена, что заслуживает отдельного топика:

Доказать, что 3 вектора образуют базис трёхмерного пространства
и найти координаты 4-го вектора в данном базисе

Даны векторы Показать что тройка векторов образует базис. Показать, что векторы Показать что тройка векторов образует базисобразуют базис трехмерного пространства и найти координаты вектора Показать что тройка векторов образует базисв этом базисе.

Решение: Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора Показать что тройка векторов образует базисвполне могут образовывать новый базис. И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы Показать что тройка векторов образует базислинейно независимы:

Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис
Показать что тройка векторов образует базис, значит, векторы Показать что тройка векторов образует базислинейно независимы и образуют базис трехмерного пространства.

! Важно: координаты векторов Показать что тройка векторов образует базисобязательно записываем в столбцы определителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения.

Теперь вспомним теоретическую часть: если векторы Показать что тройка векторов образует базисобразуют базис, то любой вектор Показать что тройка векторов образует базисможно единственным способом разложить по данному базису: Показать что тройка векторов образует базис, где Показать что тройка векторов образует базис– координаты вектора в базисе Показать что тройка векторов образует базис.

Поскольку наши векторы Показать что тройка векторов образует базисобразуют базис трёхмерного пространства (это уже доказано), то вектор Показать что тройка векторов образует базисможно единственным образом разложить по данному базису:
Показать что тройка векторов образует базис, где Показать что тройка векторов образует базис– координаты вектора Показать что тройка векторов образует базисв базисе Показать что тройка векторов образует базис.

По условию и требуется найти координаты Показать что тройка векторов образует базис.

Для удобства объяснения поменяю части местами: Показать что тройка векторов образует базис. В целях нахождения Показать что тройка векторов образует базисследует расписать данное равенство покоординатно:
Показать что тройка векторов образует базис

По какому принципу расставлены коэффициенты? Все коэффициенты левой части в точности перенесены из определителя Показать что тройка векторов образует базис, в правую часть записаны координаты вектора Показать что тройка векторов образует базис.

Получилась система трёх линейных уравнений с тремя неизвестными. Обычно её решают по формулам Крамера, часто даже в условии задачи есть такое требование.

Главный определитель системы уже найден:
Показать что тройка векторов образует базис, значит, система имеет единственное решение.

Дальнейшее – дело техники:
Показать что тройка векторов образует базис

Таким образом:
Показать что тройка векторов образует базис– разложение вектора Показать что тройка векторов образует базиспо базису Показать что тройка векторов образует базис.

Ответ: Показать что тройка векторов образует базис

Более подготовленные читатели могут ознакомиться с уроком Переход к новому базису, и окончательно уяснить смысл прорешанной задачи. Кстати, с содержательной точки зрения использовать метод Крамера здесь – совсем не айс 😉

И, как я уже отмечал, задание носит алгебраический характер. Векторы, которые были рассмотрены – это не обязательно те векторы, которые можно нарисовать в пространстве, а, в первую очередь, произвольные векторы курса линейной алгебры. Для случая двумерных векторов можно сформулировать и решить аналогичную задачу – решение будет технически намного проще, и поэтому я прошёл мимо него в предыдущем параграфе.

Такая же задача с трёхмерными векторами для самостоятельного решения:

Даны векторы Показать что тройка векторов образует базис. Показать, что векторы Показать что тройка векторов образует базисобразуют базис и найти координаты вектора Показать что тройка векторов образует базисв этом базисе. Систему линейных уравнений решить методом Крамера.

Полное решение и примерный образец чистового оформления в конце урока.

Аналогично можно рассмотреть четырёхмерное, пятимерное и т.д. векторные пространства, где у векторов соответственно 4, 5 и более координат. Для данных векторных пространств тоже существует понятие линейной зависимости, линейной независимости векторов, существует базис, в том числе, ортонормированный, разложение вектора по базису. Да, такие пространства невозможно нарисовать геометрически, но в них работают все правила, свойства и теоремы двух и трех мерных случаев – чистая алгебра.…Хотя, кто его знает, может быть и не чистая…, однако закругляемся – о философских вопросах меня уже пробивало поговорить в статье Частные производные функции трёх переменных, которая появилась раньше данного урока.

Любите векторы, и векторы полюбят вас!

Пример 2: Решение: составим пропорцию из соответствующих координат векторов:
Показать что тройка векторов образует базис
Ответ: при Показать что тройка векторов образует базис

Пример 4: Доказательство: трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
1) Проверим параллельность противоположных сторон Показать что тройка векторов образует базиси Показать что тройка векторов образует базис.
Найдём векторы:
Показать что тройка векторов образует базис
Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, значит, данные векторы не коллинеарны и стороны Показать что тройка векторов образует базисне параллельны.
2) Проверим параллельность противоположных сторон Показать что тройка векторов образует базиси Показать что тройка векторов образует базис.
Найдём векторы:
Показать что тройка векторов образует базис
Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис, значит, данные векторы коллинеарны и Показать что тройка векторов образует базис.
Вывод: Две стороны четырёхугольника Показать что тройка векторов образует базиспараллельны, а две другие стороны не параллельны, значит, он является трапецией по определению. Что и требовалось доказать.

Пример 5: Решение:
б) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:
Показать что тройка векторов образует базис
Система не имеет решения, значит, векторы Показать что тройка векторов образует базисне коллинеарны.
Более простое оформление:
Показать что тройка векторов образует базис– вторая и третья координаты не пропорциональны, значит, векторы Показать что тройка векторов образует базисне коллинеарны.
Ответ: векторы Показать что тройка векторов образует базисне коллинеарны.
в) Исследуем на коллинеарность векторы Показать что тройка векторов образует базис. Составим систему:
Показать что тройка векторов образует базис
Соответствующие координаты векторов пропорциональны, значит Показать что тройка векторов образует базис
Вот здесь как раз не проходит «пижонский» метод оформления.
Ответ: Показать что тройка векторов образует базис

Пример 6: Решение: б) Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис(определитель раскрыт по первой строке):
Показать что тройка векторов образует базис
Показать что тройка векторов образует базис, значит, векторы Показать что тройка векторов образует базислинейно зависимы и не образуют базиса трёхмерного пространства.
Ответ: данные векторы не образуют базиса

Пример 9: Решение: Вычислим определитель, составленный из координат векторов Показать что тройка векторов образует базис:
Показать что тройка векторов образует базис
Таким образом, векторы Показать что тройка векторов образует базислинейно независимы и образуют базис.
Представим вектор Показать что тройка векторов образует базисв виде линейной комбинации базисных векторов:
Показать что тройка векторов образует базис
Покоординатно:
Показать что тройка векторов образует базис
Систему решим по формулам Крамера:
Показать что тройка векторов образует базис, значит, система имеет единственное решение.
Показать что тройка векторов образует базис

Ответ: Векторы Показать что тройка векторов образует базисобразуют базис, Показать что тройка векторов образует базис

Автор: Емелин Александр

(Переход на главную страницу)

Показать что тройка векторов образует базис Zaochnik.com – профессиональная помощь студентам

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *