Поезд маглев что это
Поездом Москва — Петербург за полтора часа. Что такое маглев и почему его до сих пор нет в России
Наша страна одной из первых построила самые быстрые в мире поезда на магнитной подушке. А сейчас у отечественных учёных есть маглев-технология, которой могут позавидовать в Шанхае и Токио. Когда мы сможем объехать всю Россию за 14 часов?
Коллаж © LIFE Фото © LIFE / Стас Вазовски © Shutterstock
Фото © LIFE / Стас Вазовски
Выглядит величественно, верно? Этот потерпевший крушение космический корабль — советский поезд маглев. Магнитолевитационный. То есть поезд, который не едет, а летит, не касаясь путей. Это не макет, не бутафория. Он настоящий. Он ездил.
Репортаж о советском маглеве для телевидения Австралии, 1986 год. Видео предоставлено Московским государственным университетом путей сообщения
А вот, кстати, ещё, не припоминаете? Короткометражка 1987 года из цикла «Этот фантастический мир». Была такая телепрограмма, вёл её космонавт Георгий Гречко. Это 12-й выпуск под названием «С роботами не шутят» по рассказу «Судебный процесс» шведского писателя Фредерика Чиландера. Человек с цветами — Авангард Леонтьев, а перекрашенный специально для фильма вагон с надписью Fire-ball и есть тот шаг в будущее, который не произошёл.
В реальности на нём написано ТП-05. Поскольку это была разработка института ВНИИПИ Транспрогресс, позволим себе предположить, что ТП — это от слов «транспорт» и «прогресс». Его специалисты трудились над технологией маглева ещё с 70-х. Испытания этого вагона начались в 1986-м. Он был не просто демонстрационным.
Фото © LIFE / Стас Вазовски
Вагон строился, чтобы показать, как это будет работать, как будет перевозить пассажиров на проекте Ереван — Севан — Абовян. Но случилось землетрясение в Спитаке, и закончилось финансирование. Хотя мы уже начали строительство, уже первые сваи там забили
Главный конструктор по транспорту на магнитном подвесе инженерно-научного центра «Тэмп», доктор электротехники
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1286763730584.663.png» loading=»lazy» />
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1286763730584.663.png» loading=»lazy» />
Главный конструктор магнитолевитационного вагона ТП-05 Андрей Галенко (справа). Фото © LIFE / Стас Вазовски
Ещё один вариант советского летающего поезда создавали для маршрута Алма-Ата — Медео.
Но руководство в конце концов сказало: ну, это всё хорошо, ребята, но мы будем строить метро
Главный конструктор по транспорту на магнитном подвесе инженерно-научного центра «Тэмп», доктор электротехники
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1286763730584.663.png» loading=»lazy» />
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1286763730584.663.png» loading=»lazy» />
Был и проект маглева Москва — Шереметьево. Но это было в 1992 году.
Проект был закрыт из-за отсутствия финансирования. 1992 год. Каждый выживал как мог. Всё разрушили, что могли
Главный конструктор по транспорту на магнитном подвесе инженерно-научного центра «Тэмп», доктор электротехники
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1286763730584.663.png» loading=»lazy» />
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1286763730584.663.png» loading=»lazy» />
Надо сказать, что после распада СССР отечественные маглев-технологии продолжали и продолжают развивать. Кстати, вы знали, что московский монорельс, который столичное правительство на днях предложило закрыть, тоже, по сути, магнитолевитационный транспорт? Под вагонами состава и на путевой структуре есть магниты, именно они и удерживают состав на своём месте. Этот транспорт, которым Москва когда-то гордилась, разрабатывали те же люди, которые создавали советский маглев.
Юра, мы ещё не всё! Россия могла строить многоразовые ракеты раньше Илона Маска
Как устроен маглев
Вспомните «фокус» из школьной программы: если повернуть магниты друг к другу разными полюсами, они притягиваются, одинаковыми — отталкиваются. Вот этим и ещё некоторыми вещами из школьного курса физики и решили воспользоваться для создания прогрессивного транспорта. Под вагоном закрепили электромагниты. Разработчики называют это магнитной лыжей.
Магниты под днищем советского маглева ТП-05. Фото © LIFE / Стас Вазовски
Электромагниты расположены не только под вагоном, но и под самими рельсами. При взаимодействии магнитов поезда и рельсов образуется магнитная подушка, по которой «скользит» состав. Из-за этого эффекта 18-тонный вагон, рассчитанный на четыре десятка пассажиров, зависает на высоте около сантиметра. А чтобы он поехал, при помощи электричества создаётся бегущее магнитное поле, оно образует движущую силу, которая и толкает вагон.
Маглев способен обеспечить передвижение на скорости до 600 километров в час. Если подумать, трасса Санкт-Петербург — Петрозаводск — Ханты-Мансийск — Челябинск — Владивосток длиной более 12 тысяч километров могла бы преодолеваться за 14 часов
Заместитель генерального директора НИИ электрофизической аппаратуры по термоядерным и магнитным технологиям
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1156256721103.5117.png» loading=»lazy» />
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1156256721103.5117.png» loading=»lazy» />
В городе магнитолевитационную трассу можно строить буквально в двух метрах от стеклянной поверхности любого здания. Нет вибрации, нет шума, только рассекаемый воздух
Заместитель генерального директора НИИ электрофизической аппаратуры по термоядерным и магнитным технологиям
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1156256721103.5117.png» loading=»lazy» />
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1156256721103.5117.png» loading=»lazy» />
Если сейчас у нас на путь между Петербургом и Москвой выходит до полутора тысяч рабочих каждую ночь, чтобы поправить его перед дальнейшей эксплуатацией, то здесь этого не надо. Нет контакта с путями — нет износа
Заместитель генерального директора НИИ электрофизической аппаратуры по термоядерным и магнитным технологиям
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1156256721103.5117.png» loading=»lazy» />
» ratio=»1/1″ src=»https://static.life.ru/publications/2020/9/9/1156256721103.5117.png» loading=»lazy» />
Как рассчитали учёные из Петербургского университета путей сообщения и Российского университета транспорта, билет на российский маглев будет стоить примерно 2300 рублей — дешевле, чем на «Сапсан» (поездка на нём обходится от 2700 до 10 с лишним тысяч рублей).
Маглев в других странах
Шанхай. Поезд курсирует между аэропортом и метро. Пролетает 30 километров за 10 минут. Именно пролетает. Билет — 40 юаней, что в переводе 355 рублей. Как просветили создатели советского маглева, это адаптированная китайская версия немецкой системы «Трансрапид», разработанной в 60–70-е годы.
<>
Сеул, Южная Корея. Неторопливый маглев, всего 110 километров в час. А больше и не надо — линия всего шесть километров. Внутригородская.
В Японии маглев тестируют. Между Токио и Нагоей. Их разделяет примерно 440 километров. На машине ехать больше шести часов. А на новом поезде обещают всего час.
Но этот поезд летит по немного другой системе. Магниты на борту сделаны из материалов, которые держат при температуре жидкого азота. Это примерно минус 200 по Цельсию. Поэтому в таком лютом морозе ток через них проходит беспрепятственно. Это называется сверхпроводимостью: вещество приобретает сверхспособность проводить ток, ему нужно сравнительно мало электричества, чтобы создать мощное магнитное поле. Такая особенность имеется, например, у свинца, алюминия, олова и некоторых других металлов.
Фото © LIFE / Стас Вазовски
Это явление известно как «эффект Мейснера». Правда, сам профессор Мюнхенского университета Вальтер Фриц Мейснер величал его более возвышенно: «гроб Магомета». Дело в том, что в священной книге мусульман описано, как после смерти пророка Мохаммеда гроб с его телом висел в воздухе без всякой поддержки. Учёный не был религиозен, просто начитан.
Берётся сверхпроводник, в данном случае квадратная пластина из подходящего сплава. Заливается жидким азотом. Только, пожалуйста, без самодеятельности, все эксперименты под присмотром опытных людей. А теперь попробуем сверху положить магнитик. Ну как? Кажется, произошло чудо.
Фото © LIFE / Стас Вазовски
В принципе, поезд можно сделать на таком эффекте, только нужно, наоборот, из магнита сделать дорогу, а внутри поезда разместить сверхпроводник, потому что дорогу мы не можем охлаждать, то есть у нас будет внутри поезда сверхпроводник, охлаждаемый жидким азотом, а полотно дороги сделано из магнитов, вдоль которых может левитировать состав
Shanghai Maglev (Шанхай Маглев) – самый быстрый поезд в мире
Shanghai Maglev – эта первая в мире коммерческая железнодорожная линия на магнитном подушке. Линия этой железной дороги проходит из центра города в аэропорт и является одной из достопримечательностей как Шанхая, так и всего Китая в целом.
История поезда Шанхайский Маглев
Строительство линии “Маглев” в Шанхае велось в 2001-2003 годах немецкой компанией Transrapid, и 30 километров дороги обошлись в 10 млрд. юаней (1.6 млрд. долларов США). Такие высокие расходы связаны с тем, что значительная часть трассы проходит над заболоченной местностью, и строителям пришлось устанавливать опоры эстакады на специальные бетонные подушки, упирающиеся в скальное основание. Таких опор, к слову сказать, получилось немало, а толщина некоторых бетонных подушек достигает 85 метров. Ввод железнодорожной линии “Маглев” в эксплуатацию состоялся 1 января 2004 года.
Маршрут и скорость поезда Маглев
Поезд на магнитной подушке “Маглев” курсирует между международным аэропортом Пудун и станцией метро Лунъян в Шанхае. Как уже было сказано выше, протяжённость Шанхайской скоростной магистрали на магнитной подушке составляет 30 километров. Это расстояние поезд преодолевает всего за 8 минут (от 7 минут 20 секунд до 8 минут 10 секунд в зависимости от времени дня). Чтобы преодолеть это же расстояние на метро, понадобится 40 минут.
Максимальная скорость поезда “Маглев” – 431 км/ч. Разогнавшись до такой скорости в середине маршрута, поезд удерживает её 1,5-2 минуты.
Средняя скорость движения поезда “Маглев” на всем маршруте составляет 250 км/ч.
Cтанция Лунъян в Шанхае Поезд “Маглев” на станции Лунъян в Шанхае Поезда “Маглев” на маршруте между Шанхаем и аэропортом Поезд “Маглев” у шанхайского аэропорта Пудун
Внутри поезда Маглев
Шанхайский поезд “Маглев” укомплектован современными, просторными и удобными вагонами. В каждом есть кондиционер, и пассажиры имеют возможность сами регулировать температуру. Кресла скомплектованы два в ряд (VIP-класс) или по три в ряд (стандартные места). Для пассажиров в вагонах установлены ЖК-экраны, на которых отображается текущая скорость поезда и время. И когда на экране появляется максимальная скорость (431км/ч), некоторые пассажиры фотографируют экран.
Стандартный вагон поезда “Маглев” VIP-класс в поезде “Маглев” Места пассажиров VIP-класс в поезде “Маглев” Табло текущей скорости в поезде “Шанхайский Маглев”
Расписание и билеты на поезд Маглев Шанхай-Аэропорт
Железнодорожная линия “Маглев” Шанхай – Аэропорт Пудун работает с 6:45 утра и до 9: 40 вечера. Интервалы движения составляют 15-20 минут. Актуальное расписание Шанхайского Маглева можно посмотреть на официальном сайте поезда. Там же можно получить информацию о действующих тарифах и ценах. Цена билета зависит от выбранного класса путешествия и от того, путешествуете ли вы в один конец или туда – обратно. Билет туда – обратно действует в течение семи дней. Авиапассажирам, пользующимся услугами в день прилёта/ вылета, предоставляется скидка при предъявлении билета на самолёт или посадочного талона.
Билеты можно свободно приобрести в любое время в одном из центров по их продаже: на станции Longyang Rd, либо в аэропорту. Примечательно, что дети ростом до 120 см могут путешествовать бесплатно, но обязательно в сопровождении взрослых. Для детей выше 120 см нужно купить билет за полную стоимость.
Поезд на магнитной подушке Маглев – интересные факты
Фото поезда Шанхайский Маглев
Видео поезда Маглев
Видео всей поездки поезда “Маглев” из центра Шанхая до аэропорта Пудун:
Контакты железнодорожной линии Маглев
Почтовый адрес:
2100 Long Yang Road
Pudong Shanghai,
China
Телефон: + 86 021 28907700
Левитирующие поезда – это уже реальность, но пока не в России
Магнитный путь между небом и землей
Японские поезда-маглевы способны двигаться со скоростью 600 километров в час. Фото с сайта www.photos.maryland.gov
При рассмотрении основных тенденций и парадоксов становления в России и мире ВСМ (высокоскоростные железнодорожные магистрали) неизбежно в среднесрочной, а то и ближайшей перспективе следующего этапа их развития возникает тема магнитолевитационного (маглев) транспорта.
На рельсах XXI века
Сразу уточню: рельсы – лишь образ, привычный для массового сознания. Но именно рельсов на железных дорогах недалекого будущего не будет! Как и колес. Опора – магнитное поле между эстакадой и поездом. Маглев – это буквально парение (левитация). Нет трения. Нет контактной сети, физического износа, стука. Эксплуатационные расходы – 70% от обычных ВСМ.
На 2019 год опытная эксплуатация маглева идет в Японии, Китае, Германии. И… Не такой уж частый случай: Россия имеет самый серьезный задел, даже приоритет по важнейшему компоненту маглева: сверхпроводники для мощных электромагнитов, разработанные, производимые серийно, поставляемые в США, Германию, Францию, Англию… московской фирмой «СуперОкс».
В конце прошлого года президент Российского университета транспорта (МИИТ), президент Ассоциации вузов транспорта России профессор Борис Лёвин и глава научно-образовательного центра инновационного развития пассажирских железнодорожных перевозок Петербургского государственного университета путей сообщения Анатолий Зайцев (ранее начальник Октябрьской железной дороги, министр путей сообщения РФ) пригласили меня во Всероссийский НИИ железнодорожного транспорта (ВНИИЖТ). Свое заседание проводил Объединенный научный совет РЖД. Тема – перспективы российского маглева.
На этом научном совете присутствовали, делали доклады научные руководители, производственники, представлявшие все отрасли наук, промышленности, необходимые для запуска маглева. Более того, прибыл и глава Всемирной ассоциации маглева Йоханес Клюшпис. Ранее его экспертная группа трижды рассматривала российскую магнитолевитационную технологию и пришла к выводу о ее эксклюзивности и готовности к применению. Изучив мировые и российские усилия, одним из серьезных препятствий для применения технологии маглевы на магистральных линиях (пассажирских и грузовых) господин Клюшпис назвал сопротивление владельцев классических железнодорожных технологий «колесо–рельс».
На сегодня 19 стран в разной степени готовности ведут работы по маглеву. Таким образом, если наше предложение правительству РФ о создании сверхскоростной магнитолевитационной пассажирской магистрали Санкт-Петербург–Москва будет принято, Россия может стать третьей страной в мире, обладающей технологией для сверхскоростных магистралей. Российский проект маглева обладает собственной эксклюзивной технологией – более дешевой, более энергетически эффективной. Нам нужно лишь административное восприятие.
ВСМ – это пути, а не подвижной состав
Причина столь высокого внимания к российскому маглеву – притом что у нас нет пока даже «обычных» ВСМ – все в том же удавшемся прорыве по магнитам на сверхпроводниках. Но сначала два слова о «провале», отставании по ВСМ.
Считаясь визитной карточкой высокоразвитых стран, ВСМ имеют строгий, вполне объективный критерий: маршрутная скорость выше 200 км/час. Напомним, сегодня ВСМ есть в Марокко, Узбекистане! А в США (давний упор на личный транспорт), России – нет! Точнее, есть «квази-ВСМ»: американский Acela Express на линии Вашингтон–Бостон (734 км, 7 часов), наши «Сапсаны» Москва–Санкт-Петербург (650 км, 4 часа). Вся проблема и 70–80% объема инвестиций, необходимых для не «квази» ВСМ, – это пути, но отнюдь не подвижной состав. Например, в известном проекте ВСМ Москва–Казань пути – это 73,7% инвестиций, подвижной состав – 4,7%.
Добавлю: ради «квази-ВСМ» Санкт-Петербург–Москва с «Сапсанами», закупленными в ФРГ, способными идти 250 км/ч, а в реальности плетущимися с маршрутной скоростью 172 км/час, с трассы сняли грузовые составы, пустив их с крюком более 400 км! В общем, то, к чему мы привыкли, может, даже гордимся, по сути, лишь времянка!
Итоговый вердикт Анатолия Зайцева: «В России значительная часть железных дорог проходит по болотистым местностям, слабым грунтам, в условиях вечной мерзлоты. Устройство пути для ВСМ – серьезная проблема вследствие огромных трудозатрат и последствий для окружающей среды. Ученые предлагают принципиально новый подход к несущей конструкции: эстакады. Мировая практика, стремительное развитие техники для устройства опор без применения бульдозеров и экскаваторов, появление новых материалов с высокими несущими свойствами свидетельствуют о возможности существенного прогресса».
Установлено: затраты на строительство пути по эстакадной и классической технологии идентичны. Но первая имеет тенденцию к снижению стоимости, а классическая, из-за замены грунтов, – к удорожанию.
«В Китае при огромных темпах строительства ВСМ и существующих технологиях создания железнодорожных эстакад коэффициент удорожания в общем объеме составляет лишь 1,07, – подчеркивает Зайцев. – По мере роста скорости поездов острее становится проблема передачи электрической мощности на подвижной состав, контактный провод и токоприемник испытывают большие динамические нагрузки. По мере роста скорости динамическое взаимодействие этих элементов усложняется».
Действительно, перепады температур у нас максимальные, а глинистые грунты такие, что, по свидетельству директора Российской Академии путей сообщения Леонида Карпова, на БАМе, вспучиваясь, они давали смещения до 4 м!
Решив кардинально проблему эстакадного пути, можно переходить и к магнитной «начинке», и к рекордным скоростям. Маглев в Японии: 581 км/час (2003 год), сегодня уже 603 км/ч. У авторов проекта российского маглева есть соглашение с «Трансмашхолдингом» (ТМХ), готовым создать российский подвижной состав. При стоимости билета 1500 руб. трасса Москва–Санкт-Петербург (время пути 72 мин.) окупится за 16 лет.
У находящихся в коммерческой эксплуатации в Южной Корее составов на магнитной подушке скорость – 110 километров в час. Фото Ким Минсона |
Профессор Борис Лёвин поясняет, что экономику отечественного маглева помог просчитать Корейский институт машиностроения и материалов. Там сравнили характеристики «Междугородного экспресса» ICE («колесо–рельс», Германия) и Transrapid германской же фирмы, построившей еще в 1984 году в Эмсланде специальный испытательный маглев-трек длиной 31,5 км. Результаты сравнения в ценах 2009 года на один пассажиро-километр:
1) техническое обслуживание подвижного состава: ICE – 0,52 центов, Transrapid – 0,21 цент;
2) техническое обслуживание инфраструктуры: ICE – 1,42 евро, Transrapid – 1,23;
3) общая стоимость технического обслуживания соответственно: 1,93 и 1,43 евро;
4) эксплуатационные затраты обычных ВСМ на 1 км: в Бельгии – 32 тыс. евро, во Франции – 28 тыс. евро, в Италии – 13 тыс. евро, в Испании – 33 тыс. евро. А для маглева Transrapid – 9,6 тыс. евро.
Эти корейско-германские расчеты убедительно показали: стоимость обслуживания магнитного варианта ниже «колесного». А стоимость подвижного их состава сопоставима.
Также важно: пик скорости сверхзвуковых лайнеров достигнут, дополнительные 20–50 км/час никак не изменят общую скорость авиапроцессинга, включающую обработку багажа, контроль пассажиров и время проезда от аэропортов до городских центров. А долговременные козыри маглев-ВСМ кроме безопасности, экологичности – возможность входить в центры больших городов. Абсолютно бесшумный маглев допустим и в спальных районах.
Нет ни одного специалиста, который бы возражал против развития транзитных коридоров. Но это развитие невозможно без конкурентоспособных альтернативных проектов, каждый из которых заслуживает внимания и обсуждения как среди специалистов, так и на федеральном уровне. Важно сделать правильный выбор. Наиболее перспективной с точки зрения государственных интересов в области развития транспортной системы России является технология «маглев», в том числе в эстакадном варианте…
Скоро завершается проект экспериментальной линии маглева: ближнеподмосковный маршрут Царицыно–Домодедово (аэропорт). Тариф составит 400 руб. Срок окупаемости 16 лет при пассажиропотоке 48,7 млн человек к 2024 году; 66,1 млн – к 2030 году.
Сфера безусловного лидерства
Прекрасно представляю скептицизм среднего читателя: у нас-де про всякий случай есть свой Кулибин, Левша, Черепановы. Действительно, можно отметить своеобразный печальный рекорд: паровоз гениальных самоучек, крепостных работников Черепановых был не только первым русским паровозом, но и… первым в истории паровозом, в итоге эксплуатации уступившим свою колею конке! Яркий пример регресса. В политическо-административном болоте могут кануть любые изобретения.
Теперь о рекордах другого рода, зафиксированных вплоть до бухгалтерских проводок…
Кроме исторической «победы над силой трения» маглев для устойчивой, экономически обоснованной эксплуатации требует еще одной великой победы – над электрическим сопротивлением. Как известно, сопротивление при достижении сверхпроводимости равно нулю, следовательно, сверхпроводники позволяют передавать высокие токи без потерь энергии.
Сверхпроводимость известна еще с 1911 года и последующие 80 лет интенсивно изучалась. Но все практические достижения были сделаны в районе температур 4 Кельвина (−270°C). Благодаря сверхпроводникам появились томографы, ускорители частиц и коллайдеры.
Важнейшим событием стало достижение в конце 1980-х годов высокотемпературной сверхпроводимости (ВТСП). Высокотемпературные сверхпроводники работают уже при 77 К (–196,15°С). С бытовой точки зрения это может показаться «одинаково ужасно холодно», но в технической реальности между двумя этими ступенями пропасть. Настоящая технологическая пропасть: – 270°С – температура жидкого гелия; –196,15°С – жидкий азот. Соорудить, например, токопроводящую ленту, охлаждаемую жидким гелием (высокотекучим, дорогостоящим и трудноудерживаемым элементом) – удел лабораторий. Жидкий азот – это продукт широкой промышленности.
Могут возразить: мол, сверхпроводимость достигнута уже и почти при комнатных температурах! Но дело в том, что материалы «комнатной сверхпроводимости» работают лишь при создании огромного давления – миллион атмосфер, что тоже выводит их из промышленного применения.
Сверхпроводники, эксплуатируемые при температуре 77 К (–196,15°С, кипение жидкого азота) имеют огромное число сфер применения. ВТСП-провод (ленту) покупают такие знаковые потребители, как CERN, MIT, Кембриджский университет, Siemens…
Но именно маглев может стать самым крупным потребителем, допингом российским ВТСП. Здесь может повториться русская история XIX века: железные дороги потянули за собой весь технический уровень страны.
Да, японский маглев уже в опытной эксплуатации. Но его магнитолевитационный подвес основывается на сверхпроводящих магнитах, охлаждаемых жидким гелием. А магниты «СуперОкса», единственные в России и Европе второго поколения, – на азоте, дешевом, технологичном. Это шаг, сравнимый с научным скачком 1986 года, исходным в этой сфере: открытие высокотемпературных сверхпроводников, ВТСП (Нобелевская премия 1987 года). То есть переход сверхпроводимости из научной диковины в промышленность.
У немцев тоже маглев в опытной эксплуатации, но – на обыкновенных электромагнитах. Разница? Сверхпроводящие магниты дают левитационный зазор 300 мм, обычные – 10 мм, то есть в 30 раз точнее надо нивелировать опорную поверхность.
Вообразите некий «самолет с потолком» 10 м: его трассу надо расчистить, «вылизать», любая возникшая погрешность грозит соударением. И – самолет с потолком 300 м!
Сейчас Научный центр Анатолия Зайцева и компания «СуперОкс» Андрея Вавилова идут к цели «Маглев на сверхпроводящих магнитах». В опытном режиме работает (создатели называют это самым зрелищным из применений ВТСП) сверхпроводник, 200-килограммовая платформа. Она уже почти четыре года левитирует, парит над магнитным полотном.
Но при всем глобальном заделе наших ВТСП при нынешних условиях эта идиллия маглева долго не продержится! Производство лент ВТСП возрастает в разы, находятся новые и новые сферы их применения. Понятно, что маглев-линии России стали бы просто гигантской сферой их применения. Ведь нынешний основной заказчик, Большой адронный коллайдер в Женеве, – это, конечно, престижно, но он один, а дорог в России… Увы, партнеры из маглева пока в стадии ожидания «отмашки» и ограничиваются лишь пробными партиями.
Я попросил генерального директора ЗАО «СуперОкс» Сергея Самойленкова дать свою оценку ситуации. «В РФ магнитолевитационного проекта пока нет, несмотря на усилия неутомимого энтузиаста Анатолия Зайцева, – подчеркивает Самойленков. – И проблема, очевидно, лежит не в технологической плоскости. Поэтому – увы, но продаж ВТСП для магнитолевитирующего транспорта у нашей компании сегодня практически нет. Есть только какие-то крохи эпизодических экспортных поставок тем университетам, которые этой темой интересуются.
Потенциально это могло бы быть гигантской темой и мощным драйвером для роста нашей компании. МЛТ связаны с высокими полями, сверхпроводники – наилучшие сегодня материалы для создания высоких магнитных полей, а ВТСП – это передовой край сверхпроводников по техническим характеристикам. Если бы МЛТ было решено строить – хотя бы в виде повторения японской Yamanashi-line – но на ВТСП, то потребность в ВТСП кратно превысила бы наши производственные возможности. Будут заказы – мы готовы кратно масштабировать производство, нам ничего, кроме твердого заказа, для этого не нужно. Может быть, это когда-то произойдет…»
Да, переход от гениальных разработок к серийным производствам всегда сложнейший, а в России порой просто «заколдованный» шаг. «СуперОкс» находит свои выходы на массового заказчика. Один из таковых – в сфере, не очень далекой от транспорта: сверхпроводниковые токоограничивающие устройства (ТОУ). Их кабели/ленты при воздействии тока выше порогового значения способны мгновенно переходить из состояния сверхпроводимости в резистивное (состояние сопротивления протеканию электрического тока). Некий мега-аналог бытовых пробок, только в миллион раз мощнее и не требующий выкручивания и замены.
Но по главной перспективе ВТСП на маглев-линиях пока лишь «энтузиазм Зайцева». А отдельные заказы – от зарубежных университетов, что еще более тревожно. Связка ВТСП-маглев не должна бы уйти из России (и вернуться сюда вроде сименсовских «Сапсанов»)…
Крупные инфраструктурные проекты имеют огромное морально-политическое значение, объединяя нацию вокруг цели, которую можно «пощупать». Транссиб, Суэцкий канал, Синкансэн (японская ВСМ). Ряд ждет понятно какого продолжения. n
Действующие сегодня в коммерческом режиме магнитолевитационные транспортные системы
1. «Трансрапид» немецкой разработки и производства, куплена китайцами и успешно эксплуатируется в Шанхае. Принцип действия: а) электромагниты обеспечивают левитацию, боковую стабилизацию; б) асинхронный двигатель с приемом электроэнергии индукционным методом обеспечивает линейное движение до скоростей, лимитируемых целесообразностью. Сегодня это 431 км/час. Китайцы, развивая эту технологию, продемонстрировали макет поезда на скорость 600 км/час. Заявлен план строительства 100-километровой магистрали на ту скорость.
2. Япония эксплуатирует 40-километровый участок, где устойчиво достигается скорость более 600 км/час (618), в том числе и при встречном движении по параллельным путям. В обнародованном плане намечается продлить эту линию к 2027 году на 470 км. Срок определился с учетом, что линия спроектирована для преодоления горной местности в тоннелях. Здесь другой вид технологии: левитация обеспечивается за счет магнитного поля, формируемого электромагнитами со сверхпроводящими обмотками.
3. В Японии, Южной Корее в коммерческом режиме эксплуатируются и низкоскоростные городские (110 км/час) линии. В Китае таких линий уже семь, и к 2022 году запланирован перевод всех метрополитенов Поднебесной на эту технологию.
Оставлять комментарии могут только авторизованные пользователи.